顺序统计量X(1)和X(n)的相关结构
- 格式:pdf
- 大小:1.18 MB
- 文档页数:3
统计学(第六版)期末考试考点梳理统计学(第六版)期末考试考点梳理第⼀章导论1.1.1 什么是统计学统计学是收集、处理、分析、解释数据并从数据中得出结论的科学。
数据分析所⽤的⽅法分为描述统计⽅法和推断统计⽅法。
1.2 统计数据的类型1.2.1 分类数据、顺序数据、数值型数据按照所采⽤的计算尺度不同,可以将统计数据分为分类数据、顺序数据、数值型数据。
分类数据:只能归于某⼀类别的⾮数字型数据,它是对事物进⾏分类的结果,数据表现为类别,是⽤⽂字来表⽰。
例如:⽀付⽅式、性别、企业类型等。
顺序数据:只能归于某⼀有序类别的⾮数字型数据。
例如:员⼯对改⾰措施的态度、产品等级、受教育程度等。
数值型数据:按数字尺度测量的观测值,其结果表现为具体的数值。
例如:年龄、⼯资、产量等。
统计数据⼤体上可分为品质数据(定性数据)和数量数据(定量数据、数值型数据)。
1.2.2 观测数据和实验数据按照统计数据的收集⽅法,可以分为观测数据和实验数据。
观测数据:通过调查或观测⽽收集的数据。
例如:降⾬量、GDP、家庭收⼊等。
实验数据:在实验中控制实验对象⽽收集到的数据。
例如:医药实验数据、化学实验数据等。
1.2.3 截⾯数据和时间序列数据按照被描述的现象与时间的关系,可分类截⾯数据和时间序列数据。
截⾯数据:在相同或近似相同的时间点上收集的数据。
例如:2012年我国各省市的GDP。
时间序列数据:同⼀现象在不同的时间收集的数据。
例如:2000-2012年湖北省的GDP。
1.3.1 总体和样本总体:包含所研究的全部个体(数据)的集合。
样本:从总体中抽取的⼀部分元素的集合。
1.3.2 参数和统计量参数:⽤来描述总体特征的概括性数字度量。
统计量:⽤类描述样本特征的概括性数字度量。
例如:某研究机构准备从某乡镇5万个家庭中抽取1000个家庭⽤于推断该乡镇所有农村居民家庭的年⼈均纯收⼊。
这项研究的总体是5万个家庭;样本是1000个家庭;参数是5万个家庭的⼈均纯收⼊;统计量是1000个家庭的⼈均纯收⼊。
1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
2.1什么是二手资料?使用二手资料应注意什么问题与研究内容有关,由别人调查和试验而来已经存在,并会被我们利用的资料为“二手资料”。
顺序统计量公式证明顺序统计量是统计学中非常重要的概念之一,它描述了一组数据中第k个最小值或第k个最大值的概念。
在实际应用中,顺序统计量常常被用于数据分析、质量控制、风险管理等领域。
为了证明顺序统计量的公式,我们需要先了解几个基本的数学概念和定理。
首先,我们需要了解什么是数学期望。
数学期望定义为随机变量取值的概率加权和。
在概率论中,数学期望是一个非常重要的概念,它描述了随机变量的平均水平。
其次,我们需要了解方差的概念。
方差是随机变量取值与数学期望的离散程度,即随机变量取值分布的散布程度。
方差越大,随机变量的取值分布越分散;方差越小,随机变量的取值分布越集中。
最后,我们需要了解协方差的概念。
协方差是两个随机变量取值之间的相关程度的度量。
如果两个随机变量取值之间的协方差为正,则它们之间存在正相关关系;如果协方差为负,则它们之间存在负相关关系;如果协方差为零,则它们之间没有相关关系。
在了解了上述数学概念之后,我们可以开始证明顺序统计量的公式了。
首先,我们考虑证明第k个最小值的期望公式。
我们可以将一组n个数据按照从小到大的顺序排列,那么第k个最小值的期望可以表示为:E[X(k)]。
根据数学期望的定义,我们可以得到:E[X(k)] = (x1+x2+…+xn-k+1)p(x1+x2+…+xn-k+1)+(x2+x3+…+xn-k+2)p(x2+x3+…+xn-k+2)+…+(xk)p(xk) (1)根据概率的定义,上述公式(1)可以化简为:E[X(k)] = (x1+x2+…+xn-k+1)P(X≤x1+x2+…+xn-k+1)+(x2+x3+…+xn-k+2)P(X≤x2+x3+…+xn-k+2)+…+(xk)P(X ≤xk) (2)其中,P(X≤xi)表示随机变量X小于等于xi的概率。
根据顺序统计量的定义,我们可以得到:E[X(k)] = (x1+x2+…+xn-k+1)P(X≤x1)+(x2+x3+…+xn-k+2)P(X≤x2)+…+(xk)P(X≤xk) (3)由于随机变量X的概率分布是离散的,因此P(X≤xi)对于所有的i都是相等的,等于1/n。
全体顺序统计量的联合概率密度函数全体顺序统计量是概率论和统计学中一个重要的概念,它在研究多个随机变量的顺序特性时发挥着关键的作用。
本文将深入探讨全体顺序统计量的联合概率密度函数,旨在帮助读者更深入地理解该概念。
1. 什么是全体顺序统计量?全体顺序统计量是指从一组随机变量中按照顺序选择k个变量,并记为X(1), X(2), ..., X(k),其中X(1)为最小值,X(k)为最大值。
全体顺序统计量可以用来描述一组变量的顺序特性,如最小值、最大值等。
2. 联合概率密度函数的定义全体顺序统计量的联合概率密度函数描述了多个随机变量按照顺序排列时的概率密度分布。
设X(1), X(2), ..., X(k)是一组随机变量的全体顺序统计量,则联合概率密度函数可以表示为:f(x(1), x(2), ..., x(k)) = n! / ((k-1)!(n-k)!) * [F(x(1))]^(k-1) * [1 -F(x(k))]^(n-k) * f(x(1)) * f(x(2)) * ... * f(x(k))其中,n为随机变量的个数,f(x)为随机变量X的概率密度函数,F(x)为随机变量X的累积分布函数。
3. 解读联合概率密度函数联合概率密度函数中的第一项n! / ((k-1)!(n-k)!)表示了选择k个变量的排列方式数目。
接下来的两项 [F(x(1))]^(k-1) 和 [1 - F(x(k))]^(n-k) 表示了选择的k个变量在对应位置上的概率。
最后一项 f(x(1)) * f(x(2)) * ... * f(x(k)) 表示了每个变量自身的概率密度。
通过联合概率密度函数,我们可以计算在给定条件下全体顺序统计量的概率分布。
这对于理解随机变量的排列顺序以及建立推断统计模型等问题具有重要意义。
4. 观点和理解全体顺序统计量的联合概率密度函数是概率论和统计学中一个重要的研究工具。
它可以帮助研究人员描述和分析多个随机变量的顺序特性,并为统计推断提供理论基础。
第四节顺序统计量≤≤≤=1212(1)(2)()1212()()(1)(2)()12(,,,) (5.4.1 ,,,),(,,,)(,,),(1,2,,), (,,,)( ,,,n n n n n k k n X X X X x x x x x x X X X x x x X x k n X X X X X X 设是从总体中抽取的一个样本,是其一个观测值将观测值按由小到大的次序一、顺序统计量的定义定重新排列为当取值为时定义取值为由此得到的称为样本义(1)(2)()) (,,,)..n n x x x 顺序的对应的成统量为其计观察值≤≤≤≤===-称为样本的特别地,称为 称为 称为由于每个都是样本的函数,所以都是随机变量第个顺序统计量最小顺序统计量最大顺序统计量. 一般它们不相互独立.设总体的分布为样本极差.例1注:: ()12(1)1()1()()(1)()12(1)(2)():(,,,)min .max .(,,,),,,.k n i i nn i i nn n k n n X X X X X X X X R X X X X X X X k X X X 仅取的离散均匀分布,其分布列为0, 1, 2----=--<<<=-><=-≤-=-+-=---⎰设总体分布为为样本,则的联合密度函数为 令 由可以推出 则该分布参例数为 12(1)()21,()(1)(1)()122(0,1),,,,(,)(,)(1)(),0 1.,001()(1)[3()](1)(1).(1n n n n n n r n R n X U X X X X X f y z n n z y y z R x x R X X R R f r n n y r y dyn n r r n 的贝塔分布.,2)。
最小次序统计量的分布函数最小次序统计量是统计学中的一个重要概念,它在描述数据集的排序特征方面起着关键作用。
本文将围绕最小次序统计量的分布函数展开讨论,从定义、性质、应用等多个方面进行阐述。
最小次序统计量是指从一个给定的数据集中选取最小的一个观测值。
在统计学中,我们经常需要对数据进行排序,以便更好地描述其特征。
最小次序统计量可以帮助我们了解数据集中最小的观测值是多少,并且可以在一定程度上反映数据集的整体分布情况。
我们来详细定义最小次序统计量。
对于一个由n个观测值组成的数据集,我们将这些观测值按照从小到大的顺序排列,记为X(1) ≤ X(2) ≤ ... ≤ X(n)。
其中,X(1)表示最小的观测值,即最小次序统计量。
最小次序统计量的分布函数可以表示为F(x) = P(X(1) ≤ x),即求小于等于x的最小次序统计量的概率。
最小次序统计量的分布函数具有以下几个重要性质:1. 随机变量的取值范围:最小次序统计量的取值范围是数据集中的最小观测值到最大观测值,即X(1) ∈ [min(X), max(X)]。
2. 分布函数的单调性:最小次序统计量的分布函数是非递减函数,即F(x1) ≤ F(x2),其中x1 ≤ x2。
3. 分布函数的界限:最小次序统计量的分布函数具有边界值,即F(min(X)) = 0,F(max(X)) = 1。
4. 分布函数的连续性:最小次序统计量的分布函数是右连续的,即在任意x0处,有F(x0+) = F(x0)。
最小次序统计量的分布函数在统计推断中有着广泛的应用。
例如,在假设检验中,我们常常需要根据给定的样本数据判断某个参数的取值范围。
最小次序统计量的分布函数可以帮助我们计算出在给定显著性水平下的拒绝域,从而进行假设检验。
在可靠性分析中,最小次序统计量的分布函数也有着重要的应用。
例如,我们经常需要估计某个产品的寿命分布,以评估其可靠性。
通过使用最小次序统计量的分布函数,我们可以计算出该产品在给定时间范围内发生故障的概率,从而为产品的设计和改进提供依据。