均匀分布U[0__1]_第i顺序统计量分布_-_描述统计
- 格式:pdf
- 大小:413.83 KB
- 文档页数:4
算法导论-顺序统计-快速求第i⼩的元素⽬录1、问题的引出-求第i个顺序统计量2、⽅法⼀:以期望线性时间做选择3、⽅法⼆(改进):最坏情况线性时间的选择4、完整测试代码(c++)5、参考资料内容1、问题的引出-求第i个顺序统计量什么是顺序统计量?及中位数概念在⼀个由元素组成的集合⾥,第i个顺序统计量(order statistic)是该集合第i⼩的元素。
例如,最⼩值是第1个顺序统计量(i=1),最⼤值是第n个顺序统计量(i=n)。
⼀个中位数(median)是它所在集合的“中点元素”。
当n为奇数时,中位数是唯⼀的;当n为偶数时,中位数有两个。
问题简单的说就是:求数组中第i⼩的元素。
那么问题来了:如何求⼀个数组⾥第i⼩的元素呢?常规⽅法:可以⾸先进⾏排序,然后取出中位数。
由于排序算法(快排,堆排序,归并排序)效率能做到Θ(nlogn),所以,效率达不到线性;在本⽂中将介绍两种线性的算法,第⼀种期望效率是线性的,第⼆种效率较好,是在最坏情况下能做到线性效率。
见下⾯两个⼩节;2、⽅法⼀:以期望线性时间做选择这是⼀种分治算法:以为模型:随机选取⼀个主元,把数组划分为两部分,A[p...q-1]的元素⽐A[q]⼩,A[q+1...r]的元素⽐A[q]⼤。
与快速排序不同,如果i=q,则A[q]就是要找的第i⼩的元素,返回这个值;如果i < q,则说明第i⼩的元素在A[p...q-1]⾥;如果i > q,则说明第i⼩的元素在A[q+1...r]⾥;然后在上⾯得到的⾼区间或者低区间⾥进⾏递归求取,直到找到第i⼩的元素。
下⾯是在A[p...q]中找到第i⼩元素的伪码:1 RandomSelect(A,p, q,k)//随机选择统计,以期望线性时间做选择2 {3if (p==q) return A[p];4int pivot=Random_Partition(A,p,q);//随机选择主元,把数组进⾏划分为两部分5int i=pivot-p+1;6if (i==k )return A[pivot];7else if (i<k) return RandomSelect(A,pivot+1,q,k-i);//第k⼩的数不在主元左边,则在右边递归选择8else return RandomSelect(A,p,pivot-1,k);//第k⼩的数不在主元右边,则在左边递归选择9 }在最坏情况下,数组被划分为n-1和0两部分,⽽第i个元素总是落在n-1的那部分⾥,运⾏时间为Ө(n^2);但是,除了上述很⼩的概率情况,其他情况都能达到线性;在平均情况下,任何顺序统计量都可以在线性时间Θ(n)内得到。
统计课后思考题答案第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
§1.4 顺序统计量≤≤≤=1212(1)(2)()1212()()(1)(2)()12(,,,) (,,,),(,,,)(,,,),(1,2,,), (,,,)(,,1.4.1 ,n n n n n k k n X X X X x x x x x x X X X x x x X x k n X X X X X 设是从总体中抽取的一个样本,是其一个观测值将观测值按由小到大的次序重新排列为一、顺序统计量的定义当取值为时定义取值为由此得到的称为样本 定义(1)(2)()) (,,,)..n n X x x x 的对应的成为其顺序统计量观察值≤≤≤≤===-称为样本的特别地,称为 称为 称为由于每个都是样本的函数,所以都是随机变量第个顺序统计量最小顺序统计量最大顺序统计量. 一般它们不相互独立.设总体的分布为样本极差.例1注:: ()12(1)1()1()()(1)()12(1)(2)():(,,,)min .max .(,,,),,,.k n i i nn i i nn n k n n X X X X X X X X R X X X X X X X k X X X 仅取的离散均匀分布,其分布列为0, 1, 2----=--<<<=-><=-≤-=-+-=---⎰设总体分布为为样本,则的联合密度函数为 令 由可以推出 则该分布参例数为 12(1)()21,()(1)(1)()122(0,1),,,,(,)(,)(1)(),0 1.,001()(1)[3()](1)(1).(1n n n n n n r n R n X U X X X X X f y z n n z y y z R x x R X X R R f r n n y r y dyn n r r n 的贝塔分布.,2)。
管理统计学名词解释一、绪论1.统计学:研究如何收集、整理、分析和解释涉及社会、经济、管理问题的数据,并对研究对象进行统计推断的一门科学2.描述统计学:利用获得的数据,绘制统计图,并计算一些数字特征值3.推断统计学:利用获得的样本数据,进行区间估计、假设检验、回归分析、方差分析、时间序列分析4.管理统计学:研究如何收集、整理、分析和解释涉及社会、经济、管理问题的数据,并对研究对象进行统计推断的一门科学5.总体:构成研究对象全部元素的集合6.样本:通过多次抽样观察可以得到总体指标X的一组数值(x1,x2,…,x n),其中每个x i是一次抽样观察的结果。
(x1,x2,…,x n)称为容量为n的一个样本,也称样本观察值7.总体参数:总体分布的某些特征,如分布位置、分布离散程度等8.统计量:由样本数据加工出来的、反映样本数量特征的函数,它不含任何未知量二、数据收集方法1.统计变量:调查现象的某种特征2.直接来源:第一手或直接的统计数据,包括专门调查和科学试验3.统计调查:方式可分为普查、抽样调查、统计报表、重点调查和典型调查;根据调查对象的不同,可分为全面调查和非全面调查4.间接来源:别人调查或科学试验的第二手或间接数据,包括公开出版或公开报道的数据5.数据误差:统计数据与客观现实之间的差距,包括抽样性误差和非抽样性误差6.统计推断:根据抽样分布律和概率理论,由样本结果(统计数)来推论总体特征(参数)。
7.普查:为某一特定目的而专门组织的一次全面调查三、描述数据的图标方法1.定类变量:定类变量的值就是定类数据2.定序变量:定序变量的值就是定序数据3.数字变量:数字变量的值即为定距数据或定比数据(统称为定量数据)4.定性数据:只能归入某一类而不能用数值进行测度的数据,包括定类数据和定性数据5.定量数据:用数值来表现观察值,包括定距数据和定比数据6.频数分布:由分组标志序列和各组相对应的分布次数两个要素构成7.茎叶图:用于直接描述未分组原始数据的探索性分析,是描述数据分布形状,如数据是否集中,是否有极端值等的图形方法,由茎、叶、每个茎对应叶的个数、茎的宽度这四元素组成8.交叉表:用来描述同时产生两个定性变量的数据的图形方法9.散点图:描述两个数字变量之间关系的图形方法10.直方图:用用矩形的高度和宽度来表示频数分布的图形四、描述统计中的测度1.均值:数据平均数,是度量集中趋势最主要的指标之一2.调和平均数:根据变量值倒数计算的均值,也叫倒数平均数(Hm)3.几何平均数:n个变量值连乘积的n次方根(G)4.中位数:一组数据按数值的大小从小到大排序后,处于中点位置上的变量值(M e)5.众数:一组数据中出现次数最多的变量值(M o)6.百分位数:用99个点将排列好的数据一百等分后,分别给出的从最小值到最大值区间内数据的信息分位点上的值7.四分位数:一组数据排序后处于25%和75%位置上的值8.极差:也叫全距,一组数据的最大值与最小值之差(R)9.四分位差:也称为内距或四分位距,是第一四分位数与第三四分位数的差,代表数据分布中间50%的距离(IQ R)10.平均差:变量数列中各个变量值与算术平均数的绝对离差的平均数(M D)方差:变量数列中各变量值与其算数平均数差的平方的算术平均数(s²)11.标准差:方差的平方根,又称均方差或均方差根的算术平均数(s)12.标准分数:也称标准化值或z分数,是变量值与其平均数的离差出一标准差后的值,是对每个数据在该组数据中相对位置的测量(z)13.离散系数:也称为标准差系数,是把离散趋势绝对数与数列均值进行对比,将其抽象化,反映数列离散趋势的相对程度,是一组数据的标准差与其对应的平均数之比,是测度数据离散程度的相对指标(C.V.)14.偏态:对分部偏斜方向和程度的测度,是次数分配的非对称程度15.峰度:是分布集中趋势高峰的形状,指次数分布曲线顶端的尖峭程度五、概率与概率分布1.随机事件:在同一组条件下,可能发生也可能不发生的事件2.必然事件:在同一组条件下,每次试验一定出现的事件。
概率论与数理统计第五版答案第一章简介本章主要介绍概率论与数理统计的基本概念和研究对象,并概述了本书的组织结构和学习方法。
1.1 概率论与数理统计的基本概念概率论是研究不确定现象的数学分支,数理统计是利用概率论的方法进行统计分析的科学。
概率论研究的对象是随机现象及其概率规律,而数理统计研究的是通过对样本数据的分析来推断总体特征和进行决策。
1.2 概率论的基本思想概率论的基本思想是根据已知信息推断未知信息的可能性。
它主要包括两个方面:经典概率和统计概率。
经典概率是指通过理论计算得出的概率值,统计概率是通过观察数据进行统计分析得出的概率值。
1.3 数理统计的基本思想数理统计的基本思想是根据样本数据推断总体特征,并进行决策。
它包括描述统计和推断统计两个部分。
描述统计是对样本数据的整理、加工和展示;推断统计是通过样本数据来推断总体特征,并给出相应的置信区间或检验结果。
1.4 本书的结构和学习方法本书一共分为五个部分,分别是概率基础、随机变量及其分布、数理统计基础、参数估计与检验、方差分析与回归分析。
每个部分都有相应的章节和习题。
本书的学习方法包括理论学习和实践练习相结合。
在学习理论知识的同时,通过习题的解答来巩固和应用所学的知识。
第二章概率基础本章介绍了概率的基本性质和运算法则,并讲解了概率模型和条件概率的概念。
2.1 概率的基本性质概率具有非负性、规范性和可列可加性三个基本性质。
非负性指概率的取值范围为[0,1];规范性指必然事件的概率为1,不可能事件的概率为0;可列可加性指若事件A1、A2…是两两互斥事件,则它们的概率之和等于它们的并事件的概率。
2.2 概率的运算法则概率的运算法则包括加法法则和乘法法则。
加法法则是指若事件A和B互斥,则它们的概率之和等于它们的并事件的概率;乘法法则是指若事件A和B相互独立,则它们的概率之积等于它们的联合事件的概率。
2.3 概率模型概率模型是指用概率分布来描述随机现象的数学模型。
顺序统计量的分布及其应用探究学生姓名:杨道圣 指导教师:刘宇民摘要 顺序统计量在近代统计推断中起着很重要的作用,在水文,地震,气象和建筑等领域都有重要作用。
经过总结得出了关于顺序统计量的离散型最大顺序统计量分布,最小顺序统计量分布,连续性第i 个顺序统计量ξ(i)的密度函数,连续性随机变量任意两个顺序统计量ξ(i )<ξ(j)的密度函数:1.离散型随机变量子样最小值的分布律为)(])1()!(!![)(11)1(I r pi r p l n l n x X P nl l n rl lr∈--==∑∑=-=2.离散型随机变量子样最大值的分布律为)(])1()!1()!1((1).(1n n n n n n r n R n X U X X X X X f y z n n z y y z R x x R X X R R f r n n y r y dyn n r r n 的贝塔分布.,2)。