EMI(1级2级)滤波器设计方法
- 格式:pdf
- 大小:1.59 MB
- 文档页数:38
一种应用于DC28V电源信号EMI滤波及雷电防护电路的制作方法一、引言随着电子设备在各个领域的广泛应用,电源信号的电磁干扰(EMI)问题日益突出。
同时,雷电对电子设备的破坏性影响也不容忽视。
因此,设计一种能够同时实现EMI滤波和雷电防护的电路至关重要。
本文介绍了一种应用于DC28V电源信号的EMI滤波及雷电防护电路的制作方法。
二、电路设计1.EMI滤波器设计:EMI滤波器的主要功能是抑制电源线上的电磁干扰,提高电源质量。
本设计采用共模滤波器和差模滤波器结合的方式,共模滤波器主要用于抑制共模干扰,差模滤波器主要用于抑制差模干扰。
滤波器电路由电感器和电容器的组合构成,通过合理选择电感值和电容值,实现对不同频率干扰的抑制。
2.雷电防护电路设计:雷电防护电路的主要功能是保护电子设备免受雷电过电压和过电流的影响。
本设计采用气体放电管和压敏电阻相结合的方式。
气体放电管在雷电过电压作用下能迅速击穿放电,将过电压限制在较低水平;压敏电阻在雷电过电流作用下能迅速阻断电流,防止电流过大造成设备损坏。
通过合理选择气体放电管和压敏电阻的参数,实现对雷电过电压和过电流的有效防护。
三、制作工艺1.电路板制作:选用合适的FR4或CEM-1基材,进行覆铜处理,设置合理的线宽和间距,保证电路板的电气性能和散热性能。
2.元器件焊接:采用低温焊接工艺,确保焊接质量,防止元器件因高温而损坏。
3.电路板测试:对制作完成的电路板进行电气性能测试,确保各项指标符合设计要求。
四、应用实例本制作方法已成功应用于某型号舰载电子设备的DC28V电源信号处理中,有效提高了设备的电磁兼容性和防雷能力,保证了设备的稳定运行。
五、结论本文介绍了一种应用于DC28V电源信号的EMI滤波及雷电防护电路的制作方法,包括电路设计和制作工艺两个方面的内容。
通过实际应用证明,本制作方法能有效提高设备的电磁兼容性和防雷能力,具有较高的实用价值。
未来,我们将继续优化电路设计和制作工艺,为更多领域提供优质的电源信号处理解决方案。
EMI 滤 波 器 原 理 与 设 计 方 法 详 解输入端差模电感的选择输入端差模电感的选择::1. 差模choke 置于L 线或N 线上,同时与XCAP 共同作用F=1 / (2*π* L*C)2. 波器振荡频率要低于电源供给器的工作频率,一般要低于10kHz 。
3. L = N2AL (nH/N2)nH4. N = [L (nH )/AL(nH/N2)]1/2匝5. AL = L (nH )/ N2nH/N26. W =(NI )2AL / 2000µJ输入端共模电感的选择输入端共模电感的选择::共模电感为EMI 防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI 特性及温升,以同样尺寸的Common Choke 而言,线圈数愈多(相对的线径愈细),EMI 防制效果愈好,但温升可能较高。
传导干扰频率范围为0.15~30MHz ,电场辐射干扰频率范围为30~100MHz 。
开关电源所产生的干扰以共模干扰为主。
产生辐射干扰的主要元器件除了开关管和高频整流二极管还有脉冲变压器及滤波电感等。
注意:1. 避免电流过大而造成饱和。
2.Choke 温度系数要小,对高频阻抗要大。
3.感应电感要大,分布电容要小。
4.直流电阻要小。
B = L * I / (N * A) (B shall be less than 0.3)L = Choke inductance. I = Maximum current through choke. N = Number of turns on choke.A = Effective area of choke. (for drum core, can approximate with cross section area of center pole.)假设在50KHZ 有24DB 的衰减则,共模截止频率Fc = Fs*10Att/4 0 = 50*10-24/40=12.6KHZ 电感值L= (RL*0.707)/(∏*Fc) = (500.707)/(3.14*12.6) = 893uH使用磁芯和磁棒作滤波电感时应注意自身的阻抗,对于共模电感不能使用低阻抗的磁芯和磁棒,否则会造成炸机现象。
直流电源EMI滤波器的设计原则、网络结构、参数选择1设计原则——满足最大阻抗失配插入损耗要尽可能增大,即尽可能增大信号的反射。
设电源的输出阻抗和与之端接的滤波器的输人阻抗分别为ZO和ZI,根据信号传输理论,当ZO≠ZI时,在滤波器的输入端口会发生反射,反射系数p=(ZO-ZI)/(ZO+ZI)显然,ZO与ZI相差越大,p便越大,端口产生的反射越大,EMI信号就越难通过。
所以,滤波器输入端口应与电源的输出端口处于失配状态,使EMI信号产生反射。
同理,滤波器输出端口应与负载处于失配状态,使EMI信号产生反射。
即滤波器的设什应遵循下列原则:源内阻是高阻的,则滤波器输人阻抗就应该是低阻的,反之亦然。
负载是高阻的,则滤波器输出阻抗就应该是低阻的,反之亦然。
对于EMI信号,电感是高阻的,电容是低阻的,所以,电源EMI滤波器与源或负载的端接应遵循下列原则:如果源内阻或负载是阻性或感性的,与之端接的滤波器接口就应该是容性的。
如果源内阻或负载是容性的,与之端接的滤波器接口就应该是感性的。
2 EMI滤波器的网络结构EMI信号包括共模干扰信号CM和差模干扰信号DM,CM和DM的分布如图1所示。
它可用来指导如何确定EMI滤波器的网络结构和参数。
EMI滤波器的基本网络结构如图2所示。
上述4种网络结构是电源EMI滤波器的基本结构,但是在选用时,要注意以下的间题:l)双向滤波功能——电网对电源、电源对电网都应该有滤波功能。
2)能有效地抑制差模干扰和共模干扰——工程设计中重点考虑共模干扰的抑制。
3)最大程度地满足阻抗失配原则。
几种实际使用的电源EMI滤波器的网络结构如图3所示。
3电源EMI滤波器的参数确定方法a)放电电阻的取值在允许的情况下,电阻取值要求越小越好,需要考虑以下情况:第一,电阻要求采用二级降额使用,保证可靠性。
降额系数为0.75 V,0. 6 W。
根据欧姆定律可求出n>(0.75Ve)2/(0.6 Pe)。
第二,经过雷击浪涌后有残压,其瞬时值一般在1000 V取值;其瞬时功率值不能超过额定功率值的4倍,也可求出R>(Vcy)2/(4Pe)。
EMI滤波器电路原理及设计EMI滤波器(Electromagnetic Interference Filter)是一种用于抑制电磁干扰的电路。
电磁干扰是指电子设备之间相互干扰产生的电磁辐射或者干扰信号,会对设备的正常操作和性能产生负面影响。
EMI滤波器通过选择性地传递或者屏蔽指定频率范围内的信号,从而实现对电磁干扰的抑制。
一般来说,低通滤波器是指可以通过低于其中一特定频率的信号,而对高于该特定频率的信号进行滤波的电路。
低通滤波器常用于消除高频电磁干扰。
一个常见的低通滤波器电路是RC滤波器,由电容器和电阻器组成。
电容器对于高频信号具有很大的阻抗,从而将高频信号绕过电路,实现滤波作用。
选择合适的电容和电阻大小可以实现对于特定频率的信号滤波。
相比之下,高通滤波器是指可以通过高于其中一特定频率的信号,而对低于该特定频率的信号进行滤波的电路。
高通滤波器常用于消除低频电磁干扰。
一个常见的高通滤波器电路是RL滤波器,由电感器和电阻器组成。
电感器对于低频信号具有很大的阻抗,从而将低频信号绕过电路,实现滤波作用。
选择合适的电感和电阻大小可以实现对于特定频率的信号滤波。
除了RC和RL滤波器,还有其他各种类型的EMI滤波器电路,比如LC滤波器、二阶滤波器、传输线滤波器等,可以根据具体应用的需求进行选择和设计。
在EMI滤波器电路的设计中,首先需要确定需要滤波的频率范围,然后根据频率范围选择合适的滤波器类型。
其次,需要根据滤波器的阻抗特性和传输线的特性来选择适当的元件值。
还需要注意电路的功率和电流容量,以确保电路能够在正常工作范围内工作。
在实际应用中,EMI滤波器电路通常需要与其他电路结合使用,比如与电源、传输线路、信号线路等进行连接。
因此,需要特别注意电路的布局和接线,以减少电磁干扰的传播路径。
总之,EMI滤波器电路是一种用于抑制电磁干扰的重要电路,通过选择性地传递或者屏蔽指定频率范围内的信号,实现对电磁干扰的抑制。
在设计EMI滤波器电路时,需要根据具体应用需求选择合适的滤波器类型,并根据电路的阻抗特性和传输线的特性选择适当的元件值。
电源的两级EMI电路
电源的两级EMI电路都设计在主PCB上,一级EMI设计在较靠近电源输入口的地方,电源输入端有电磁抑制磁环,可以有效减少电磁干扰。
一颗共模滤波电容与多颗差模滤波电容组成一级EMI电路,而二级EMI电路由两颗共模滤波电容与两颗共模滤波扼流电感,完整的EMI电路设计可以最大程度滤除电网的干扰信号
AC电网火线和零线之间是低阻抗,所以与之对应的滤波器输入端也应是高阻抗串联大电感LDM。
如果想再进一步抑制差模噪声,可以在滤波器输入端并接线间电容CX1,条
件是它的阻抗要比AC电网火线、零线之间的阻抗还要低得多。
:Cx=0.1—2.0uF。
CY=2.0nF—33nF。
Lc=几—几十mH,随工作电流不同而取不同的参数值,如电流为25A时Lc=1.8mH。
电流为0.3A时,Lc=47mH。
另外在滤波元件选择中,一定要保证输入滤波器的谐振频率低于开1-8关电源的工作频率。
由于开关电源的开关频率谐波噪声源阻抗为低阻抗,所以与之相对应的滤波器输出端应是高阻抗串联大电感LDM。
EMI滤波器电路原理及设计引言开关电源以其体积小、重量轻、效率高等长处被广泛应用于电力电子设备系统中,但是开关电源易受到电磁干扰,产生误动作,且自身旳高频信号也会引起大量旳噪声,会污染电网环境,干扰同一电网其她电子设备旳正常工作。
这样就对EMC提出了更高旳规定指标。
分类:开关电源中旳电磁干扰(EMI)重要有传导干扰和辐射干扰。
通过对旳旳屏蔽和接地系统设计可以得到有效旳控制,对于传导干扰来说,加装EMI滤波器,是一种比较经济有效旳措施,辐射干扰旳克制可以通过加装变压器屏蔽铜片。
EMI滤波器简介开关电源与交流电网相连,尽管开关电源是一种单端口网络,但具有相线(L),零线(N),地线(E)旳开关电源事实上形成了两个AC端口,因此噪声源在实际分析中可以将其分解为共模和差模噪声源。
火线(L)与零线(N)之间旳干扰叫做差模干扰(属于对称性干扰),火线(L)与地线(E)之间旳干扰叫做共模干扰(非对称性干扰)。
在一般状况下,差模干扰幅度小、频率低、所导致旳干扰较小;共模干扰幅度大、频率高,还可以通过导线产生辐射,所导致旳干扰较大。
开关电源旳EMI干扰源集中体目前功率开关管、整流二极管、高频变压器等,外部环境对开关电源旳干扰重要来自电网旳抖动、雷击、外界辐射等。
1.开关电源旳EMI干扰源开关电源旳EMI干扰源集中体目前功率开关管、整流二极管、高频变压器等,外部环境对开关电源旳干扰重要来自电网旳抖动、雷击、外界辐射等。
(1)功率开关管功率开关管工作在On-O ff迅速循环转换旳状态,dv/dt和di/dt都在急剧变换,因此,功率开关管既是电场耦合旳重要干扰源,也是磁场耦合旳重要干扰源。
(2)高频变压器高频变压器旳EMI来源集中体目前漏感相应旳di/dt迅速循环变换,因此高频变压器是磁场耦合旳重要干扰源。
(3)整流二极管整流二极管旳EMI来源集中体目前反向恢复特性上,反向恢复电流旳断续点会在电感(引线电感、杂散电感等)产生高 dv/dt,从而导致强电磁干扰。
开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用来减少开关电源产生的电磁干扰(EMI)的一种装置。
EMI是指开关电源工作时产生的高频干扰信号,可能会对其他电子设备、无线通信和无线电接收产生干扰,影响它们的正常工作。
EMI滤波器通过合理设计,能有效地抑制开关电源产生的EMI信号,从而减少对其他设备的干扰。
EMI滤波器的原理是基于电流和电压的相位关系来实现的。
开关电源在工作时会产生高频电流脉冲,而这些电流脉冲会通过开关电源输入端的电容等元件,从而形成高频电流回路。
EMI滤波器通过给开关电源输入端加上一个电感元件,阻断高频电流回路的形成,从而减小EMI信号的辐射。
设计EMI滤波器时需要考虑以下几个因素:1.工作频率范围:EMI滤波器需要在开关电源产生EMI信号的频率范围内有效工作。
根据具体的应用环境和要求,选择合适的滤波器工作频率范围。
2.滤波特性:滤波器需要具有良好的滤波特性,对于较高频率的EMI信号能够有较好的抑制效果。
常用的滤波器类型有低通滤波器、带通滤波器和带阻滤波器等。
3.过渡区域:滤波器在过渡区域需要平衡阻抗和频率之间的变化。
过渡区域越宽,滤波器的性能越好。
过渡区域的宽度需要根据具体要求进行设计。
4.安全和可靠性:EMI滤波器需要满足安全和可靠性的要求。
在设计过程中,需要考虑电源参数范围、电流和电压的安全范围等因素,以确保滤波器的稳定性和可靠性。
设计EMI滤波器的方法有多种,可以根据需求选择不同的设计方法。
常见的方法包括线性滤波器设计、Pi型滤波器设计和C型滤波器设计等。
其中,Pi型滤波器是应用最广泛的一种,它由两个电感和一个电容组成,能够对高频信号进行抑制。
总之,开关电源EMI滤波器的原理和设计研究是为了降低开关电源产生的电磁干扰,保证其他设备的正常工作。
通过合理的滤波器设计和选择合适的滤波器类型,可以有效地减少EMI信号对其他设备的干扰,提高系统的抗干扰性能。
开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用于抑制开关电源产生的电磁干扰(EMI)的一种电路。
开关电源工作时,因为开关元件的开闭引起的瞬态电流和电压变化,会在电源线上产生高频噪声干扰,通过电磁辐射和传导的方式传播到其他电路中,对其他设备和系统产生干扰。
EMI滤波器的设计旨在通过选择合适的滤波器拓扑结构、滤波器元件和参数,以及合理布局和连接方式,来有效地抑制开关电源产生的高频噪声。
EMI滤波器的原理是通过串联和并联等方式构成一个低通滤波器,将开关电源的高频噪声滤除,使其只能在设定的频率范围内传递,从而减少对其他设备和系统的干扰。
EMI滤波器的设计研究需考虑以下几个方面:1.滤波器拓扑结构选择:常见的EMI滤波器拓扑结构包括LC滤波器、RC滤波器和LCL滤波器等。
不同的拓扑结构适用于不同的滤波需求,需根据实际应用场景选择适合的拓扑结构。
2.滤波器元件选择:滤波器中的元件包括电感、电容和电阻等。
选择合适的元件需要考虑元件的频率响应特性、阻抗特性、容值和功率等参数。
3.滤波器参数优化:滤波器的参数优化可以通过频率响应曲线和阻抗匹配等方法进行,以确保滤波器在设计频率范围内能够有效地滤除高频噪声。
4.布局和连接方式设计:合理的布局和连接方式可以减少电磁辐射和传导的路径,从而进一步提高滤波器的性能。
此外,还需对滤波器进行实验验证,通过在实际电路中的应用来评估滤波器的性能和有效性。
总之,开关电源EMI滤波器的原理和设计研究是为了抑制开关电源的高频噪声干扰,需要对滤波器的拓扑结构、元件选择、参数优化以及布局和连接方式进行综合考虑和设计,以提高滤波器的性能和效果。