第3章_晶格振动与晶体的热学性质2
- 格式:ppt
- 大小:6.18 MB
- 文档页数:82
晶格振动与晶体的热学性质关系综述晶格振动是晶体中原子或分子在平衡位置周围的微小振动。
它是晶体内部热学性质的基础,与晶体的热导率、热膨胀系数、比热容等热学性质密切相关。
本文将综述晶格振动与晶体热学性质的关系,并探讨晶格振动在材料科学中的应用。
晶体的热学性质与晶格振动的频率、波矢以及振幅有密切关系。
一般来说,晶格振动频率高、振幅小的晶体热导率会较高,热膨胀系数较小。
这是因为晶格振动频率高意味着晶格中原子或分子之间的相互作用强,能量传递效率高;而振幅小意味着原子或分子振动的范围小,不易导致晶格的漂移,从而减小了热膨胀系数。
晶格振动与晶体的比热容也存在一定的关系。
在低温下,晶格振动对比热容的贡献为Debye模型所描述的三维声子气模型。
而在高温下,由于激发了大量的非谐振动模式,晶格振动对比热容的贡献将显著增加。
除了热学性质,晶格振动还与晶体的光学性质相关。
例如,晶体的红外吸收谱在一定程度上反映了晶格振动的特点。
由于不同模式的晶格振动对应不同的波矢和能量,因此红外光谱可以提供关于晶体结构和振动特性的重要信息。
在材料科学中,晶格振动也被广泛应用于热电材料和热障涂层等领域。
通过调控晶格振动,可以实现材料的热导率和电导率之间的解耦,从而提高材料的热电性能。
例如,通过引入杂质、界面掺杂或纳米结构等手段,可以有效散射晶格振动,降低热导率,进而提高材料的热电效率。
总之,晶格振动与晶体的热学性质密切相关。
研究晶格振动对于深入理解晶体的热学行为、优化材料的热学性能具有重要意义。
随着计算模拟和实验技术的发展,进一步研究晶格振动与热学性质的关系将有助于推动材料科学和能源领域的进展。
这篇文章主要综述了晶格振动与晶体的热学性质的关系,并探讨了晶格振动在材料科学中的应用。
通过调控晶格振动频率、波矢和振幅等参数,可以实现热导率、热膨胀系数和比热容等热学性质的调控。
此外,晶格振动还与晶体的光学性质相关,并被广泛应用于热电材料和热障涂层等领域。
固体物理第三章晶格振动与晶体热学性质第三章晶格振动与晶体的热学性质晶格振动是描述原子在平衡位置附近的振动,由于晶体内原子间存在着相互作用力,各个原子的振动也不是孤立的,而是相互联系的,因此在晶体内形成各种模式的波。
只有当振动微弱时,原子间非谐的相互作用可以忽略,即在简谐近似下,这些模式才是独立的。
由于晶格的周期性条件,模式所取的能量值不是连续的而是分立的。
对于这些独立而又分立的振动模式,可以用一系列独立的简谐振子来描述。
和光子的情形相似,这些谐振子的能量量子称为声子。
这样晶格振动的总体就可以看成声子系综。
若原子间的非谐相互作用可以看作微扰项,则声子间发生能量交换,并且在相互作用过程中,某些频率的声子产生,某些频率的声子湮灭。
当晶格振动破坏了晶格的周期性,使电子在晶格中的运动受到散射而电阻增加,可以看作电子受到声子的碰撞,晶体中的光学性质也与晶格振动有密切关系,在很大程度上可以看作光子与声子的相互作用乃至强烈耦合。
晶格振动最早是用于研究晶体的热学性质,其对晶体的电学性质、光学性质、超导电性、磁性、结构相变等一系列物理问题都有相当重要的作用,是研究固体宏观性质和微观过程的重要基础。
ωη§3-1 简谐近似和简正坐标由原子受力和原子间距之间的关系可以看出,若离开平衡位置的距离在一定限度,原子受力和该距离成正比。
这时该振动可以看成谐振动.用n μϖ表示原子偏离平衡位置(格点)位移矢量,对于三维空间,描述N 个原子的位移矢量需要3N 个分量,表为)3,,2,1(N i i Λ=μ将体系的势函数在平衡位置附近作泰勒展开:高阶项+∑⎪⎪⎭⎫ ⎝⎛∂∂∂+∑∂∂+===j i N j i j i i N i i V V V V μμμμμμ031,2031021)(第一项为平衡位置的势能,可取为零,第二项为平衡位置的力,等于零。
若忽略高阶项,因为势能仅和位移的平方成正比,即为简谐近似。
23121i N i i m T μ&∑==引入合适的正交变换,将动能和势能用所谓的简正坐标表示成仅含平方∑==N j j ij i i Q a m 31μ项而没有交叉项,即:由分析力学,基本形式的拉格朗日方程为:)32,1(,N i q Q T Q T dt d i i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂其中)32,1(,1N i q f q i j N j j i Λϖϖ=∂∂⋅∑==μ朗日方程:)32,1(,0N i Q L Q L dt d i i Λ&==∂∂-⎪⎪⎭⎫ ⎝⎛∂∂则正则方程为:)3,2,1(,02N i Q Q i i i Λ&&==+ω其解为:)sin(δω+=t A Q i i 当考察某一个j Q 时,则:)sin(δωμ+=t A m a j i iji 晶体参与的振动,且它们的振动频率相同。
黄昆固体物理习题解答第三章晶格振动与晶体的热学性质3.1 已知一维单原子链,其中第j个格波,在第个格点引起的位移为,μ= anj j sin(ωj_j+ σj) ,σj为任意个相位因子,并已知在较高温度下每个格波的平均能量为,具体计算每个原子的平方平均位移。
解:任意一个原子的位移是所有格波引起的位移的叠加,即μn= ∑ μnj=∑ a j sin(ωj t naq j+σj)j j(1)μ2 n =⎛⎜⎝∑μjnj⎞⎛⎟⎜⎠⎝∑μj*nj⎞⎟⎠= ∑μj2nj+ ∑ μ μnj*nj′j j′由于μ μnj⋅nj数目非常大的数量级,而且取正或取负几率相等,因此上式得第2 项与第一项μ相比是一小量,可以忽略不计。
所以2= ∑ μ 2njn j由于μnj是时间的周期性函数,其长时间平均等于一个周期内的时间平均值为μ 2 = 1 T∫0 2 ω+σ 1 2j aj sin( t naqjj j)dt a=j(2)T0 2已知较高温度下的每个格波的能量为KT,μnj的动能时间平均值为1 L T ⎡1 ⎛dμ⎞2 ⎤ρw a2 T 1= ∫ ∫dx0⎢ρnj⎥= j j∫0 2 ω+ σ= ρ 2 2 T⎜⎟dt L a sin( t naq)dt w Lanj T0 0 0 ⎢ 2 ⎝dt⎠⎥2T0 j j j j 4 j j其中L 是原子链的长度,ρ 使质量密度,T0为周期。
1221所以Tnj= ρ w La j j=KT(3)4 2μKT因此将此式代入(2)式有nj2 = ρ ωL 2 jμ所以每个原子的平均位移为2== ∑ μ 2= ∑KT= KT∑1n njρ ωL2ρLω2j j j j j3.2 讨论 N 个原胞的一维双原子链(相邻原子间距为 a),其 2N 格波解,当 M=m 时与一维单原子链的结果一一对应.解答(初稿)作者季正华- 1 -黄昆固体物理习题解答解:如上图所示,质量为M 的原子位于2n-1,2n+1,2n+3 ……质量为m 的原子位于2n,2n+2,2n+4 ……牛顿运动方程:..mμ2n= −β μ(22n−μ2n+1 −μ2n−1)..Mμ2n+1 = −β μ(22n+1 −μ2n+2 −μ2n)体系为N 个原胞,则有2N 个独立的方程i na q方程解的形式:iμ2n=Ae[ωt−(2 ) ] μ2n+1=Be[ω−(2n+1)aq]na qμ=将μ2n=Ae[ωt−(2 ) ]2n+1 Be i[ωt−(2n+1) aq]代回到运动方程得到若A、B 有非零的解,系数行列式满足:两种不同的格波的色散关系:——第一布里渊区解答(初稿)作者季正华- 2 -第一布里渊区允许 q 的数目黄昆 固体物理 习题解答对应一个 q 有两支格波:一支声学波和一支光学波。
第三章晶格振动和晶体的热学性质[引言]晶体中原子、离子实际上不是静止在晶格平衡位置上,而是围绕平衡位置作微振动,称为晶体振动。
对晶体振动的研究是从解释固体的热学性质开始的,最初把晶体中的原子看作是一组相互独立的振子,应用能量均分定理可以说明固体比热容服从杜隆-珀替定律,但与T=0K时的0C=的规律不符。
1906年爱因斯坦提出固体比热容的量子理论,V认为独立谐振子的能量是量子化的,可以得到T=0K时0C=的规律的结论,但与低温V下3C T的实验结果不符。
1912年德拜提出固体的比热容理论,把固体当成连续介质,~V晶格振动的格波看连续介质中的弹性波,得到低温下3~C T的结果。
随后,玻恩及玻V恩学派逐步建立和发展了比较系统的晶格振动理论成为最早发展的固体理论之一。
晶格振动理论不仅可以用来解释固体的热学性质、结构相变等许多物理性质都是极为重要的,是研究固体物理性质的基础。
因为固体是由大量原子组成的,原子又由价电子和离子组成,所以固体实际上是由大量电子和离子组成的多粒子体系。
由于电子之间、电子与离子以及离子之间的相互作用,要严格求解这种复杂的多体问题是不可能的,但注意到电子与离子的质量相差很大,离子的运动速度比电子慢得多,可以近似地把电子的运动与离子运动分开考虑,变成一个在晶格周期场中运动的多电子问题;在考虑离子的运动时,则认为电子能够即时跟上离子位置的变化,变成离子或原子如何围绕平衡位置运动的问题。
这种近似称为绝热近似。
晶格振动理论就是在这个近似的基础上建立的。
本章首先从最简单的一维晶格出发,说明晶格振动的基本性质,然后推广到三维情况,最后讨论晶体的热学性质。
[本章重点]一维单原子链晶格振动,一维双原子链晶格振动,声子,晶格比热的德拜模型,晶格振动的模式密度,N 过程与U 过程§3-1一维单原子链考虑由N 个相同的原子组成的一维晶格,如图3-1-1所示,相邻原子间的平衡距离为a ,第j 原子的平衡位置用x 0j 来表示,它偏离平衡位置的位移用u j 来表示,第j 原子的瞬时位置就可以表示为:j j j u x x +=0………………………………………………(3-1-1) 原子间的相互作用势能设为)(ij x ϕ,如果只考虑晶体中原子间的二体相互作用,则晶体总的相互作用能可表示为:()∑≠=Nji ij x U ϕ21……………………………………………(3-1-2)式中ij ij i j ij u x x x x +=-=0是i 、j 原子的相对距离,i j ij u u u -=是i 、j 两原子的相对位移,在温度不太高时,原子在平衡位置附近作微振动,相邻原子的相对位移要比其平衡距离小得多,可将ϕ展开为:………………(3-1-3)于是有:()∑∑∑≠≠≠+⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫⎝⎛∂∂+=j i ij ij j i ij ijj i ij u x u x x U 202200412121ϕϕϕ……………(3-1-4) 图3-1-1 一维单原子晶格()()()+⎪⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=+=2220021ij ij ij ijijij ijij u x u x xu x x ϕϕϕϕϕ式中第一项是所有原子处于平衡位置上时的总相互作用能,用U 0来表示,是U 的极小值,()∑≠=ji ij x U 0021ϕ…………………………………………………………………… (3-1-5) 第二项是i j u 的线性项,它的系数为:()∑≠⎪⎪⎭⎫⎝⎛∂∂i j ij x 0ϕ,是所有其它原子作用在i 原子的合力的负值,当所有原子处在平衡位置上时,晶体中任一原子所受到的净作用力应为零,所以在式(3-1-4)中不存在位移的线性项。
晶体的热学性质与晶格振动的相干性分析晶体是由周期性排列的原子或分子构成的固体物质,其热学性质与晶格振动之间存在着相互的联系和相干性。
本文将对晶体的热学性质和晶格振动的相干性进行分析和探讨。
一、晶体的热学性质晶体的热学性质是指晶体在温度变化下所表现出的性质和特点。
其中,热容、导热性、热膨胀等是最常见的晶体热学性质。
下面将对这些性质进行详细介绍。
1. 热容热容是指单位质量的晶体在温度变化下吸收或释放的热量。
晶体的热容受到晶格振动和晶格缺陷的影响。
晶格振动包括晶格的弹性振动、声子振动等,它们会影响晶体内部的能量传递和分布。
晶格缺陷包括点缺陷、面缺陷等,它们会散射热子和声子,影响晶格的热传导性能。
2. 导热性导热性是指晶体在温度梯度下传导热量的能力。
晶体的导热性与晶格振动的相干性密切相关。
晶格振动的相干性越高,晶体的热导率就越高。
晶体的导热性还受到晶体的宏观结构和缺陷等因素影响。
3. 热膨胀热膨胀是指晶体在温度变化下的尺寸变化。
晶体的热膨胀与晶体中原子的振动有关。
当温度升高时,晶体内原子的振动增强,原子之间的相互作用减弱,晶体的体积就会扩大。
晶体的热膨胀系数与晶格振动的相干性强弱密切相关。
二、晶格振动的相干性晶格振动是晶体中原子或分子围绕平衡位置做小幅振动而引起的能量传递和分布现象。
这些振动以声子的形式进行传递,其相干性对晶体的物理性质有重要影响。
晶格振动的相干性决定了晶格对热量和声波的传递情况。
当声子的相干性较高时,晶体的热导率会增加。
而当声子的相干性较低时,晶体中的散射会增加,导致热传导能力变弱。
因此,晶格振动的相干性是晶体热学性质的重要影响因素。
晶体中振动的相干性主要受到以下因素的影响:1. 晶格结构:不同晶体的晶格结构会影响振动的传播和相干性。
晶格结构越有序,振动的相干性越高。
2. 晶体缺陷:晶体中的缺陷会散射声子,降低振动的相干性。
例如点缺陷、面缺陷等都会对声子的传播和相互作用产生影响。
3. 温度:温度的变化会影响晶格振动的相干性。