最新幂零矩阵的质及应用
- 格式:doc
- 大小:1.05 MB
- 文档页数:24
0引言幂等矩阵是一类性质特殊的矩阵,不仅在高等代数中有着重要的应用,在其它课程中,如计量经济学、统计学课程中也有着重要应用。
在代数学中,线性变换的许多问题都可以转化为幂等矩阵来解决。
但是在通常的高等代数的教材中关于幂等矩阵的讨论是比较少的。
因此本文对幂等矩阵的性质做出相关讨论。
本文主要给出幂等矩阵特征值、特征子空间和Jordan标准型的基本性质,同时给出了一些相关的应用。
1主要结果首先给出幂等矩阵的定义和基本性质。
定义1:若n阶方阵A满足A2=A,则称A为幂等矩阵。
下面给出关于幂等矩阵的一些简单的性质。
定理1:幂等矩阵A的特征值只能是0或者1。
证明:设A为任意一个幂等矩阵。
由A2=A,可得λ2=λ其中λ为A的特征值。
于是有λ=1或0,命题得证。
推论:可逆的幂等矩阵的特征值均为1。
证明:设A为一可逆的幂等矩阵。
由A2=A可得A2A-1=AA-1即A=E。
此时有λE-E=0即λ=1其中,λ为A的特征值。
命题得证。
定理2:任意的幂等矩阵A都相似于对角阵,即存在可逆阵P,使得:P-1AP=Er0 00 (),其中r=R(A)。
证明:A为任意幂等矩阵,J为其Jordan标准型,即存在可逆矩阵P,使得P-1AP=J=J10⋱0J s (),其中J i=λi1…0⋱┋⋱1 0λi ⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟。
由此可得J2=J。
于是有,J i2=J i。
此时,J i只能为数量矩阵λi E。
又因为A2=A,所以λi=0或1,且r=R(A)。
命题得证。
定理3:幂等矩阵的特征值为1的特征子空间为其值域,特征值为0的特征子空间为其零(核)空间。
证明:(i)A为一n阶幂等矩阵。
α为其特征值1对应的特征向量。
则有,Aα=α。
由此可得α属于A的值域。
反之,对于任意一个A的值域中的向量α,总能找到一个向量β,使得Aβ=α,于是有Aα=A2β=β,即α=β。
综上可知,幂等矩阵的特征值为1的特征子空间与其值域等价。
(ii)A为一n阶幂等矩阵。
幂等矩阵的性质及其应用
刘嘉仑;杨传胜
【期刊名称】《科技视界》
【年(卷),期】2012(000)031
【摘要】幂等矩阵是一类性质特殊的矩阵,在许多领域有极其广泛的应用.本文主要研究幂等矩阵的特征值、特征子空间和Jordan标准型的基本性质并给出其应用.【总页数】2页(P73,79)
【作者】刘嘉仑;杨传胜
【作者单位】浙江海洋学院数理与信息学院浙江舟山 316000;浙江海洋学院数理与信息学院浙江舟山 316000
【正文语种】中文
【相关文献】
1.幂等矩阵的性质及应用 [J], 徐宏武
2.n阶k次广义幂等矩阵的性质 [J], 高汝林;张绪绪
3.三幂等矩阵的一些性质 [J], 陆洪宇
4.幂幺和幂等矩阵的一个性质的推广 [J], 潘庆年; 姚文杰
5.幂等矩阵的性质及其推广 [J], 冯福存;常莉红
因版权原因,仅展示原文概要,查看原文内容请购买。
幂零矩阵的定义在线性代数中,幂零矩阵是一种特殊类型的方阵。
它具有一些独特的性质和特征,对于理解线性代数中的各种概念和定理具有重要意义。
幂零矩阵的定义幂零矩阵是一个方阵,其所有元素的幂次均为零。
换句话说,对于一个n×n的幂零矩阵A,对于任意i和j(1 ≤ i, j ≤ n),A的第i行第j列元素aij满足aijk=0,其中k是一个大于等于1的整数。
可以用符号表示一个幂零矩阵:A = [aij] = ⎡⎡⎡⎡⎡⎡ a11 a12 … a1n a21 a22 … a2n … … … … an1 an2 … aNN ⎡⎡⎡⎡⎡⎡其中每个元素满足aijk=0。
幂零矩阵的性质幂零矩阵具有以下重要性质:1. 幂零性质幂零矩阵的定义表明,对于幂零矩阵A中的任意元素aij,存在一个正整数k,使得aijk=0。
这意味着幂零矩阵的每个元素都有一个幂次,使得它等于零。
2. 幂零指数最小对于一个给定的幂零矩阵A,存在一个最小的正整数k,使得所有元素aijk=0。
这个最小的正整数k被称为该幂零矩阵的指数。
指数越小,说明矩阵中元素变为0所需的次数越少。
3. 幂零矩阵的乘积如果A和B是两个幂零矩阵,并且它们可以相乘(即A的列数等于B的行数),那么它们的乘积AB也是一个幂零矩阵。
具体而言,对于AB中的任意元素cij,存在一个正整数k,使得cijk=0。
4. 幂零矩阵的幂对于一个幂零矩阵A和一个正整数m,A的m次幂Am也是一个幂零矩阵。
具体而言,对于Am中的任意元素dij,存在一个正整数l,使得dijl=0。
幂零矩阵的应用幂零矩阵在线性代数中有广泛应用,特别是在理解和证明一些重要定理时起到关键作用。
以下是一些幂零矩阵的应用示例:1. 特征值和特征向量对于一个幂零矩阵A,0是它唯一的特征值。
此外,所有非零列向量都是A的特征向量,并且它们对应于特征值0。
2. 线性变换幂零矩阵可以表示一些特殊类型的线性变换。
例如,在空间中进行投影或旋转等操作时,可以使用幂零矩阵来表示这些变换。
幂零变换性质与构造方法研究幂零变换是矩阵论中的一个重要概念。
它是指存在一个正整数k,使得线性变换A的k 次幂恒为零矩阵。
幂零变换具有一些重要的性质和构造方法,本文将对其进行探讨。
一、幂零变换的性质1. 幂零变换的特征多项式为x^k。
由于幂零变换A的k次幂恒为零矩阵,因此它的特征多项式应该有x^k这一因子。
具体来说,如果A的谱是{\lambda_1, \lambda_2, ..., \lambda_m},则它的特征多项式应该是p(x) = (x-\lambda_1)(x-\lambda_2)...(x-\lambda_m)x^k。
2. 幂零变换的秩小于等于n-k。
我们可以利用幂零变换的特征多项式来证明这一点。
由于特征多项式有x^k这一因子,因此矩阵A的零空间至少包含k维。
另一方面,根据秩-零度定理,A的秩和零度之和等于n,因此其秩小于等于n-k。
根据特征多项式的定义,矩阵A的特征值为0的个数应该大于等于1,因此其行列式为零。
有两种常见的构造幂零变换的方法:Jordan标准型和上三角阵。
1. Jordan标准型给定一个n阶幂零变换A,我们可以用Jordan标准型来表示它。
Jordan标准型是指将A表示为Jordan块的矩阵形式,其中每个Jordan块是形如:J_k =[0 1 0 ... 0][0 0 1 ... 0][ ... ][0 0 0 ... 0]的矩阵。
其中,k表示该Jordan块的大小,即主对角线上连续的0的个数加1。
将A表示为一些Jordan块的直和,即可得到其Jordan标准型。
2. 上三角阵上三角阵是指矩阵A的副对角线以下的所有元素都为零。
我们可以构造一个上三角阵,使其对角线上从左到右依次为a_1, a_2, ..., a_n-k, 0, 0, ..., 0。
其中,k表示幂零指数。
根据矩阵相似的定义,如果我们能够找到一个可逆矩阵P,使得A = PBP^{-1},那么B就是A的上三角形式。
n阶幂零矩阵-回复什么是n阶幂零矩阵?在线性代数中,n阶幂零矩阵是一个n×n的方阵,其特点是所有元素都为0,除了矩阵的主对角线之外。
换句话说,它的主对角线上的元素为0,而其他位置的元素都为0。
n阶幂零矩阵的表示形式如下:[0,0,0, 0[0,0,0, 0[0,0,0, 0[...........][0,0,0, 0注意到这样的矩阵在实际应用中并不多见,但它在线性代数的理论研究中有其重要性和特殊性。
接下来,我们将逐步探讨n阶幂零矩阵的性质和其在不同领域的应用。
第一步:了解n阶幂零矩阵的定义n阶幂零矩阵是一个方阵,其主对角线上的元素为0,而其他位置的元素也全部为0。
我们可以用数学符号简洁地表示为:A[i][j] = 0,其中i ≠j。
第二步:探索n阶幂零矩阵的性质1. n阶幂零矩阵一定是一个特殊的矩阵,因为它的所有非主对角线上的元素都为0。
2. n阶幂零矩阵A的任意次幂都等于零矩阵。
即A^n = 0,其中n为正整数。
证明:设矩阵A为n阶幂零矩阵,其主对角线上的元素为0,其他位置的元素也全部为0。
那么,矩阵A的任意次幂A^n可表示为:A^n = A ×A ×A × ... ×A⁽ⁿ⁾= [0,0,0,...,0] ×[0,0,0,...,0] ×[0,0,0,...,0] × ... ×[0,0,0, 0由于矩阵相乘满足分配律和乘法结合律,且0乘任何数都等于0,所以上述乘法结果依然是零矩阵。
因此,n阶幂零矩阵的任意次幂都等于零矩阵。
第三步:探索n阶幂零矩阵在不同领域的应用尽管n阶幂零矩阵在实际应用中并不常见,但它在线性代数的理论研究中具有重要性和特殊性。
1. 线性变换:n阶幂零矩阵可以在线性变换理论中发挥重要作用。
线性变换可以用矩阵来表示,而n阶幂零矩阵可以表示某些特定类型的线性变换,例如零变换或射影变换。
2. 克尔空间:在矩阵论和线性代数的研究中,n阶幂零矩阵的零空间或克尔空间是一个重要的概念。
幂零矩阵性质及应用幂零矩阵性质及应用性质1:A 为幂零矩阵的充要条件是A 的特征值全为0。
证明:?A Q 为幂零矩阵k Z +∴?∈ .0k s tA =令0λ为A 任意一个特征值,则00,.s t A ααλα?≠= 由引理7知,0kλ为k A 的特征值 00.k k s t A ββλβ∴?≠= 从而有0k λ=0即有00λ=又有0kA =,知00kkA A A ==?=0*(1)(1)00k kE A A A ∴-=-=-=-?=00λ∴=为A 的特征值。
由0λ的任意性知,A 的特征值为0。
?A Q 的特征值全为0A ∴的特征多项式为()nf E A λλλ=-=由引理2知,()0nf A A == 所以A 为幂零矩阵。
得证性质2:A 为幂零矩阵的充要条件为0k k Z trA +?∈=。
证明:?A Q 为幂零矩阵,由性质1,知:A 的特征值全为0 即120n λλλ====L由引理7,知 kA 的特征值为120k k k n λλλ====L从而有 120k k k kn trA λλλ=+++=L由已知,120k k k k n k Z trA λλλ+∈=+++=L (1.1)令12,,,t λλλL L 为A 的不为0的特征值且i λ互不相同重数为(1,2,,)in i t =L L由(1.1)式及引理7,得方程组11222221122333112211220000t t t t t t t t t t t n n n n n n n n n n n n λλλλλλλλλλλλ+++=??+++=??+++=+++=?L L L L L L (1.2)由于方程组(1.2)的系数行列式为122221212121212121111()t t tttt tt t tt t t i j j i tB λλλλλλλλλλλλλλλλλλλλλλλ≤<≤===∏-L L LLL MM L MM M L MLL又(1,2,)ii t λ=L L 互不相同且不为0,0B ∴≠从而知,方程(1.2)只有0解,即0(1,2,,)i n i t ==L L即A 没有非零的特征值A ∴的特征值全为0,由性质1,得 A 为幂零矩阵得证性质3:若A 为幂零矩阵则A 的若当标准形J 的若当块为幂零若当块,且J 和主对角线上的元素为0 证明:A 为幂零矩阵,由性质1,知 A 的特征值全为0 由引理3,知在复数域上,存在可逆矩阵T ,使得121s J J T AT J -??= ? ??O其中11i i i J λλ??= ? ??O O O 阶数为(1,2,,)in i s =L由引理4,知(1,2,,)i i s λ=L 为J 和特征值又A 与J 相似,由引理6,知A 与J 有相同的特征值所以0(1,2,,)i i s λ==L 即J 的主对角线上的元素全为0 由引理8,知 (0)()0(1,2,,)i i ni i J E J i s -===g L12,,,s J J J L L 为幂零矩阵得证性质4:若A 为幂零矩阵,则A 一定不可逆但有1,1A E E A +=-= 证明:A Q 为幂零矩阵,k Z +∴?∈ .0k s t A =00kk A A A ∴==?= A 一定不可逆由性质1,得 A 的特征值为120n λλλ====L 由引理7,得,A E E A +-的特征值分别为1212011,101n n λλλλλλ'''''''''====+=====-=L L且有1211n n A E λλλ'''+===g L g1211n n E A λλλ''''''-===g L g即1,1A E E A +=-= 得证性质5:若A E +为幂零矩阵,则A 非退化证明:令12,,,n λλλL L 为A 的特征值若A 退化,则有 0A =由引理7,得120n A λλλ==gL L g ∴至少存在0i λ=0为A 的特征值又由引理7,得110i λ+=≠为A E +的一特征值这与A E +为幂零矩阵矛盾得证A 为非退化性质6:若A 为幂零矩阵,B 为任意的n 阶矩阵且有AB BA =,则AB 也为幂零矩阵。
n阶幂零矩阵矩阵是线性代数中的重要概念,它可以理解为一个按照一定规则排列的数表。
而零矩阵则是一种特殊的矩阵,它的所有元素都为0。
n 阶幂零矩阵可以简单理解为n行n列的零矩阵。
在本文中,我们将详细介绍n阶幂零矩阵的性质、表示方法以及一些应用。
首先,让我们来认识一下幂零矩阵的定义。
n阶幂零矩阵是一个n 行n列的矩阵,其中每个元素都为0。
换句话说,n阶幂零矩阵的所有元素都满足以下条件:矩阵的第i行第j列元素为0,其中1≤i≤n,1≤j≤n。
接下来,让我们来看一下n阶幂零矩阵的表示方法。
一种简便的表示方法是使用矩阵的行数和列数来表示幂零矩阵的阶数。
例如,一个3阶幂零矩阵可以表示为3×3的矩阵。
另外,我们也可以直接将矩阵的所有元素表示出来,如下所示:┌───┬───┬───┐│ 0 │ 0 │ 0 │├───┼───┼───┤│ 0 │ 0 │ 0 │├───┼───┼───┤│ 0 │ 0 │ 0 │└───┴───┴───┘在幂零矩阵中,每一行和每一列的元素都是0,因此在矩阵的主对角线上的元素都为0,其它元素都为0。
这是幂零矩阵的一个重要性质。
而n阶幂零矩阵的分类,可以根据其元素的个数进行划分。
一个n 阶幂零矩阵共有n×n个元素,其中所有元素都是0。
因此,n阶幂零矩阵的元素个数为n×n。
幂零矩阵在线性代数中有着重要的应用。
首先,幂零矩阵是研究矩阵性质和运算的基础。
对于矩阵的加法和乘法运算,幂零矩阵起到了重要的作用。
此外,幂零矩阵还在线性方程组的求解中有广泛应用。
矩阵的幂零性质使得线性方程组可以进行简化和求解。
幂零矩阵还在图论中有着重要的应用。
在图的邻接矩阵中,边的存在可以表示为非零元素,而边的不存在可以表示为零元素。
因此,幂零矩阵可以用于表示无向图和有向图的连接关系。
此外,幂零矩阵还在网络分析和信号处理中有着广泛的应用。
在网络分析中,幂零矩阵可以用于表示网络中节点之间的连接关系,从而进行路径分析和节点关联性分析。
幂零矩阵和幂零变换的性质及应用1引言定义1.1[1] 令A 为n 阶方阵,若存在正整数k ,使0k A =,A 称为幂零矩阵. 定义1.2[1] 若A 为幂零矩阵,满足0k A =的最小正整数称为A 的幂零指数. 定义1.3[3] 设A 为一个n 阶方阵,A 的主对角线上所有元素的和称为A 的迹,记为1nii i trA a ==∑.定义1.4[5] 形如0010(,)000001J t λλλλλ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭的矩阵称为若当块,其中λ为复数,由若干个若当块组成的准对角称为若当形矩阵.定理1.1[5] 设,A B 为n 阶方阵,则()()***,AB B A AB B A '''==.定理1.2[5] (),()A f E A m λλλ=-分别为矩阵A 的特征多项式和最小多项式, 则有()0,()0A f A m A ==.定理1.3 设12,,,n λλλ 为n 阶矩阵A 的特征值,则有12n trA λλλ=+++ ,12n A λλλ=⋅⋅ ,且对任意的多项式()f x 有()f A 的特征值为12(),(),,()n f f f λλλ .定理 1.4 k 阶若当块11k a J a ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭的最小多项式为()k x a -且有()0k k J a E -=.定理1.5 ,A B 为n 阶复数域上的矩阵,若AB BA =,则存在可逆矩阵T ,使得112211n n T AT T BT λμλμλμ--⎛⎫⎛⎫⎪⎪** ⎪ ⎪== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭.定理1.6 任意n 阶,A B 方阵,有()()tr AB tr BA =.定理 1.7[5] n 阶复矩阵A 与对角矩阵相似A ⇔的最小多项式无重根.定理1.8[5] 每一个n 阶的复矩阵A 都与一若当形矩阵相似,这个若当形矩阵除去若当块的排序外被矩阵A 唯一决定的,它称为A 的若当标准形.本文内容分为三部分,第一部分给出幂零矩阵的性质,第二部分是幂零矩阵的应用,主要给出幂零矩阵的性质应用和幂零矩阵在求逆中的应用,第三部分给出幂零变换的性质以及幂零变换与幂零矩阵的关系. 2 幂零矩阵的性质性质2.1 幂零矩阵的行列式值为零.性质 2.2 幂零矩阵的数乘矩阵、相似矩阵和k 次幂(k 为自然数)都是是幂零矩阵.性质2.3 若A 为幂零矩阵,B 为任意的n 阶矩阵且有AB BA =,则AB 也为幂零矩阵.+AB BA =()00k k k k AB A B B ==⋅=,所以AB 也为幂零矩阵,所以原命题成立. 性质2.4 若A 为n 阶幂零矩阵,则()*,,,T A A A mA m Z -∈均为幂零矩阵,其中'A 是A 的转置矩阵,*A 是A 的伴随矩阵.证明:因为A 为幂零矩阵,则由定义1.1知存在k Z +∈使得0k A =,由定理1.1知()()00k k A A '''===,()()00k k A A ***===,()(1)(1)00k k k k A A -=-=-⋅=,所以,,A A A *'-都为幂零矩阵,又因为()()()00k k k k mA m A m ==⋅=,所以()mA m Z +∈也为幂零矩阵.性质2.5 若A 是幂零矩阵,且0k A =则 1) ()121k E A E A A A ---=++++ 2) ()()11211k k E A E A A A ---+=-+++-3) ()()111211110k k k mE A E A A m m m m---+=-++-≠ . 证明:1)因为()()21k k k k E A E A A A E A E E --+++=-== , 所以()121k E A E A A A ---=+++ . 2) 由1)类似可得 ()()11211k k E A E A A A ---+=-+++- .3) ()111111mE A m E A E A m m m ---⎧⎫⎛⎫⎛⎫+=+=-⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭()()1111211111111k k k k kE A A E A A m m m m m m ----⎛⎫=-++-=-+- ⎪⎝⎭, 所以原命题1)、2)、3)成立.性质2.6 A 为幂零矩阵的充分必要条件是A 的特征值全为0.+0为A 任意一个特征值,则存在00A λ∂≠∂=∂使得,由定理1.3知,0k λ为k A 的特征值,所以存在00k k A ββλβ≠=使得 ,从而有0k λ=0即有00λ=,又有0k A =,知00kk A A A ==⇒=则()()01100k kE A A A *-=-=-=-⋅=,所以00λ=为A 的特征值,由0λ的任意性知,A 的特征值为0.(2)⇐因为A 的特征值全为0,A 的特征多项式为()n f E A λλλ=-=,由定理1.2知 ()0n f A A ==,所以A 为幂零矩阵,所以由(1)、(2)可以得出原命题成立.性质2.7 若为A 幂零矩阵且0A ≠,则A 不可对角化但对任意的n 阶方阵B ,存在幂零矩阵N ,使得B N +可对角化.证明:因为A 为幂零矩阵,则由定义1.1知存在k Z +∈使得0k A =且由性质2.6知A 的特征值全为零,()n f E A λλλ=-=为A 的特征多项式且()0n f A A ==,令()A m λ为A 的最小多项式,则有()|()A m f λλ,从而有00()(1)k A m k n λλ=≤≤,由于00k 1A ≠>所以,又此时00(),2k A m k λλ=≥,即A 的最小多项式有重根,由定理1.7知A 不可对角化.又因为B 为n 阶方阵,由定理1.8知在复数域上存在可逆矩阵T 使得121s J J T BT J -⎛⎫⎪⎪= ⎪ ⎪⎝⎭,其中11i i i J λλ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ 阶数为(1,2,,)i n i s = ,令i ii i D λλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s = ,则有0110i i i J J D ⎛⎫ ⎪⎪'=-= ⎪ ⎪⎝⎭阶数为(1,2,,)i n i s = ,由定理1.4知(0)()0i i i n n i n i J E J ''-⋅== 即i J '为幂零矩阵(1,2,,)i s =现令12s J J J J ⎛⎫'⎪⎪''=⎪⎪⎪ ⎪'⎝⎭, 12s D D D D ⎛⎫⎪⎪= ⎪ ⎪⎝⎭,1112122s s s J D J J J D T BT J DJ J D -⎛⎫'+⎛⎫ ⎪⎪ ⎪'+⎪'===+ ⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭'+⎝⎭,即()111() 2.1B T J D T TJ T TDT ---''=+=+,又因为D 为对角阵,由(2.1)式知11B TJ T TDT --'-=可对角化, 令1N TJ T -'=-且取12max(,,,)s k n n n = ,则有120kkkk s J J J J ⎛⎫' ⎪ ⎪''==⎪ ⎪⎪ ⎪'⎝⎭,111112()()()()()00k kk k k k k k k s J J N TJ T T J T T T T T J ----⎛⎫' ⎪⎪'''=-=-=-=-=⎪ ⎪⎪ ⎪'⎝⎭,即有B N +可对角化且N 为幂零矩阵,所以原命题成立.性质2.8 A 为幂零矩阵的充分必要条件是对任意的自然数0k k trA =,都有. 证明:(1)⇒因为A 为幂零矩阵,所以A 的特征根()1,2,,i i n λ= 全为0,由定理1.3知对任意的自然数k 有k A 的特征值0,1,2,k i i n λ== ,所以()120k k k k n tr A λλλ=+++= .(2)⇐设A 的特征根为,1,2,,i i n λ= ,所以对任k Z +∈有120k k k k n trA λλλ=+++= (2.2),令12,,,t λλλ 为A 的不为0的特征值且i λ互不相同,重数为i n ()1,2,,i t = 由(2.2)式及定理1.3得方程组()1122222112233311221122000 2.30t t t t t t t t t t t n n n n n n n n n n n n λλλλλλλλλλλλ+++=⎧⎪+++=⎪⎪+++=⎨⎪⎪⎪+++=⎩,由于方程组(2.3)的系数行列式为122221212121212121111(),t t t tt ttt ttt t t i j j i tB λλλλλλλλλλλλλλλλλλλλλλλ≤<≤===∏-又(1,2,)i i t λ= 互不相同且不为0,所以0B ≠,从而知方程组(2.3)只有零解,即0(1,2,,)i n i t == ,即A 没有非零的特征值,所以A 的特征值全为0,则由性质2.6得A 为幂零矩阵 ,所以由(1)、(2)知原命题成立. 性质2.9 若A E +为幂零矩阵,则A 非退化.证明:令12,,,n λλλ 为的特征值,若A 退化则有0A =,由定理 1.3得120n A λλλ==所以至少存在00i λ=为A 的特征值,又由定理1.3得0110i λ+=≠为A E +的一特征值这与A E +为幂零矩阵矛盾,所以A 为非退化.性质2.10 若A 为幂零矩阵,则A 一定不可逆但有1,1A E E A +=-=. 证明:因为A 为幂零矩阵,则由定义1.1知存在k Z +∈使得0k A =,所以00kk A A A ==⇒=,所以A 一定不可逆,由性质2.6得A 的特征值为120n λλλ==== ,由定理1.3得,A E E A +-的特征值分别为1212011,101n n λλλλλλ'''''''''====+=====-=且有1211n n A E λλλ'''+=== ,1211n n E A λλλ''''''-=== ,即1,1A E E A +=-= ,所以原命题成立. 3 幂零矩阵的应用 3.1 幂零矩阵的性质应用例3.1.1 ,A B 为n 阶方阵,B 为幂零矩阵且AB BA =,则有A B A +=.证明:由定理1.5知在复数域上,存在可逆矩阵T ,使得121n T AT λλλ-⎛⎫⎪* ⎪= ⎪ ⎪⎝⎭ 121n T BT μμμ-⎛⎫⎪*⎪= ⎪ ⎪⎝⎭,又因为B 为幂零矩阵由性质2.4知B 的特征值全为0, 即1000T BT -⎛⎫⎪*⎪= ⎪⎪⎝⎭,12111()n T A B T T AT T BT λλλ---⎛⎫ ⎪* ⎪+=+= ⎪ ⎪⎝⎭ ,1211()nT A B T T A B T λλλ--*+=+=,又因为T 可逆0T ≠所以11T T-=所以 1212n nA B λλλλλλ*+==⋅⋅,由121n T AT λλλ-⎛⎫ ⎪* ⎪= ⎪ ⎪⎝⎭ 知12,,,nλλλ 为A 的特征值由定理1.3得: 12n A λλλ=⋅⋅ ,从而得证 12n A B A λλλ+=⋅⋅= ,则有A B A +=.例3.1.2 A 为n 阶方阵,求证A B C =+,B 可对角化,C 为幂零矩阵且BC CB =. 证明:由性质2.7知存在幂零矩阵N ,使得A N +可对角化,即存在可逆T ,使得121()n T A N T D λλλ-⎛⎫⎪⎪+=== ⎪ ⎪⎝⎭ ,即有1()A TDT N -=+- ,由性质2.4知由于N 为幂零矩阵则N -也幂零矩阵,又因为1TDT -与D 相似 ,所以1TDT -可对角化,令1B TDT -= C N =-,则有A B C =+,1B TDT -=可对角化,C N =-为幂零矩阵,又因为D为对角阵所以1111BC TDT C TT DC DC CD CDTT CTDT CB ----=======.例3.1.3 ,,A B C 为n 阶方阵,且,,AC CA BC CB C AB BA ===-,证明:存在自然数0k k n C ≤=使得.证明:由于,,AC CA BC CB C AB BA ===-,所以对任意的m Z +∈有1111111()()()()(),m m m m m m m m C C AB BA C AB C BA A C B BC AA CB CB A -------=-=-=-=-由定理1.6推广可得:11(())(())m m tr A C B tr BC A --=,1111()(()()))(())(())0m m m m m tr C tr A C B BC A tr A C B tr BC A ----=-=-=,由性质2.6得C 为幂零矩阵,所以由定义知存在0k k n C ≤=使得.所以原结论得证.例3.1.4 在复数域上n 阶方阵A 相似于对角阵等价于对于A 的任一特征值λ,有A E λ- 与2()A E λ-的秩相同.证明:⇒因为A 对角化,则存在可逆矩阵T ,使得121n T AT λλλ-⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ , 从而有1212121222(),()()(),()n n T A E T T A E T λλλλλλλλλλλλλλ---⎛⎫⎪-⎪-= ⎪ ⎪-⎝⎭⎛⎫- ⎪-⎪-= ⎪ ⎪ ⎪-⎝⎭所以1()T A E T λ--与12()T A E T λ--相同,即A E λ- 与2()A E λ-的秩相同.⇐由于在复数域上,存在可逆矩阵T 使得121s J J T AT J -⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,其中11i i i J λλ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ 阶数为(1,2,,)i n i s = ,若(1,2,,)i J i s = 不全为对角阵,则不妨令1J 不可对角化,且有1i n >,有110110n J E ⎛⎫ ⎪ ⎪-= ⎪ ⎪⎝⎭ ,12100()1100n J E ⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪⎝⎭, 从而知11n J E -的秩大于121()n J E -的秩,即有1()T A E T λ--的秩大于12()T A E T λ--的秩也即A E λ- 的秩大于2()A E λ-的秩,这与已知矛盾,所以所有(1,2,,)i J i s = 为对角阵,从而得证A 相似于对角阵. 3.2 幂零矩阵在求逆中的应用3.2.1 可表为幂零矩阵与单位矩阵和的矩阵的逆例3.2.1 已知4615135124A -⎛⎫⎪=- ⎪ ⎪-⎝⎭求1A -.解:46153615100135125010124125001A B E --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=-+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭,其中3615125125B -⎛⎫⎪=- ⎪ ⎪-⎝⎭且有2361536151251250125125B BB --⎛⎫⎛⎫⎪⎪==--= ⎪⎪ ⎪⎪--⎝⎭⎝⎭.所以 1110036152615()010125115001125126A B E E B -----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=+=-=--=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.3.2.2 主对角线上元素完全相同的三角矩阵的逆例3.2.2已知0000000000000n nx y x y A x y x ⨯⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,求1A -. 解:因为0010000010000000100000100000000100000100000000100000nx y x y A x y x y x xE yJ ⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪==+⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=+其中01000001000000100000n J ⎛⎫⎪⎪⎪= ⎪⎪ ⎪⎝⎭且有0nn J =,所以可得211123112221()(1),1(1)10(1).00100n n n n nn nn n n n n n J J J E A xE yJ x x x x y y x x x y x x x --------=+=-+++-⎛⎫-- ⎪ ⎪⎪- ⎪= ⎪⎪ ⎪ ⎪⎝⎭3.2.3 可表为若当块幂的和的矩阵的逆例3.2.3 已知21110010001n n n na a a a a A a -⨯⎛⎫⎪⎪⎪= ⎪⎪ ⎪⎝⎭,求1A -.解:212211010010001n n n n n n n a a a a a A E aJ a J a J a --⎛⎫⎪⎪⎪==++++ ⎪⎪ ⎪⎝⎭,其中1000001000000100000n n n J ⨯⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,10000010000001000001n nE ⨯⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭. 所以1010001000010001000000100010000000001n a a A E aJ E a a --⎛⎫⎛⎫⎪⎪- ⎪ ⎪ ⎪ ⎪=-=-= ⎪⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.4 幂零变换的性质定义4.1[6] 设V 是数域F 上的向量空间,σ是V 的线性变换,如果存在整数m ,使0mσ=即对任意V ξ∈,有()0mσξ=,则称σ为幂零线性变换.定义4.2[6] 若σ是幂零线性变换,0t 是非空正整数集合{}|0m m Z σ+∈=中的最小正整数,则称0t 是幂零线性变换σ的幂零指数.性质4.1 设()L V σ∈,()()1,,,k ξσξσξ- 都不等于零,但()0k σξ=.则()()1,,,k ξσξσξ- 线性无关.证明:设011,,,k a a a F -∈ ,使()()()101104.1k k a a a ξσξσξ--+++=将()4.1分别12,,,k k σσσ-- 去作用()()()12101210k k k a a a a σξσξσξσξ---⎡⎤+++=⎣⎦得()100k a σξ-=,又因为()10k σξ-≠,所以00a =.同理可得0110k a a a -==== . 故()()1,,,k ξσξσξ- 线性无关.性质4.2 设n 维向量空间V 有线性变换σ及向量ξ,满足()()10,0n n σξσξ-≠=. 求证σ关于V 的某个基的矩阵是000010000010A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭证明:根据性质4.1 ()(),,,n ξσξσξ 线性无关,所以它们组成V 的一个基()()()()()()()()()()()()()()()()()()()21212211210000000000000.n n n n n n σξξσξσξσξσσξξσξσξσξσσξξσξσξσξσσξξσξσξσξ------=++++=++++=++++=++++,,,故σ关于V 的某个基的矩阵是A .性质 4.3 σ是n 维向量空间V 的幂零线性变换当且仅当它的特征多项式的根都是零.证明:必要性 设λ是幂零变换σ的特征值,ξ是属于特征值λ的一个特征向量,则()()()()()()()()()()22322310m m m m σξλξσξσλξλσξλξσξσλξλσξλξσξσλξλσξλξ-===========由于0ξ≠,所以0m λ=,即0λ=.充分性 若σ关于V 的某个基德矩阵时A ,那么A 的特征值全部为0,所以F 上存在可逆矩阵T ,使得()1000000T AT -**⎛⎫⎪* ⎪= ⎪⎪⎝⎭上三角矩阵故10000000nn T A T -**⎛⎫ ⎪* ⎪== ⎪⎪⎝⎭ ,所以1000000nn A TT -**⎛⎫⎪* ⎪== ⎪⎪⎝⎭.因此0n σ=,即σ是幂零线性变换.性质4.4 如果一个幂零变换σ可以对角化,那么σ一定是零变换.证明:设σ在向量空间V 的某个基下的矩阵是A ,由题设A 可以对角化,即存在F 上的可逆矩阵T ,使得121n T AT B λλλ-⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭ ,矩阵B 时σ在一组新基下对应的矩阵,并由性质4.3知,120n λλλ==== .即矩阵B 是零矩阵故σ是零变换.性质4.5 若σ是n 维向量空间V 的幂零线性变换,则σ的特征多项式为m x . 证明:因为σ是幂零线性变换,故存在正整数m ,使0m σ=,于是m x 为σ的一个化零多项式,从而σ得特征值全为零,又m x 是首一多项式,故m x 为σ的特征多项式.性质 4.6 若σ是n 维向量空间V 的幂零线性变换,且σ的幂零指数为0t ,则0t n ≤,且σ的最小多项式为0t x .证明:设()m x 是σ的最小多项式,则()()()00|,t n m x x m x x t n =≤所以.由定义4.2可知0t x 为σ的最小多项式.性质 4.7 设V 是数域F 上的n 维向量空间,σ是V 的线性变换,若σ是幂零变换,则σ在某一基下的矩阵时幂零矩阵.证明:由于σ是幂零变换,即存在正整数m ,使对任意V ξ∈,有()0m σξ=. 设12,,,n ααα 是V 的一个基,σ关于12,,,n ααα 的矩阵是A .即()()1212,,,,,,n n A σαααααα=所以有()()()1212,,,,,,0,0,,0m m n n A σαααααα== .由于12,,,n ααα 是基,所以0m A =,因此A 是幂零矩阵.参考文献[1] 邹本强.幂零矩阵的性质[J].威海职业技术学院学报,2007,12(1):154-155 [2] 韩道兰、罗雁、黄宗文.幂零矩阵的性质及应用[J].玉林师范学院学报,2003,24(4):1-3[3] 谷国梁.关于幂零矩阵性质的探讨[J]. 铜陵财经专科学校学报,2001,4(1):49-49[4] 姜海勤.幂零矩阵性质的一个应用[J].泰州职业技术学院学报,2004,4(1):61-62[5] 北京大学数学系几何与代数教研室前代数小组.高等代数(第二版)[M].高等教育出版社,2003[6] 张素梅、张广慧.线性变换的幂零性[J].邯郸学院学报,2007,17(3):30-32 [7] 李师正.高等代数解题方法与技巧[M].高等教育出版社,2006 [8] 陈国利.高等代数选讲[M].中国矿业大学出版社,2005[9] 杨子胥.高等代数习题集(上册)[M].山东科学技术出版社,2004 [10] 王品超.高等代数分析与研究[M] .山东大学出版社,1994。
本科毕业论文论文题目:幂零矩阵的性质及应用学生姓名:学号:2010411676专业:数学与应用数学指导教师:学院:数学科学学院2014 年4月22 日毕业论文(设计)内容介绍目录摘要:....................................................................................................................... - 1 - Abstract: . ............................................................................................................... - 1 -一、相关的基本概念............................................................................................... - 2 -二、相关的一些引理............................................................................................... - 2 -三、性质................................................................................................................... - 4 -四、关于幂零矩阵的简单应用............................................................................. - 12 -(一)、利用幂零矩阵求下列矩阵的逆...................................................... - 12 - (二)、有关幂零矩阵的其他应用举例...................................................... - 15 - 参考文献:............................................................................................................. - 20 -幂零矩阵的性质及应用刘妍摘要:幂零矩阵是一类比较特殊的矩阵,不仅在矩阵领域有非常重要的作用,而且在数学领域以及其他领域应用都非常广泛,因此对幂零矩阵进行探究具有非常重要的意义.本文主要是对幂零矩阵的一些性质和结论进行归纳总结,从矩阵的不同角度讨论了幂零矩阵的相关性质.在一般矩阵中,求矩阵的逆比较麻烦,本文利用幂零矩阵特殊性讨论了三类特殊矩阵逆的求法.幂零矩阵具有良好的性质,在解相关矩阵问题有很好作用,因此对幂零矩阵的研究很有意义.关键词:幂零矩阵, 若尔当块, 特征值, 幂零指数, 幂零矩阵的秩The properties of nilpotent matrix and its applicationLiu YanAbstract: A special matrix, nilpotent matrix is a kind of not only has a very important role in the field of matrix, and in the field of mathematics and other fields are widely used, thus to explore the nilpotent matrix has very important significance. This article is mainly to some properties of nilpotent matrix and conclusions are summarized , from different angles of matrix related to the properties of nilpotent matrix is discussed. In the general matrix, matrix inverse more troublesome, in this paper, using the nilpotent matrix particularity discussed three kinds of special matrix inverse method. Nilpotent matrix has good properties and has good effect in solving problems related matrix, so the study of nilpotent matrix is very meaningful.Key words:Nilpotent matrix, Jordan, characteristic number, Nilpotent index,Nilpotent matrix rank引言在高等数学的学习研究过程中,幂零矩阵是非常特殊且实用的工具,许多问题都会借助幂零矩阵的相关性质来进行研究,比如说求矩阵的逆和许多证明题目中都会用到,求矩阵的逆一般比较麻烦,对于一些特殊矩阵可以用幂零矩阵的性质来简单化解计算.一、相关的基本概念1、 设A 为n 阶方阵,若存在正整数k ,使0k A =,则A 称为幂零矩阵.2、 若A 为幂零矩阵,则满足0k A =的最小正整数称为A 的幂零指数.3、 设1111n n nn a a A a a ⎛⎫ ⎪=⎪ ⎪⎝⎭,则称111'1n n nn a a A a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭为A的转置,称111*1n n nn A A A A A ⎛⎫ ⎪= ⎪ ⎪⎝⎭为A的伴随矩阵. 其中(),1,2,,ij A i j n =为A 中元素ij a 的代数余子式.4、设A 是复数域上全体m n ⨯矩阵,在A 中任意取定k 行k 列,}{min m n k ≤,.位于这些行和列的交点上的2k 个元素按照原来的次序组成一个k 级行列式M 称为A 的一个k 级子式.5、设A 是复数域上m ⨯n 矩阵,A 中非零子式的最高阶数称为A 的秩, 记为()r A .6、 主对角线上元素为0的上三角矩阵称为严格的上三角矩阵.7、形为()0010,00J t λλλλ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭的矩阵称为若尔当块,其中λ为复数,由若干个 若尔当块组成的准对角阵称为若尔当形矩阵.8、 设 A 为一个n 阶方阵,()f E A λλ=-称为矩阵A 的特征多项式.满足()0f E A λλ=-=的λ的值称为矩阵A 的特征值.9、 次数最低的首项系数为1的以A 为根的多项式称为A 的最小多项式.二、相关的一些引理引理1:设,A B 为n 阶方阵,则()()***,tt t AB B A AB B A ==. [1]引理2:()(),A f E A m λλλ=-,分别为矩阵A 的特征多项式和最小多项式,则有()0,0A f A m ==.引理3:每一个n 阶的复矩阵A 都与一若尔当形矩阵相似,这个若尔当形矩阵除去若尔当块的排序外被矩阵A 唯一决定的,它称为A 的若尔当标准形.引理4:若尔当形矩阵的主对角线上的元素为它的特征值.引理5:n 阶复矩阵A 与对角矩阵相似的充分必要条件是A 和最小多项式无重根. 引理6:相似矩阵具有相同的特征值. 引理7:设12,,,n λλλ为n 阶矩阵A 的特征值,则有12n trA λλλ=+++,12n A λλλ=,且对任意的多项式()f x 有()f A 的特征值为()()()12,,,n f f f λλλ. 引理8:k 阶若当块11k a J a ⎛⎫⎪⎪= ⎪⎪⎝⎭的最小多项式为()k x a -且有 ()0kk J aE -=.引理9:矩阵的最小多项式就是矩阵A 的最后一个不变因子.引理10:,A B 为n 阶复数域上的矩阵,若AB BA =,则存在可逆矩阵T ,使得121*N T AT λλλ-⎛⎫⎪ ⎪=⎪ ⎪⎝⎭ 121*N T BT μμμ-⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭. 引理11:任意n 阶,A B 方阵,有()()tr AB tr BA =.引理12:设A 是n 阶方阵,若20A =,则()n2r A ≤.引理13:设A 是n 阶方阵,若30A =,则(1)()23nr A ≤;(2)()()()222r r n r A ≤A ≤-A .引理14:设A 是n 阶方阵,则()()()r kr k-1n kA A ≥- ()k 1≥. 引理15:设A 是n 阶方阵,则()()()()()2k 21r r r 0k k A k ++A ≤A +≥,.引理16: 设A 是n 阶方阵,则()()()()B -+≥AB r BC r AB r C r .三、性质性质1:A 为幂零矩阵的充分必要条件是A 的特征值全为0. 证明:⇒因为 A 为幂零矩阵,所以k =0k Z A +∃∈使,使0k A =. 令0λ为A 任意一个特征值,则00A ααλα∃≠=使. 由引理7知,0λ为k A 的特征值. 因为0β∃≠使0k βλβA = ,即有00λ=. 又有0k A =,知00kk A A A ==⇒=. 因为()()0*1100kkE A A A -=-=-=-⋅=, 所以 00λ=为A 的特征值. 由0λ的任意性知,A 的特征值为0. ⇐(方法一)因为A 的特征值全为0,所以A 的特征多项式为()n f E A λλλ=-=. 由引理2知,()0n f A A ==. 所以A 为幂零矩阵,得证.(方法二)因为存在可逆矩阵T,使得10*0T T B -⎛⎫ ⎪⎪A == ⎪ ⎪⎝⎭ (B 为上三角矩阵) [2] 由上三角矩阵的性质知, 0n B =,从而0n A =(n 为A 的阶数). (方法三)因为A 的所有特征根全为0,所以A 的Jordan 标准型J 的若尔当块只能是110i J ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 取正整数m ≥i J 的所有阶数,则m i J =0 所以有m J =0, 故11()0m m m A PJP PJ P --===所以A 为幂零矩阵. 性质2:A 为幂零矩阵的充分必要条件为0=∈∀+k trA Z k . 证明:⇒ 因为A 为幂零矩阵,由性质1,知:A 的特征值全为0 即12n λλλ===.又由引理7,知k A 的特征值为120n λλλ====,从而有120k k k k n trA λλλ=+++=.⇐由已知,12 0k k k k n k Z trA λλλ+∀∈=+++= (1.1)令12,,,t λλλ为A 的不为0的特征值,且t λ互不相同重数为(1,2,,)in i t =由(1.1)式及引理7,得方程组11222221122333112211220000t t t t t t t t t t t n n n n n n n n n n n n λλλλλλλλλλλλ+++=⎧⎪+++=⎪⎪+++=⎨⎪⎪⎪+++=⎩(1.2) 由于方程组(1.2)的系数行列式为122221212121212121111()t t tt tt t t t tt t t i j j i tB λλλλλλλλλλλλλλλλλλλλλλλ≤<≤===∏-又因为()t i i ,,2,1 =λ互不相同且不为0,0≠B , 从而知,方程(1.2)只有0解,即()t i n i ,,2,10 ==即A 没有非零的特征值所以A 的特征值全为0,由性质1,得A 为幂零矩阵得证.性质3:若A 为幂零矩阵,则A 的若尔当标准形J 的若当块为幂零若尔当块,且J 的主对角线上的元素为0.证明:因为A 为幂零矩阵,再由性质1,知A 的特征值全为0. 由引理3,知 在复数域上,存在可逆矩阵T ,使得121s J J T AT J -⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 其中11ii i J λλ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭阶数为()s i n i,,2,1 =.由引理4,知()s i i ,,2,1 =λ为J 的特征值.又因为A 与J 相似,由引理6,知A 与J 有相同的特征值. 所以()s i i ,,2,10 ==λ 即J 的主对角线上的元素全为0.由引理8,知()()()s i J E J i i n i n i ,,2,100 ===⋅-, 故S J J J ,,,21 为幂零矩阵,得证.性质4:若A 为幂零矩阵,则A 一定不可逆但有A E +及A E -可逆, 且1,1A E E A +=-=其中E 为单位矩阵.证明:因为A 为幂零矩阵,所以k Z +∃∈使0k A =.故00kk A A A ==⇒=,A 一定不可逆.由性质1,得A 的特征值为120n λλλ====由引理7, 得A E +,A E -的特征值分别为 1212011,101n n λλλλλλ'''''''''====+=====-=所以,A E +及A E -可逆, 且有1211n n A E λλλ'''+===,1211n n E A λλλ''''''-===.即1,1A E E A +=-=,得证. 性质5:若A E +为幂零矩阵,则A 非退化. 证明:令12,,,n λλλ为A 的特征值,若A 退化,则有0A =.由引理7,得120n A λλλ==.所以至少存在00i λ=为A 的特征值,又由引理7,得0110i λ+=≠为A E +的一特征值,这与A E +为幂零矩阵矛盾,故A 为非退化,得证.性质6:若A 为幂零矩阵,B 为任意的n 阶矩阵且有AB BA =,则AB 也为幂零矩阵.证明:因为A 为幂零矩阵,所以k Z +∃∈,使0k A =.又因为AB BA =,()00k k k k AB A B B ==⋅=.所以1211231111()(1)(0)k k k mE A E A A A m m m m m---+=-+++-≠ 故AB 也为幂零矩阵,得证.性质7:若A 为幂零矩阵且0k A =,则有121()k E A E A A A ---=++++.证明:因为0k A =,所以k k k E E A E A =-=- 21()()k E A E A A A -=-++++.即121()k E A E A A A ---=++++.对任意0m ≠,有[()]k k k k k AmE mE A mE A m E m=+=+=+211121111()((1))k k k A m E E A A A m m m m---=+-+++-211121111()((1))k k k mE A E A A A m m m---=+-+++- 即有2111211111()((1))k k k mE A E A A A E m m m m---+⋅-+++-= 所以12111211111()((1))k k k mE A E A A A m m m m ----+=-+++- 21123111(1)k k k E A A A m m m m--=-+++- 性质8:若A 为幂零矩阵且0A ≠,则A 不可对角化.但对任意的n 阶方阵B ,存在幂零矩阵N ,使得B N +可对角化. 证明:因为A 为幂零矩阵,所以k Z +∃∈使0k A =且A 的特征值全为零. ()n f E A λλλ=-=为A 的特征多项式且()0n f A A ==, 令()A m λ为A 的最小多项式,则有()|()A m f λλ. 从而有00()(1)k A m k n λλ=≤≤.由于0,A ≠所以01k >,又此时00()2k A m k λλ=≥,即A 的最小多项式有重根,由引理5,知A 不可对角化因为B 为n 阶方阵,由引理3,知在复数域上,存在可逆矩阵T ,使得121s J J T BT J -⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,其中11i i i J λλ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭阶数为(1,2,,)i n i s =. 令iii i D λλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =,则有0110i i i J J D ⎛⎫ ⎪⎪'=-= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =.由引理8,知(0)()0i i i n n i n i J E J ''-⋅==,即i J '(1,2,,)i s =为幂零矩阵.现令12s J J J J ⎛⎫' ⎪⎪''= ⎪ ⎪ ⎪ ⎪'⎝⎭,12s D D D D ⎛⎫⎪⎪= ⎪ ⎪⎝⎭,则1112122s s s J D J J J D T BT J D J J D -⎛⎫'+⎛⎫ ⎪ ⎪ ⎪'+⎪'===+ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭'+⎝⎭, 即111()(1)B T J D T TJ T TDT ---''=+=+ 又D 为对角阵,由(1)式知11B TJ T TDT --'-=可对角化.令1N TJ T -'=- 且取12max(,,,)s k n n n =,则有120kkk k s J J J J ⎛⎫' ⎪⎪''==⎪ ⎪ ⎪ ⎪'⎝⎭,111112()()()()()00kkk k k k k k k s J J N TJ T T J T T T T T J ----⎛⎫' ⎪⎪'''=-=-=-=-=⎪ ⎪ ⎪ ⎪'⎝⎭即有B N +可对角化且N 为幂零矩阵,得证.性质9:n 阶幂零矩阵的幂零指数小于等于n 且幂零指数等于其若尔当形矩阵中阶数最高的若尔当块的阶数.证明:令A 为n 阶幂零矩阵,由性质3知,存在可逆矩阵T , 使得121s J J T AT J -⎛⎫⎪⎪= ⎪ ⎪⎝⎭ .其中0110iJ ⎛⎫⎪⎪= ⎪ ⎪⎝⎭,阶数为(1,2,,)in i s =,且()0i n i J =,1(1,2,,)i n n i s ≤≤=.取12max(,,,)s k n n n =,则k n ≤且有1121112()00(1.5)k kk k k s s J J J J A T T T T T T J J ---⎛⎫⎛⎫⎪⎪ ⎪⎪==== ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭即0k A =若令0k 为A 的幂零指数,则0k k n ≤≤,00k A =.若0k k <,则0i ∃使00i n k >且000k i J ≠. 由(1.5)式,得0000112112()0k k k k k s s J J J J A T T T T J J --⎛⎫⎛⎫⎪⎪⎪⎪==≠ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭这与00k A =矛盾. 故0k k n =≤,得证.性质10:与幂零矩阵相似的矩阵仍为幂零矩阵,且幂零指数相同并相似于严格上三角形 .证明:令A 为幂零矩阵,则A 的特征值全为0.若B 与A 相似,由引理6,得A 与B 有相同的特征值. 所以B 的特征值也全为0,由性质1,知B 也为幂零矩阵. A 为幂零矩阵由性质3知,存在可逆矩阵T,使得121s J J T AT J J -⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭ 其中0110i J ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,阶数为(1,2,,)in i s =,且()0i n i J =, 1(1,2,,)i n n i s ≤≤=.由性质9,知{}12max ,,,A s k n n n =为A 的幂零指数又A 与B 相似,A 与J 相似 ,从而有B 也与J 相似所以∃可逆矩阵P ,使得121s J J P BP J J -⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭. 又由性质9,知12max{,,,}B s k n n n =为B 的幂零指数,从而有A B k k =.又0110i J ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭(1,2,,)i s =为严格上三角,所以12s J J J J ⎛⎫⎪⎪= ⎪ ⎪⎝⎭也为严格上三角形, 即A ,B 都相似于严格上三角形J . 得证 .性质11:若A 为幂零矩阵,则,,,A A A mA *'-()m Z +∈都为幂零矩阵,特别有2()0A *=.证明:因为A 为幂零矩阵,所以k Z +∃∈,使0k A =.由引理1,知()()00k k A A '''===,()()00k k A A ***===, ()(1)(1)00k k k k A A -=-=-⋅=. 所以,,A A A *'-都为幂零矩阵.因为()()()00k k k k mA m A m ==⋅=, 所以()mA m Z +∈也为幂零矩阵. 又因为A 为幂零矩阵,所以0A =,即()1r A n ≤-. 若()1r A n <-,则有A 的所有1n -阶代数余子式都为0. 则有0A *=,从而有2()0A A **==.若()1r A n =-,则由性质3知,存在可逆矩阵T ,使得121s J J T AT J J -⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭, 其中0110i J ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =且()1i i r J n =-.又显然A 与J ,所以有111()()()(1)1sssi i i i i i r A r J r J n n s n s n ======-=-=-=-∑∑∑所以1s =,即有10110T AT J B -⎛⎫ ⎪⎪=== ⎪ ⎪⎝⎭. 又10(1)0n B +*⎛⎫-⎪⎪= ⎪ ⎪ ⎪⎝⎭, 所以2()0B *=. 由(1.3)式及引理1,知11()()A TBT T B T *-*-***==, 21212()[()]()()0A T B T T B T *-***-***===, 得证. 性质12:设A 是为n 阶矩阵,且0k A =,则 (1)()1r k nA k -≤;(2)()()()11(1)k k k r A r A n r A ---≤≤-. 证明:因为0k =A ,由引理16知()()()()()21120k k k k k r A r AA A r A r A r A ----==≥+- (1) ()()()()()322130k k k k k r A r AA A r A r A r A ----==≥+- (2)()()()()()k k-2210k r A r AAA r A r A r A -==≥+- (3) 把上式相加得到:()()()110k k r A r A ---≤. (4) 由定理知:()()()()110k k k r A r AA r A r A n --==≥+-, 则()()1k r A r A n -+≤. 故()1k kr A n -≤,即()1k n r A k-≤. 所以()()1k r A n r A -≤-,所以()()()11k k r A r A --≤ 所以()()()()111k k k r A r A n r A ---≤≤-,得证. 性质13:设A 是为n 阶矩阵,且0k A =,则(1)k 为偶数且4≥k ,则()()12212k k r A r A -≤;(2)k 为奇数且3≥k ,则()()11212k k r A r A --≤.证明:由引理16知:()()()()21202k k k k r A r AA A r A r A ---==≥-, 即()()212k k r A r A --≥. 再由引理16知:()()()()2422402k k k k r A r A A A r A r A ---==≥- 即()()422k k r A r A --≥,由此类推, (1)k 为偶数且4≥k ,则()()()()12422111242k k k k r A r A r A r A ---≤≤≤≤.(2)k 为奇数且3≥k , 则()()()()12412111242k k k k r A r A r A r A ----≤≤≤≤,得证.四、关于幂零矩阵的简单应用(一)、利用幂零矩阵求下列矩阵的逆1、求可表为幂零矩阵与单位矩阵和的矩阵的逆.若矩阵A 可表示为幂零矩阵和单位矩阵的和,则可借用二项式展开定理将求矩阵A 的逆转化为单位矩阵和幂零矩阵的乘幂.例 1 4615135124A -⎛⎫⎪=- ⎪ ⎪-⎝⎭求1A -. 解:46153615100135125010124125001A B E --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=-+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭,其中3615125125B -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭3615125125B -⎛⎫ ⎪=- ⎪⎪-⎝⎭且有2361536151251250125125B BB --⎛⎫⎛⎫ ⎪⎪==--= ⎪⎪ ⎪⎪--⎝⎭⎝⎭.1110036152615()010125115001125126A B E E B -----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪∴=+=-=--=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.例2 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=A 4121031200210001求1-A .解:E +B =A ,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛=B 3121021200110000 且03=B . ()⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=B +B -E =B +E =A ∴--62530841200121200024241211. 2、求主对角线上元素完全相同的三角矩阵的逆.对于主对角线元素完全相同的三角矩阵可表示为数量矩阵和幂零矩阵的和.例1 ()0000000000110≠⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=A λλλλλ 求.1A - 解:B +E =A m ,其中⎪⎪⎪⎪⎪⎭⎫⎝⎛=B 0000000000001100且02=B . ()⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=B -E =B +E =A ∴--λλλλλλλλλ10000100001011011122211. 例2 已知0000000000000n nx y xy A x y x ⨯⎛⎫⎪⎪⎪=⎪⎪ ⎪⎝⎭求1A -. 解:0000000000000x y x yA x y x ⎛⎫⎪ ⎪⎪=⎪ ⎪ ⎪⎝⎭10000010000001000001x ⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪⎝⎭01000001000000100000y ⎛⎫ ⎪ ⎪⎪+ ⎪⎪⎪⎝⎭n xE yJ =+, 其中01000001000000100000n J ⎛⎫ ⎪ ⎪⎪= ⎪⎪ ⎪⎝⎭且有0nn J =.211123()(1)n n n nn n n J J J E A xE yJ x x x x---=+=-+++- 1122211(1)10(1)00100n n n n n n y y x x x y x x x -----⎛⎫-- ⎪ ⎪⎪- ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭. 3、求可表为若尔当块的幂的矩阵和的矩阵的逆。
幂零矩阵性质及应用数本041 严益水 学号:摘要:幂零矩阵是一类特殊的矩阵,在矩阵理论中有重要的作用。
它具有一些很好的性质。
本文从矩阵的不同角度讨论了幂零矩阵的相关性质。
幂零矩阵与若当形矩阵结合可得一个很好性质,在解相关矩阵问题有很好作用,由此我们举例说明,从例子中发现了问题并对此问题进行思考得出了一些结论,对幂零矩阵的研究很有意义。
在一般矩阵中,求矩阵的逆比较麻烦,本文最后利用幂零矩阵特殊性讨论了三类特殊矩阵逆的求法。
关键词:幂零矩阵 若当块 特征值 幂零指数 一、 预备知识(下面的引理和概念来自《高等代数解题方法与技巧》 李师正 高等教育出版社、《高等代数》(第二版) 北京大学数学系几何与代数教研室代数小组 高等教育出版社、 《高等代数选讲》 陈国利 中国矿业大学出版社及《高等代数习题集》(上册) 杨子胥 山东科学技术出版社)(一) 一些概念1、令A 为n 阶方阵,若存在正整数k ,使0k A =,A 称为幂零矩阵。
2、若A 为幂零矩阵,满足0k A =的最小正整数称为A 的幂零指数。
3、设1111n n nn a a A a a ⎛⎫⎪=⎪ ⎪⎝⎭,称1111n nnn a a A a a ⎛⎫⎪'= ⎪ ⎪⎝⎭为A 的转置, 称111*1n nnn A A A A A ⎛⎫⎪=⎪ ⎪⎝⎭为A 的伴随矩阵。
其中(,1,2,,)ij A i j n =为A 中元素ij a 的代数余子式4、设A 为一个n 阶方阵,A 的主对角线上所有元素的和称为A 的迹,记为trA 。
5、主对角线上元素为0的上三角称为严格的上三角。
6、形为010(,)000001J t λλλλλ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭的矩阵称为若当块,其中λ为复数,由若干个若当块组成和准对角称为若当形矩阵。
7、()f E A λλ=-称为矩阵A 的特征多项式。
满足()0f E A λλ=-=的λ的值称为矩阵A 的特征值。
编号:xxxx学院2012届毕业生毕业论文(设计)题目:幂零矩阵的性质及应用完成人: xxx班级: 2008- 01学制: 4 年专业:数学与应用数学指导教师: xxxx完成日期: 2012-03-31目录摘要 (1)0引言 (1)1预备知识 (1)1.1幂零矩阵的相关概念 (1)1.2幂零矩阵的基本性质 (1)2 主要结论 (4)3 应用 (6)3.1幂零矩阵在矩阵运算中的应用 (6)3.2幂零矩阵与高等代数中其他知识相结合的应用 (8)3.2.1幂零矩阵与线性方程组相结合应用 (9)3.2.2幂零矩阵的若尔当标准形的应用 (10)3.2.3幂零矩阵与幂零线性变换相结合的应用 (11)参考文献 (13)Abstract (14)幂零矩阵的性质及应用作 者:xxxxx 指导老师:xxx摘要:本文从幂零矩阵的定义出发,总结了幂零矩阵的基本性质及一些主要结论,而且对其应用作进一步的讨论:用幂零矩阵性质求一些特殊矩阵的逆及在历年考研真题中对幂零矩阵的考查.关键词:幂零矩阵;幂零指数;若尔当形;特征根0 引言在高等代数中,矩阵是研究问题的很重要的工具,在讨论矩阵的 乘法运算时给出了幂零矩阵的定义,但对其性质研究很少.幂零矩阵作为特殊矩阵无论在矩阵的理论方面,还是在实际应用方面都有很重要的意义,而且在一些交叉学科如密码学中,都有广泛的应用.目前,国内很多学者对幂零矩阵的性质已有较深入的研究,本文在他们研究的基础上,进一步探讨幂零矩阵的性质.1 预备知识为了叙述的需要,我们首先引入幂零矩阵的有关概念. 1.1幂零矩阵的有关概念定义1 设A 是n 阶矩阵,若存在一个自然数k ,使0k A =,则A 为 幂零矩阵.定义2 设A 是幂零矩阵,满足0k A =的最小自然数k 称为A 的幂零指数.1.2幂零矩阵的基本性质在给出了幂零矩阵的相关概念之后,我们容易得到幂零矩阵的一些基本性质.性质1 若A 是幂零矩阵,则*,,,T mA A A A -都是幂零矩阵.性质2 A 为幂零矩阵的充要条件是A 的特征值全为0. 在此基础上,我们还可以得到幂零矩阵的另一个充要条件. 推论1 A 为幂零矩阵的充要条件是k Z +∀∈,0k trA =. 证明 必要性 因为A 为幂零矩阵,所以A 的特征值全为0, 即120n λλλ====,所以kA 的特征值为120n k k k λλλ====.从而有120n k k k ktrA λλλ=+=++.充分性 由已知,对k Z +∀∈,120nk k k k trA λλλ=+=++. ①令12,,,t λλλ为A 的不为零的特征值,且i λ互不相同,重数为i n (1,2,,i t =). 由①式,得方程组112121211222222333121200t t t t t t t t t t t n n n n n n n n n n n n λλλλλλλλλλλλ+++=⎧⎪+++=⎪⎪+++=⎨⎪⎪⎪+++=⎩ ② 由于方程组②的系数行列式为121212122221212111ttttt tt tt tttB λλλλλλλλλλλλλλλλλλ==()121t i j j i tλλλλλ≤<≤=∏-又()1,2,,i i t λ=互不相同且不为0,所以0B ≠,从而知方程②只有0解,即0i n =(1,2,,i t =).因此A 的特征值全为0,即A 为幂零矩阵.推论 2 若A 为幂零矩阵,则A 一定不可逆且有1,1A E E A +=-=. 证明 由于A 为幂零矩阵,所以存在k Z +∈,使得0k A =,因此有00kk A A A ==⇒=,所以A 一定不可逆.由性质2,得A 的特征值120n λλλ====,所以A E +,E A -的特征值分别是12'''011n λλλ=+====, 12"""101n λλλ=-====,且有12'''11n n A E λλλ+===,12"""11n n E A λλλ-===.即1,1A E E A +=-=.推论3 若A E +为幂零矩阵,则A 非退化. 证明 令12,,,n λλλ为A 的特征值.若A 退化,则有120n A λλλ==,所以至少存在00i λ=为A 的特征值,从而有0110i λ+=≠为A E +的一特征值,这与A E +为幂零矩阵相矛盾,得证A 为非退化.对于幂零指数相同的幂零矩阵,有一些比较重要的性质. 性质3 所有的n 阶1n -次幂零矩阵都相似.证明 令A 为n 阶1n -次幂零矩阵,即10n A-=,()001k k n A ≠≤<-,因此A 的最小多项式1()()n A n m d λλλ-==;又A 是幂零矩阵,所以A 的特征值全为0,因此A 的特征多项式为()()n n f E A D λλλλ=-==,又11()()()n n n n D d D λλλλ--==,所以1()n D λλ-=;又12()()()()()n n n f E A d d d D λλλλλλλ=-===,从而有1()n d λλ-=,221()()()1n d d d λλλ-====,所以所有n 阶1n -次幂零矩阵具有相同的不变因子为1,,,,,111n λλ-.所以所有n 阶1n -次幂零矩阵都相似. 利用此法也可以得到:推论4 所有n 阶n 次幂零矩阵都相似.注 但是当幂零矩阵的幂零指数2k n ≤-,相同幂零指数的幂零矩阵却不相似.性质4 设A 为非零幂零矩阵,且k 是A 的幂零指数,则E ,A ,2A ,,1k A-线性无关.证明 利用反证法.假设12,,,,k A E A A -线性相关,则一定存在一组不全为0的0c ,1c ,,1k c -,使2101210k k E A c c c c A A --++++=, ①两端右乘1k A -,得100k c A -=,而10k A -≠,因此00c =.再对①式两端右乘2k A-,可得10c =.同理可得2310k c c c -====.所以0110k c c c -====,得出矛盾,所以假设错误.即证得21,,,,k E A A A -线性无关.2 主要结论我们在幂零矩阵的定义以及基本性质的基础上,进一步探讨幂零 矩阵,得到一些重要结论,而且这些结论应用的也比较广泛.结论1 设A 为幂零矩阵,且k 是A 的幂零指数,则 (1)E A -可逆,且()121k E A E A A A ---=++++ . (2)()()11212311111k k kmE A E A A Am mm m---+-+=-++.(0)m ≠证明 (1) 由于A 为幂零矩阵,所以0k A =,从而k k k E E A E A =-=-()21()k E A E A A A -=-++++,即()121k E A E A A A ---=++++.(2)对任意0m ≠,121231111()()(1)k k kmE A E A A A m m mm--+-+++-121211111(1)k k k E A A A Am mmm---=-++++- 212121111(1)(1)k k k kk kAAA mmm-----+++--E =所以()1121231111()k k kE A mE A A Am m mm---=-+++-+ .结论2 若A 为幂零矩阵,则A 的若尔当标准形J 的若尔当块为 幂零若尔当块,且J 的主对角线上的元素为0.证明 A 为幂零矩阵,由性质2知,A 的特征值全为0; 又在复数域上,存在可逆矩阵T ,使得121S J J J T A TJ -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦其中11iiiiiJ nn λλ⨯=⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 1,2,,i t =,则(1,2,,)i i t λ=为J 的特征值;又A 与J 相似,所以A 与J 有相同的特 征值,所以0i λ= (1,2,,)i t =,即J 的主对角线上的元素全为0;所以有1010i J ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,则i J 为幂零矩阵,其幂零指数为i n (1,2,,)i t =,所以12,,,S J J J 为幂零矩阵.所以A 的若尔当标准形J 的若尔当块12,,,S J J J 为幂零若尔当块,且J 的主对角线上的元素为0. 由此结论可以得到:推论 5 n 阶幂零矩阵的幂零指数小于等于n ,且幂零指数等于其若尔当形矩阵中阶数最高的若尔当块的阶数.3 应用3.1 幂零矩阵在矩阵运算中的应用——求一些特殊矩阵的逆在矩阵的运算中,求矩阵的逆一般是比较麻烦的,对于一些特殊的矩阵可以利用幂零矩阵的性质来化简.引理1 任一n 阶方阵A 都可写成的A D N =+形式,其中D 是一个与对角阵相似的n 阶方阵,N 是一个幂零矩阵,而且DN ND =.证明 因为在复数域上,存在可逆矩阵T ,使得121S J J A T T J -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦① 其中11iiiiiJ n nλλ=⨯⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦1,2,,i t =于是00101iii ii i J N D λλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1,2,,)i t =. ②其中ii i D λλ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦为对角阵,0101i N ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦为幂零矩阵. 因为n i O N =,将②式带入①式得111s s N D A T TN D -+⎡⎤⎢⎥=⎢⎥⎢⎥+⎣⎦1111s s N D T T T T N D --⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦D N =+ ③其中11s D D T T D -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相似于对角阵,且 1111nn n s s N N T T O N N T T N N --⎡⎤⎡⎤⎢⎥⎢⎥=⇒==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 即N 为幂零矩阵,于是111s s N D DN T T N D -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, ④ 类似的,有111s s N D ND T T N D -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦. ⑤ 但()i i i i i i E N N N D λλ==, ()i i i i i i E N N N D λλ==.所以i i i i N N D D = ,(1,2,,)i s = ⑥由④⑤⑥,即证 DN ND =.由引理1,对于一些可表示为幂零矩阵与单位矩阵的和的矩阵,则可利用结论1来求它的逆;而主对角元素完全相同的三角矩阵可表示为数量矩阵与幂零矩阵的和,也可以借助结论1可求出它的逆;对于一些可表示为单位矩阵与若尔当矩阵幂的和的矩阵,借助结论1也可求出它的逆.下面通过例子来说明.例1 设11111011110011101A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,求1A -. 解 记n J 为n 阶若尔当矩阵,则0nn J =,而21n n n n A E J J J -=++++,由结论1有1121()n n n nn E E J A J J J ---==-++++1100001100000110001-⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎣⎦. 3.2 幂零矩阵与高等代数中其他知识相结合的应用在历年研究生入学考试中,对幂零矩阵的考查综合性较强,能力要求较高,是个难点.下面列举几道典型的对幂零矩阵的考查方法,以说明幂零矩阵和其他数学知识之间的灵活运用. 3.2.1幂零矩阵与线性方程组相结合应用下面看一下幂零矩阵与线性方程组相结合的考查方法. 例2 (中山大学) A ,B ,C 为n 阶方阵,且AC CA =,BC CB =,C AB BA =-,证:存在自然数k n ≤,使得0k C =.分析 本题即证C 为幂零矩阵,只需证C 的特征值全为0.而C AB BA =-,容易联想需要用C 的迹来解题,而采用反证法则恰到好处.证明 只需证C 的特征值12,,,n λλλ全为0即可. 事实上,()()0tr C tr AB BA =-=,即有10ni i λ==∑;又2()()()AB BA CAB CBA AC B B AC C C =-=-=-,所以()2210ni tr C i λ===∑;同理可得()3310nii trC λ===∑,()10nssi i tr C λ===∑;假设C 存在非0的特征值,不妨设合并各相同的非0特征值后,得11222221122112200s s s s s s s s s k k k k k k k k k λλλλλλλλλ=⎧+++⎪+=++⎪⎨⎪⎪+=++⎩,(12,,,s λλλ各不相同).方程组有非0解,故系数行列式:1222212120ss s s s sλλλλλλλλλ=(i λ各不相同),但是()1222212121120ss s i j j i ss s s sλλλλλλλλλλλλλλ≤<≤=≠∏-,得出矛盾,所以假设错误,即有C 不存在非零的特征值,C 的特征值全为0,所以存在自然数k n ≤,使得0k C =.此题利用幂零矩阵的性质构造齐次线性方程组,灵活运用数学知识进行解题,与推论1的证明有相似之处,体现了幂零矩阵在高等代数中的重要地位.3.2.2 幂零矩阵的若尔当标准形的应用幂零矩阵的若尔当标准形在历年真题中也较常用到.例3(上海交通大学) A ,B 为n 阶方阵,B 为幂零矩阵,AB BA =,则有A B A +=.分析 在复数域上,每个n 级矩阵都与一个若尔当形矩阵相似, 幂零矩阵的若尔当标准形的对角线上的元素为0,由此结论此题即得证.证明 由题有,在复数域上,存在可逆矩阵,T 使得121*n AT T λλλ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,121*n BT T μμμ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦. 又B 为幂零矩阵,所以B 的特征值全为0,即100*0BT T -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, ()121111*n A B T AT BT T T T T T λλλ----⎡⎤⎢⎥⎢⎥+=+=⎢⎥⎢⎥⎣⎦, 所以()12111*nA B T A B T T T T T λλλ---+=+=.又因为T 可逆,所以0T ≠,1212*n nA B λλλλλλ+==,因为121*n AT Tλλλ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦因此12,,,n λλλ为A 的特征值,所以12n A λλλ=,从而得证21n A A B λλλ=+=.3.2.3 幂零矩阵与幂零线性变换相结合的应用幂零线性变换在任一组基下的矩阵为幂零矩阵,研究幂零矩阵的 特性对研究幂零线性变换是很有帮助的.例4(西南大学) 设V 为数域F 上的n 阶方阵构成的线性空间,A 为F 上一个固定的n 阶方阵,定义()TB AB BA =-,其中B 为V 中任一向量,证明(1)T 为线性变换;(2)若A 为幂零矩阵,则T 为幂零线性变换.分析 (1)利用线性变换的定义即可得证.(2) 由()T B AB BA =-,有下述结论:A 的特征值之差都是T 的特征值.以下要证此结论.证明 (1)任取,B C V ∈,k F ∀∈,则有:()()()()()T B C A B C B C A AB BA AC CA T B T C +=+-+=-+-=+,()()()()T kB A kB kB A kAB kBA kT B =-=-=,所以T 为线性变换.(2)先做如下断言:()T B AB BA =-⇒A 的特征值之差都是T 的特 征值.事实上,()n y F M ∀∈,取()n F M 的一组基ij E (,1,2,,i j n =),设A 的若尔当标准形为1*s J λλ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则存在可逆矩阵()n P F M ∈,使得11*s AP J P λλ-⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦, 所以1A PJ P -=.又P 可逆,所以1ij P E P -也是()n F M 的一组基. 又111()()()ij ij ij T A A PE P PE P PE P ---=- 1111()()()()ij ij PJ PJ P PE P PE P P ----=-1()ij ij J J P E E P -=-10*0i jP P λλ-⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦1()()ij i j PE P λλ-=-所以T 在基11111111211,,,,,,,n n nn PE P PE P PE P PE P PE P -----下的矩阵为121212110*0nnn n n λλλλλλλλλλλλ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦------ 所以A 的特征值之差都是T 的特征值.断言成立.因为A 为幂零矩阵,所以A 的特征值0i λ= ,所以T 的特征值全为0,从而T 为幂零线性变换.参 考 文 献[1] 北京大学数学系几何与代数教研室前代数小组.高等代数[M].北京:高等教育出版社,2003.[2] 杨子胥.高等代数习题解(下册)[M].济南:山东科技出版社,1982:836-866.[3] 邹本强.幂零矩阵的性质[J].science information,2007,(12):150-155.[4] 韩道兰,罗雁,黄宗文.幂零矩阵的性质及应用[J].玉林师范学院学报(自然科学)2003,24(4):1-3.[5] 江明星.幂零矩阵的若干性质[J].安徽机电学院学报,1999,14(2):77-79.[6] 姜海勤.幂零矩阵性质的一个应用[J].泰州职业技术学院学报,2004, 4(1): 54-57.[7] 樊正恩.幂零矩阵的若干注记[J].甘肃高师学报,2011,16(2):3-4.[8] 赵廷芳.幂零矩阵的性质[J].周口师专学报,1994,11(1):27-30.[9] 谷国梁.关于幂零矩阵性质的探讨[J].铜陵财经专科学校学报,2001,(4): 49-63.[10]吴险峰.n阶幂零矩阵的判别与构建[J].齐齐哈尔大学学报,2007,23(4): 72-75.The Properties and Applications of Nilpootent MatricesxxxxAbstract:This paper based on the definition of nilpotent matrix ,then summarizes the basic properties of nilpotent matrix and some main conclusion , and further debate its application: using the properties of nilpotent matrix for solving the inverse matrix of some special matrix ,and investigating the nilpotent matrix in the postgraduate entrance exam.Keywords: nilpootent matrices; nilpotent index; Jordan standard form;characteristic root。
幂零矩阵的性质及应用编号:***********xxxx学院2012届毕业生毕业论文(设计)题目:幂零矩阵的性质及应用完成人:xxx班级:2008- 01学制: 4 年专业:数学与应用数学指导教师:xxxx完成日期:2012-03-31目录摘要 (1)0引言 (1)1预备知识 (1)1.1幂零矩阵的相关概念 (1)1.2幂零矩阵的基本性质 (1)2 主要结论 (4)3 应用 (6)3.1幂零矩阵在矩阵运算中的应用 (6)3.2幂零矩阵与高等代数中其他知识相结合的应用 (8) 3.2.1幂零矩阵与线性方程组相结合应用 (9)3.2.2幂零矩阵的若尔当标准形的应用 (10)3.2.3幂零矩阵与幂零线性变换相结合的应用 (11)参考文献 (13)Abstract (14)第 1 页(共 14 页)幂零矩阵的性质及应用作者:xxxxx指导老师:xxx摘要:本文从幂零矩阵的定义出发,总结了幂零矩阵的基本性质及一些主要结论,而且对其应用作进一步的讨论:用幂零矩阵性质求一些特殊矩阵的逆及在历年考研真题中对幂零矩阵的考查.关键词:幂零矩阵;幂零指数;若尔当形;特征根0 引言在高等代数中,矩阵是研究问题的很重要的工具,在讨论矩阵的乘法运算时给出了幂零矩阵的定义,但对其性质研究很少.幂零矩阵作为特殊矩阵无论在矩阵的理论方面,还是在实际应用方面都有很重要的意义,而且在一些交叉学科如密码学中,都有广泛的应用.目前,国内很多学者对幂零矩阵的性质已有较深入的研究,本文在他们研究的基础上,进一步探讨幂零矩阵的性质.1 预备知识为了叙述的需要,我们首先引入幂零矩阵的有关概念.1.1幂零矩阵的有关概念定义1 设A 是n 阶矩阵,若存在一个自然数k ,使0k A =,则A 为幂零矩阵.定义2 设A 是幂零矩阵,满足0k A =的最小自然数k 称为A 的幂零指数.1.2幂零矩阵的基本性质在给出了幂零矩阵的相关概念之后,我们容易得到幂零矩阵的一些基本性质.性质1 若A 是幂零矩阵,则*,,,T mA A A A -都是幂零矩阵.第 2 页(共 14 页)性质2 A 为幂零矩阵的充要条件是A 的特征值全为0.在此基础上,我们还可以得到幂零矩阵的另一个充要条件. 推论1 A 为幂零矩阵的充要条件是k Z +?∈,0k trA =.证明必要性因为A 为幂零矩阵,所以A 的特征值全为0, 即120n λλλ==== ,所以k A 的特征值为120nk k k λλλ==== . 从而有120n k k k k trA λλλ=+=++ .充分性由已知,对k Z +?∈,120nk k k k trA λλλ=+=++ . ① 令12,,,t λλλ 为A 的不为零的特征值,且i λ互不相同,重数为i n (1,2,,i t = ).由①式,得方程组11212121122222233312120000t t t t t t t t t t t n n n n n n n n n n n n λλλλλλλλλλλλ+++=??+++=??+++=+++=?② 由于方程组②的系数行列式为121212122221212111tt t tt t t t t tt t B λλλλλλλλλλλλλλλλλλ==()121t i j j i t λλλλλ≤<≤=∏-又()1,2,,i i t λ= 互不相同且不为0,所以0B ≠,从而知方程②只有0解,即0i n =(1,2,,i t = ).因此A 的特征值全为0,即A 为幂零矩阵.推论2 若A 为幂零矩阵,则A 一定不可逆且有1,1A E E A +=-=. 证明由于A 为幂零矩阵,所以存在k Z +∈,使得0k A =,因此有 00k k A A A ==?=,所以A 一定不可逆.第 3 页(共 14 页)由性质2,得A 的特征值120n λλλ==== ,所以A E +,E A -的特征值分别是12'''011n λλλ=+==== , 12"""101n λλλ=-==== ,且有12'''11n n A E λλλ+=== ,12"""11n n E A λλλ-=== .即1,1A E E A +=-=.推论3 若A E +为幂零矩阵,则A 非退化.证明令12,,,n λλλ 为A 的特征值.若A 退化,则有120n A λλλ== ,所以至少存在00i λ=为A 的特征值,从而有0110i λ+=≠为A E +的一特征值,这与A E +为幂零矩阵相矛盾,得证A 为非退化.对于幂零指数相同的幂零矩阵,有一些比较重要的性质. 性质3 所有的n 阶1n -次幂零矩阵都相似.证明令A 为n 阶1n -次幂零矩阵,即10n A -=,()001k k n A ≠≤<-,因此A 的最小多项式1()()n A n m d λλλ-==;又A 是幂零矩阵,所以A 的特征值全为0,因此A 的特征多项式为()()n n f E A D λλλλ=-==,又11()()()n n n n D d D λλλλ--==, 所以1()n D λλ-=;又第 4 页(共 14 页)12()()()()()n n n f E A d d d D λλλλλλλ=-=== ,从而有1()n d λλ-=,221()()()1n d d d λλλ-==== ,所以所有n 阶1n -次幂零矩阵具有相同的不变因子为1,,,,,111n λλ- .所以所有n 阶1n -次幂零矩阵都相似.利用此法也可以得到:推论4 所有n 阶n 次幂零矩阵都相似.注但是当幂零矩阵的幂零指数2k n ≤-,相同幂零指数的幂零矩阵却不相似.性质4 设A 为非零幂零矩阵,且k 是A 的幂零指数,则E ,A ,2A , , 1k A -线性无关.证明利用反证法.假设12,,,,k A E A A - 线性相关,则一定存在一组不全为0的0c ,1c ,, 1k c -,使2101210k k E A c c c c A A --++++= , ①两端右乘1k A -,得100k c A -=,而10k A -≠,因此00c =.再对①式两端右乘2k A -,可得10c =.同理可得2310k c c c -==== .所以0110k c c c -==== ,得出矛盾,所以假设错误.即证得21,,,,k E A A A - 线性无关.2 主要结论我们在幂零矩阵的定义以及基本性质的基础上,进一步探讨幂零矩阵,得到一些重要结论,而且这些结论应用的也比较广泛.结论1 设A 为幂零矩阵,且k 是A 的幂零指数,则(1)E A -可逆,且()121k E A E A A A ---=++++ .(2)()()11212311111k k k mE A E A A A m m m m---+-+=-++ .(0)m ≠第 5 页(共 14 页)证明(1)由于A 为幂零矩阵,所以0k A =,从而k k k E E A E A =-=-()21()k E A E A A A -=-++++ ,即()121k E A E A A A ---=++++ . (2)对任意0m ≠,121231111()()(1)k k k mE A E A A A m m m m--+-+++- 121211111(1)k k k E A A A A m m m m---=-++++- 212121111(1)(1)k k k k k k A A A m m m -----+++--E = 所以()1121231111()k k k E A mE A A A m m m m---=-+++-+ .结论2 若A 为幂零矩阵,则A 的若尔当标准形J 的若尔当块为幂零若尔当块,且J 的主对角线上的元素为0.证明 A 为幂零矩阵,由性质2知,A 的特征值全为0;又在复数域上,存在可逆矩阵T ,使得121S J J J T A T J -== 其中11i ii i i J n n λλ?= 1,2,,i t = ,第 6 页(共 14 页)则(1,2,,)i i t λ= 为J 的特征值;又A 与J 相似,所以A 与J 有相同的特征值,所以0i λ= (1,2,,)i t = ,即J 的主对角线上的元素全为0;所以有01010i J =?? ,则i J 为幂零矩阵,其幂零指数为i n (1,2,,)i t = ,所以12,,,S J J J 为幂零矩阵.所以A 的若尔当标准形J 的若尔当块12,,,S J J J 为幂零若尔当块,且J 的主对角线上的元素为0.由此结论可以得到:推论5 n 阶幂零矩阵的幂零指数小于等于n ,且幂零指数等于其若尔当形矩阵中阶数最高的若尔当块的阶数.3 应用3.1 幂零矩阵在矩阵运算中的应用——求一些特殊矩阵的逆在矩阵的运算中,求矩阵的逆一般是比较麻烦的,对于一些特殊的矩阵可以利用幂零矩阵的性质来化简.引理1 任一n 阶方阵A 都可写成的A D N =+形式,其中D 是一个与对角阵相似的n 阶方阵,N 是一个幂零矩阵,而且DN ND =.证明因为在复数域上,存在可逆矩阵T ,使得121S J J A T T J -=?????① 其中11i i ii iJ n n λλ=1,2,,i t =第 7 页(共 14 页)于是00101i i i i i i J N D λλλ=+=+?????(1,2,,)i t = . ② 其中i i i D λλ=?? 为对角阵,00 101i N ??=为幂零矩阵.因为n i O N =,将②式带入①式得111s s N D A T TN D -+??=+??1111s s ND T T T T N D --=+D N =+③其中11s D D T T D -??=??相似于对角阵,且1111n n n s s N N T T O N N T T N N --??=?==,即N 为幂零矩阵,于是111s s N D DN T T N D -??=??,④ 类似的,有第 8 页(共 14 页)111s s N D ND T TN D -=??. ⑤ 但()i i i i i i E N N N D λλ==,()i i i i i i E N N N D λλ==.所以i i i i N N D D = ,(1,2,,)i s = ⑥由④⑤⑥,即证 DN ND =.由引理1,对于一些可表示为幂零矩阵与单位矩阵的和的矩阵,则可利用结论1来求它的逆;而主对角元素完全相同的三角矩阵可表示为数量矩阵与幂零矩阵的和,也可以借助结论1可求出它的逆;对于一些可表示为单位矩阵与若尔当矩阵幂的和的矩阵,借助结论1也可求出它的逆.下面通过例子来说明.例1 设11111011110011100001A =,求1A -. 解记n J 为n 阶若尔当矩阵,则0n n J =,而21n n n n A E J J J -=++++ ,由结论1有1121()n n n n n E E J A J J J ---==-++++ 11000011000001100001--=??-?? . 3.2 幂零矩阵与高等代数中其他知识相结合的应用在历年研究生入学考试中,对幂零矩阵的考查综合性较强,能力要求较高,是个难点.下面列举几道典型的对幂零矩阵的考查方法,以说明幂零矩阵和其他数学知识之间的灵活运用.第 9 页(共 14 页)3.2.1幂零矩阵与线性方程组相结合应用下面看一下幂零矩阵与线性方程组相结合的考查方法.例2 (中山大学) A ,B ,C 为n 阶方阵,且AC CA =,BC CB =, C AB BA =-,证:存在自然数k n ≤,使得0k C =.分析本题即证C 为幂零矩阵,只需证C 的特征值全为0.而 C AB BA =-,容易联想需要用C 的迹来解题,而采用反证法则恰到好处.证明只需证C 的特征值12,,,n λλλ 全为0即可.事实上,()()0tr C tr AB BA =-=,即有10ni i λ==∑;又2()()()AB BA CAB CBA AC B B AC C C =-=-=-,所以()2210ni tr C i λ===∑; 同理可得()3310ni i tr C λ===∑,()10ns s i i tr C λ===∑;假设C 存在非0的特征值,不妨设合并各相同的非0特征值后,得 112222211221122000s s s s s s s s s k k k k k k k k k λλλλλλλλλ=?+++?+=+++=++?,(12,,,s λλλ 各不相同). 方程组有非0解,故系数行列式:第 10 页(共 14 页)1222212120s ss s s s λλλλλλλλλ=(i λ各不相同),但是()1222212121120sss i j j i ss s s s λλλλλλλλλλλλλλ≤<≤=≠∏-, 得出矛盾,所以假设错误,即有C 不存在非零的特征值,C 的特征值全为0,所以存在自然数k n ≤,使得0k C =.此题利用幂零矩阵的性质构造齐次线性方程组,灵活运用数学知识进行解题,与推论1的证明有相似之处,体现了幂零矩阵在高等代数中的重要地位.3.2.2 幂零矩阵的若尔当标准形的应用幂零矩阵的若尔当标准形在历年真题中也较常用到.例3(上海交通大学) A ,B 为n 阶方阵,B 为幂零矩阵,AB BA =, 则有A B A +=.分析在复数域上,每个n 级矩阵都与一个若尔当形矩阵相似, 幂零矩阵的若尔当标准形的对角线上的元素为0,由此结论此题即得证.证明由题有,在复数域上,存在可逆矩阵,T 使得121*n AT T λλλ-=?????,121*n BT T μμμ-= . 又B 为幂零矩阵,所以B 的特征值全为0,即100*0BT T -=,第 11 页(共 14 页)()121111*n A B T AT BT T T T T T λλλ----+=+=?????, 所以()12111*nA B T A B T T T T T λλλ---+=+= .又因为T 可逆,所以0T ≠,1212*n nA B λλλλλλ+== ,因为121*n AT T λλλ-=因此12,,,n λλλ 为A 的特征值,所以12n A λλλ= , 从而得证21n A A B λλλ=+= .3.2.3 幂零矩阵与幂零线性变换相结合的应用幂零线性变换在任一组基下的矩阵为幂零矩阵,研究幂零矩阵的特性对研究幂零线性变换是很有帮助的.例4(西南大学)设V 为数域F 上的n 阶方阵构成的线性空间, A 为F 上一个固定的n 阶方阵,定义()T B AB BA =-,其中B 为V 中任一向量,证明(1)T 为线性变换;(2)若A 为幂零矩阵,则T 为幂零线性变换.第 12 页(共 14 页)分析(1)利用线性变换的定义即可得证.(2) 由()T B AB BA =-,有下述结论:A 的特征值之差都是T 的特征值.以下要证此结论.证明(1)任取,B C V ∈,k F ?∈,则有:()()()()()T B C A B C B C A AB BA AC CA T B T C +=+-+=-+-=+,()()()()T kB A kB kB A kAB kBA kT B =-=-=,所以T 为线性变换.(2)先做如下断言:()T B AB BA =-?A 的特征值之差都是T 的特征值.事实上,()n y F M ?∈,取()n F M 的一组基ij E (,1,2,,i j n = ),设A 的若尔当标准形为1*s J λλ=??, 则存在可逆矩阵()n P F M ∈,使得11*s AP J P λλ-==??, 所以1A PJ P -=.又P 可逆,所以1ij P E P -也是()n F M 的一组基. 又111()()()ij ij ij T A A PE P PE P PE P ---=-1111()()()()ij ij PJ PJ P PE P PE P P ----=-1()ij ij J J P E E P -=-10*0i j P P λλ-=-1()()ij i j PE P λλ-=-第 13 页(共 14 页)所以T 在基11111111211,,,,,,,n n nn PE P PE P PE P PE P PE P ----- 下的矩阵为121212110*00n n n n n λλλλλλλλλλλλ- ------ 所以A 的特征值之差都是T 的特征值.断言成立.因为A 为幂零矩阵,所以A 的特征值0i λ= ,所以T 的特征值全为0,从而T 为幂零线性变换.参考文献[1] 北京大学数学系几何与代数教研室前代数小组.高等代数[M].北京:高等教育出版社,2003.[2] 杨子胥.高等代数习题解(下册)[M].济南:山东科技出版社,1982:836-866.[3] 邹本强.幂零矩阵的性质[J].science information,2007,(12):150-155.[4] 韩道兰,罗雁,黄宗文.幂零矩阵的性质及应用[J].玉林师范学院学报(自然科学)2003,24(4):1-3.[5] 江明星.幂零矩阵的若干性质[J].安徽机电学院学报,1999,14(2):77-79.[6] 姜海勤.幂零矩阵性质的一个应用[J].泰州职业技术学院学报,2004, 4(1):54-57.[7] 樊正恩.幂零矩阵的若干注记[J].甘肃高师学报,2011,16(2):3-4.[8] 赵廷芳.幂零矩阵的性质[J].周口师专学报,1994,11(1):27-30.[9] 谷国梁.关于幂零矩阵性质的探讨[J].铜陵财经专科学校学报,2001,(4):49-63.[10]吴险峰.n 阶幂零矩阵的判别与构建[J].齐齐哈尔大学学报,2007,23(4):72-75.The Properties and Applications of Nilpootent MatricesxxxxAbstract:This paper based on the definition of nilpotent matrix ,then summarizes the basic properties of nilpotent matrix and some main conclusion , and further debate its application: using the properties of nilpotent matrix for solving the inverse matrix of some special matrix ,and investigating the nilpotent matrix in the postgraduate entrance exam.Keywords: nilpootent matrices; nilpotent index; Jordan standard form;characteristic root第14 页(共14页)。
幂等矩阵的性质及应用
任芳国;和嘉琪
【期刊名称】《数学学习与研究》
【年(卷),期】2022()22
【摘要】幂等矩阵是高等(线性)代数中的一类重要的特殊矩阵,它具有良好的性质,
在高等(线性)代数中占有非常重要的地位.本文利用矩阵的值域、矩阵的秩、矩阵相似关系及线性空间理论,讨论了幂等矩阵基本性质及等价刻画,给出了幂等矩阵的和、差、积仍为幂等矩阵的充分必要条件,旨在促进学生提高学习高等(线性)代数的能力.【总页数】3页(P143-145)
【作者】任芳国;和嘉琪
【作者单位】陕西师范大学数学与统计学院
【正文语种】中文
【中图分类】O15
【相关文献】
1.幂等矩阵与幂等变换性质的探讨
2.幂等矩阵的性质及应用
3.数量三幂等矩阵与广义二次矩阵的相关性质
4.幂等矩阵的性质及其应用
5.实幂等矩阵的和矩阵性质
因版权原因,仅展示原文概要,查看原文内容请购买。
矩阵的幂运算及其应用引言:矩阵是线性代数中重要的概念之一,它在各个领域具有广泛的应用。
本文将详细介绍矩阵的幂运算,并探讨其在实际问题中的应用。
第一部分:矩阵的基本概念和表示方法1.1 矩阵的定义在数学中,矩阵是由m行n列元素按特定顺序排列而成的一个矩形数组。
其中每个元素可以是实数、复数或其他可代数运算的对象。
1.2 矩阵的形式化表示通常,我们用大写字母A、B、C等来表示矩阵。
例如,一个3x4的矩阵A可以表示为:A = [a11 a12 a13 a14][a21 a22 a23 a24][a31 a32 a33 a34]其中aij表示位于第i行第j列的元素。
1.3 矩阵的元素和维度矩阵的元素即矩阵中的各个值,根据位置可以用aij来表示。
矩阵的维度指的是矩阵的行数m和列数n,也可以用m x n来表示。
第二部分:矩阵的乘法规则2.1 矩阵乘法的定义矩阵乘法是指将两个矩阵相乘得到一个新的矩阵的运算。
两个矩阵相乘的前提是第一个矩阵的列数与第二个矩阵的行数相等。
2.2 矩阵乘法的性质矩阵乘法具有结合律和分配律,但不满足交换律。
即对于任意矩阵A、B、C以及标量k,满足以下性质:-结合律:(AB)C = A(BC)-分配律:A(B + C) = AB + AC 和(A + B)C = AC + BC-乘法单位元:存在单位矩阵I,使得AI = IA = A2.3 矩阵乘法的计算示例假设有两个矩阵A和B,它们的维度分别为m x p和p x n。
那么这两个矩阵的乘积C的维度为m x n,其中C的每个元素由以下方式计算得到:cij = a1i * b1j + a2i * b2j + ... + api * bpj第三部分:矩阵的幂运算3.1 幂运算的定义对于一个n阶方阵A,其m次幂表示将该矩阵连续乘以自身m次的结果。
即A^m = A * A * ... * A (共m个A)。
3.2 幂运算的性质矩阵的幂运算具有以下性质:-幂运算的零次方:A^0 = I,其中I为单位矩阵。
编号:***********xxxx学院2012届毕业生毕业论文(设计)题目:幂零矩阵的性质及应用完成人:xxx班级:2008- 01学制: 4 年专业:数学与应用数学指导教师:xxxx完成日期:2012-03-31目录摘要 (1)0引言 (1)1预备知识 (1)1.1幂零矩阵的相关概念 (1)1.2幂零矩阵的基本性质 (1)2 主要结论 (4)3 应用 (6)3.1幂零矩阵在矩阵运算中的应用 (6)3.2幂零矩阵与高等代数中其他知识相结合的应用 (8)3.2.1幂零矩阵与线性方程组相结合应用 (9)3.2.2幂零矩阵的若尔当标准形的应用 (10)3.2.3幂零矩阵与幂零线性变换相结合的应用 (11)参考文献 (13)Abstract (14)幂零矩阵的性质及应用作者:xxxxx指导老师:xxx摘要:本文从幂零矩阵的定义出发,总结了幂零矩阵的基本性质及一些主要结论,而且对其应用作进一步的讨论:用幂零矩阵性质求一些特殊矩阵的逆及在历年考研真题中对幂零矩阵的考查.关键词:幂零矩阵;幂零指数;若尔当形;特征根0引言在高等代数中,矩阵是研究问题的很重要的工具,在讨论矩阵的乘法运算时给出了幂零矩阵的定义,但对其性质研究很少.幂零矩阵作为特殊矩阵无论在矩阵的理论方面,还是在实际应用方面都有很重要的意义,而且在一些交叉学科如密码学中,都有广泛的应用.目前,国内很多学者对幂零矩阵的性质已有较深入的研究,本文在他们研究的基础上,进一步探讨幂零矩阵的性质.1 预备知识为了叙述的需要,我们首先引入幂零矩阵的有关概念.1.1幂零矩阵的有关概念定义1设A是n阶矩阵,若存在一个自然数k,使0kA=,则A为幂零矩阵.定义2设A是幂零矩阵,满足0kA=的最小自然数k称为A的幂零指数.1.2幂零矩阵的基本性质在给出了幂零矩阵的相关概念之后,我们容易得到幂零矩阵的一些基本性质.第 1 页(共14页)第 2 页(共 14 页)性质1 若A 是幂零矩阵,则*,,,T mA A A A -都是幂零矩阵. 性质2 A 为幂零矩阵的充要条件是A 的特征值全为0. 在此基础上,我们还可以得到幂零矩阵的另一个充要条件. 推论1 A 为幂零矩阵的充要条件是k Z +∀∈,0k trA =. 证明 必要性 因为A 为幂零矩阵,所以A 的特征值全为0, 即120n λλλ====,所以kA 的特征值为120n k k k λλλ====.从而有120n k k k ktrA λλλ=+=++.充分性 由已知,对k Z +∀∈,120nk k k k trA λλλ=+=++. ①令12,,,t λλλ为A 的不为零的特征值,且i λ互不相同,重数为i n (1,2,,i t =). 由①式,得方程组112121211222222333121200t t t t t t t t t t t n n n n n n n n n n n n λλλλλλλλλλλλ+++=⎧⎪+++=⎪⎪+++=⎨⎪⎪⎪+++=⎩ ② 由于方程组②的系数行列式为121212122221212111ttttt tt tt tttB λλλλλλλλλλλλλλλλλλ==()121t i j j i tλλλλλ≤<≤=∏- 又()1,2,,i i t λ=互不相同且不为0,所以0B ≠,从而知方程②只有0解,即0i n =(1,2,,i t =).因此A 的特征值全为0,即A 为幂零矩阵.推论2 若A 为幂零矩阵,则A 一定不可逆且有1,1A E E A +=-=. 证明 由于A 为幂零矩阵,所以存在k Z +∈,使得0k A =,因此有00kk A A A ==⇒=,所以A 一定不可逆.第 3 页(共 14 页)由性质2,得A 的特征值120n λλλ====,所以A E +,E A -的特征值分别是12'''011n λλλ=+====, 12"""101n λλλ=-====,且有12'''11n n A E λλλ+===,12"""11n n E A λλλ-===.即1,1A E E A +=-=.推论3 若A E +为幂零矩阵,则A 非退化. 证明 令12,,,n λλλ为A 的特征值.若A 退化,则有120n A λλλ==,所以至少存在00i λ=为A 的特征值,从而有0110i λ+=≠为A E +的一特征值,这与A E +为幂零矩阵相矛盾,得证A 为非退化.对于幂零指数相同的幂零矩阵,有一些比较重要的性质. 性质3 所有的n 阶1n -次幂零矩阵都相似.证明 令A 为n 阶1n -次幂零矩阵,即10n A-=,()001k k n A ≠≤<-,因此A 的最小多项式1()()n A n m d λλλ-==;又A 是幂零矩阵,所以A 的特征值全为0,因此A 的特征多项式为()()n n f E A D λλλλ=-==,又11()()()n n n n D d D λλλλ--==, 所以1()n D λλ-=;又第 4 页(共 14 页)12()()()()()n n n f E A d d d D λλλλλλλ=-===,从而有1()n d λλ-=,221()()()1n d d d λλλ-====,所以所有n 阶1n -次幂零矩阵具有相同的不变因子为1,,,,,111n λλ-.所以所有n 阶1n -次幂零矩阵都相似. 利用此法也可以得到:推论4 所有n 阶n 次幂零矩阵都相似.注 但是当幂零矩阵的幂零指数2k n ≤-,相同幂零指数的幂零矩阵却不相似.性质4 设A 为非零幂零矩阵,且k 是A 的幂零指数,则E ,A ,2A ,,1k A-线性无关.证明 利用反证法.假设12,,,,k A E A A -线性相关,则一定存在一组不全为0的0c ,1c ,,1k c -,使2101210k k E A c c c c A A --++++=, ①两端右乘1k A -,得100k c A -=,而10k A -≠,因此00c =.再对①式两端右乘2k A-,可得10c =.同理可得2310k c c c -====.所以0110k c c c -====,得出矛盾,所以假设错误.即证得21,,,,k E A A A -线性无关.2 主要结论我们在幂零矩阵的定义以及基本性质的基础上,进一步探讨幂零 矩阵,得到一些重要结论,而且这些结论应用的也比较广泛.结论1 设A 为幂零矩阵,且k 是A 的幂零指数,则 (1)E A -可逆,且()121k E A E A A A ---=++++ . (2)()()11212311111k k kmE A E A A Am mm m---+-+=-++.(0)m ≠第 5 页(共 14 页)证明 (1) 由于A 为幂零矩阵,所以0k A =,从而k k k E E A E A =-=-()21()k E A E A A A -=-++++,即()121k E A E A A A ---=++++.(2)对任意0m ≠,121231111()()(1)k k kmE A E A A A m m mm--+-+++-121211111(1)k k k E A A A Am m m m---=-++++- 212121111(1)(1)k k k k k k AAA mmm-----+++--E =所以()1121231111()k k kE A mE A A Am m mm---=-+++-+ .结论2 若A 为幂零矩阵,则A 的若尔当标准形J 的若尔当块为 幂零若尔当块,且J 的主对角线上的元素为0.证明 A 为幂零矩阵,由性质2知,A 的特征值全为0; 又在复数域上,存在可逆矩阵T ,使得121S J J J T A TJ -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦其中11iiiiiJ nn λλ⨯=⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 1,2,,i t =,第 6 页(共 14 页)则(1,2,,)i i t λ=为J 的特征值;又A 与J 相似,所以A 与J 有相同的特 征值,所以0i λ= (1,2,,)i t =,即J 的主对角线上的元素全为0;所以有01010i J ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,则i J 为幂零矩阵,其幂零指数为i n (1,2,,)i t =,所以12,,,S J J J 为幂零矩阵.所以A 的若尔当标准形J 的若尔当块12,,,S J J J 为幂零若尔当块,且J 的主对角线上的元素为0. 由此结论可以得到:推论5 n 阶幂零矩阵的幂零指数小于等于n ,且幂零指数等于其 若尔当形矩阵中阶数最高的若尔当块的阶数.3 应用3.1 幂零矩阵在矩阵运算中的应用——求一些特殊矩阵的逆在矩阵的运算中,求矩阵的逆一般是比较麻烦的,对于一些特殊的矩阵可以利用幂零矩阵的性质来化简.引理1 任一n 阶方阵A 都可写成的A D N =+形式,其中D 是一个与对角阵相似的n 阶方阵,N 是一个幂零矩阵,而且DN ND =.证明 因为在复数域上,存在可逆矩阵T ,使得121S J J A T T J -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦① 其中11iiiiiJ n nλλ=⨯⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦1,2,,i t =第 7 页(共 14 页)于是00101i ii i i i J N D λλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1,2,,)i t =. ②其中ii i D λλ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦为对角阵,0101i N ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦为幂零矩阵. 因为n i O N =,将②式带入①式得111s s N D A T TN D -+⎡⎤⎢⎥=⎢⎥⎢⎥+⎣⎦1111s s N D T T T T N D --⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦D N =+ ③其中11s D D T T D -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相似于对角阵,且 1111nn n s s N N T T O N N T T N N --⎡⎤⎡⎤⎢⎥⎢⎥=⇒==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 即N 为幂零矩阵,于是111s s N D DN T T N D -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, ④ 类似的,有第 8 页(共 14 页)111s s N D ND T T N D -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦. ⑤ 但()i i i i i i E N N N D λλ==, ()i i i i i i E N N N D λλ==.所以i i i i N N D D = ,(1,2,,)i s = ⑥由④⑤⑥,即证 DN ND =.由引理1,对于一些可表示为幂零矩阵与单位矩阵的和的矩阵,则可利用结论1来求它的逆;而主对角元素完全相同的三角矩阵可表示为数量矩阵与幂零矩阵的和,也可以借助结论1可求出它的逆;对于一些可表示为单位矩阵与若尔当矩阵幂的和的矩阵,借助结论1也可求出它的逆.下面通过例子来说明.例1 设11111011110011101A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,求1A -. 解 记n J 为n 阶若尔当矩阵,则0nn J =,而21n n n n A E J J J -=++++,由结论1有1121()n n n nn E E J A J J J ---==-++++1100001100000110001-⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎣⎦. 3.2 幂零矩阵与高等代数中其他知识相结合的应用在历年研究生入学考试中,对幂零矩阵的考查综合性较强,能力要求较高,是个难点.下面列举几道典型的对幂零矩阵的考查方法,以说明幂零矩阵和其他数学知识之间的灵活运用.第 9 页(共 14 页)3.2.1幂零矩阵与线性方程组相结合应用下面看一下幂零矩阵与线性方程组相结合的考查方法. 例2 (中山大学) A ,B ,C 为n 阶方阵,且AC CA =,BC CB =,C AB BA =-,证:存在自然数k n ≤,使得0k C =.分析 本题即证C 为幂零矩阵,只需证C 的特征值全为0.而C AB BA =-,容易联想需要用C 的迹来解题,而采用反证法则恰到好处.证明 只需证C 的特征值12,,,n λλλ全为0即可. 事实上,()()0tr C tr AB BA =-=,即有10ni i λ==∑;又2()()()AB BA CAB CBA AC B B AC C C =-=-=-,所以()2210ni tr C i λ===∑;同理可得()3310nii trC λ===∑,()10nss ii trC λ===∑;假设C 存在非0的特征值,不妨设合并各相同的非0特征值后,得11222221122112200s s s s s s s s s k k k k k k k k k λλλλλλλλλ=⎧+++⎪+=++⎪⎨⎪⎪+=++⎩,(12,,,s λλλ各不相同).方程组有非0解,故系数行列式:第 10 页(共 14 页)1222212120ss s s s sλλλλλλλλλ=(i λ各不相同),但是()1222212121120sss i j j i ss s s sλλλλλλλλλλλλλλ≤<≤=≠∏-, 得出矛盾,所以假设错误,即有C 不存在非零的特征值,C 的特征值全为0,所以存在自然数k n ≤,使得0k C =.此题利用幂零矩阵的性质构造齐次线性方程组,灵活运用数学知识进行解题,与推论1的证明有相似之处,体现了幂零矩阵在高等代数中的重要地位.3.2.2 幂零矩阵的若尔当标准形的应用幂零矩阵的若尔当标准形在历年真题中也较常用到.例3(上海交通大学) A ,B 为n 阶方阵,B 为幂零矩阵,AB BA =,则有A B A +=.分析 在复数域上,每个n 级矩阵都与一个若尔当形矩阵相似, 幂零矩阵的若尔当标准形的对角线上的元素为0,由此结论此题即得证.证明 由题有,在复数域上,存在可逆矩阵,T 使得121*n AT T λλλ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,121*n BT T μμμ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦. 又B 为幂零矩阵,所以B 的特征值全为0,即100*0BT T -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,第 11 页(共 14 页)()121111*n A B T AT BT T T T T T λλλ----⎡⎤⎢⎥⎢⎥+=+=⎢⎥⎢⎥⎣⎦, 所以()12111*nA B TA B T T TT T λλλ---+=+=.又因为T 可逆,所以0T ≠,1212*n nA B λλλλλλ+==,因为121*n AT Tλλλ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦因此12,,,n λλλ为A 的特征值,所以12n A λλλ=,从而得证21n A A B λλλ=+=.3.2.3 幂零矩阵与幂零线性变换相结合的应用幂零线性变换在任一组基下的矩阵为幂零矩阵,研究幂零矩阵的 特性对研究幂零线性变换是很有帮助的.例4(西南大学) 设V 为数域F 上的n 阶方阵构成的线性空间,A 为F 上一个固定的n 阶方阵,定义()TB AB BA =-,其中B 为V 中任一向量,证明(1)T 为线性变换;(2)若A 为幂零矩阵,则T 为幂零线性变换.第 12 页(共 14 页)分析 (1)利用线性变换的定义即可得证.(2) 由()T B AB BA =-,有下述结论:A 的特征值之差都是T 的特征值.以下要证此结论.证明 (1)任取,B C V ∈,k F ∀∈,则有:()()()()()T B C A B C B C A AB BA AC CA T B T C +=+-+=-+-=+,()()()()T kB A kB kB A kAB kBA kT B =-=-=,所以T 为线性变换.(2)先做如下断言:()T B AB BA =-⇒A 的特征值之差都是T 的特 征值.事实上,()n y F M ∀∈,取()n F M 的一组基ij E (,1,2,,i j n =),设A 的若尔当标准形为1*s J λλ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 则存在可逆矩阵()n P F M ∈,使得11*s AP J P λλ-⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦, 所以1A PJ P -=.又P 可逆,所以1ij P E P -也是()n F M 的一组基. 又111()()()ij ij ij T A A PE P PE P PE P ---=- 1111()()()()ij ij PJ PJ P PE P PE P P ----=- 1()ij ij J J P E E P -=-10*0i jP P λλ-⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦1()()ij i j PE P λλ-=-第 13 页(共 14 页)所以T 在基11111111211,,,,,,,n n nn PE P PE P PE P PE P PE P -----下的矩阵为121212110*0nnn n n λλλλλλλλλλλλ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦------所以A 的特征值之差都是T 的特征值.断言成立.因为A 为幂零矩阵,所以A 的特征值0i λ= ,所以T 的特征值全为0,从而T 为幂零线性变换.参 考 文 献[1] 北京大学数学系几何与代数教研室前代数小组.高等代数[M].北京:高等教育出版社,2003.[2] 杨子胥.高等代数习题解(下册)[M].济南:山东科技出版社,1982:836-866. [3] 邹本强.幂零矩阵的性质[J].science information,2007,(12):150-155. [4] 韩道兰,罗雁,黄宗文.幂零矩阵的性质及应用[J].玉林师范学院学报(自然科学)2003,24(4):1-3.[5] 江明星.幂零矩阵的若干性质[J].安徽机电学院学报,1999,14(2):77-79. [6] 姜海勤.幂零矩阵性质的一个应用[J].泰州职业技术学院学报,2004, 4(1):54-57.[7] 樊正恩.幂零矩阵的若干注记[J].甘肃高师学报,2011,16(2):3-4. [8] 赵廷芳.幂零矩阵的性质[J].周口师专学报,1994,11(1):27-30.[9] 谷国梁.关于幂零矩阵性质的探讨[J].铜陵财经专科学校学报,2001,(4):49-63.[10]吴险峰.n 阶幂零矩阵的判别与构建[J].齐齐哈尔大学学报,2007,23(4):72-75.The Properties and Applications of Nilpootent MatricesxxxxAbstract:This paper based on the definition of nilpotent matrix ,then summarizes the basic properties of nilpotent matrix and some main conclusion , and further debate its application: using the properties of nilpotent matrix for solving the inverse matrix of some special matrix ,and investigating the nilpotent matrix in the postgraduate entrance exam.Keywords: nilpootent matrices; nilpotent index; Jordan standard form;characteristic root第14 页(共14页)。
幂零矩阵的性质
高瑞;魏健美
【期刊名称】《沧州师范学院学报》
【年(卷),期】2016(032)001
【摘要】主要研究幂零矩阵的性质.为方便研究,先引进了一些定义和引理,如弱伴随矩阵、直积、k和、收敛矩阵等.在已有性质的基础上对幂零矩阵的性质给予了推广,并且利用引进的定义对幂零矩阵的一些新的性质进行了研究.
【总页数】3页(P24-26)
【作者】高瑞;魏健美
【作者单位】沧州师范学院数学与统计学院,河北沧州 061001;河北师范大学数学与信息科学学院,河北石家庄 050024
【正文语种】中文
【中图分类】O151.2
【相关文献】
1.幂零矩阵的性质及应用 [J], 俱鹏岳
2.幂零矩阵的一个性质 [J], 胡付高;杨娇
3.幂零矩阵的性质和应用 [J], 陈飞翔
4.幂零矩阵性质的再探讨 [J], 高瑞;王蝶
5.浅议幂零矩阵的性质及其应用 [J], 李麟;王艳辉
因版权原因,仅展示原文概要,查看原文内容请购买。
幂零矩阵的质及应用嘉应学院本科毕业论文(设计)(2015届)题目:幂零矩阵的性质及应用姓名:李丹学号:113010022学院:数学学院专业:数学与应用数学指导老师:刘光明老师申请学位:学士学位嘉应学院教务处制摘要在高等代数中矩阵是研究问题的重要工具,在讨论矩阵的乘法运算时给出了幂零矩阵的定义。
我们在研究矩阵及学习有关数学知识时,经常要讨论其性质。
幂零矩阵作为特殊的矩阵,无论在矩阵理论方面,还是在实际应用方面都有着很重要的意义。
幂零矩阵具有很多良好的性质,文章从矩阵的定义出发得到其一些简单的性质,然后从各个角度更深入挖掘其性质。
由给出的论点进行论证,讨论了幂零矩阵的若干性质,还通过例子说明其应用性,这对于解决若干矩阵问题大有益处。
关键词:幂零矩阵;特征值;若尔当形AbstractMatrix in higher algebra is an important tool to research problem, When discussing matrix multiplication of the definition of nilpotent matrix is given. In the study of matrix and learning about mathematics knowledge, often to discuss its properties. As a special matrix, nilpotent matrix in terms of matrix theory, or in the actual application has very important significance. The properties of nilpotent matrix has a lot of good, The article starting from the definition of matrix to get some simple properties, And then from different angles to dig deeper into its nature more. By the given arguments, Discussed some properties of nilpotent matrix, but also through the example is given to show its application, this is a great benefit to solve the problem of several matrix.Key words:Nilpotent matrix;eigenvalue;Jordan form1. 引言随着科学技术的迅速发展,古典的线性代数知识已不能满足现代科技的需要,矩阵的理论和方法已成为现代科技领域必不可少的工具。
诸如数值分析、微分方程、力学、网络等学科领域都与矩阵理论有着密切的联系,甚至在经济管理、金融、保险、社会科学的领域,矩阵理论也有着十分重要的作用,获得了许多重要的研究成果。
近年来幂零矩阵得到了进一步发展,在1964年Give 证明了n 阶矩阵A 是幂零矩阵的充要条件是0 k A ,当然还有其他衍生出来的几个充要条件在下文中给出。
在我们学到矩阵的乘法运算时给出了幂零矩阵的定义,但对它的介绍甚少,因此我们将加强这方面的研究与总结。
目前,国内很多学者对幂零矩阵的性质已有较深入的研究,本文我将从在给出的有关幂零矩阵的知识上,得出些其简单性质。
然后再通过教材知识和文摘的借鉴,进一步归纳总结幂零矩阵的一些性质,有其自身所特有的特征,同时与若当儿标准形,对角形等方面的联系,还有其性质的多方面具体应用,更加的体现 了幂零矩阵的优越性。
2. 幂零矩阵的相关概念及简单性质为了叙述的需要,我们首先引入幂零矩阵的相关概念.2.1 幂零矩阵的相关概念定义2.1.1令A 为n 阶矩阵,若存在正整数k ,使0=k A ,则A 称幂零矩阵。
也称为k 阶幂零矩阵。
如A 为2阶幂零阵,则02=A 。
定义2.1.2若A 为幂零矩阵,满足0=k A 的最小正整数称为A 的幂零指数。
显然,n 阶零矩阵是特殊的幂零矩阵且其幂零指数为1。
定义2.1.3设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=nn n n a a a a A 1111,称⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡='nn n n a a a a A 1111为A 的转置; 称⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=*nn n n A A A A A 1111为A的伴随矩阵 其中ij A ()n j i ,,2,1, =为A 中元素ij a 的代数余子式。
定义2.1.4 设A 为一个n 阶方阵,A 的主对角线上所有元素的和称为A 的迹,记为()A tr 。
显然A 的全体特征值的和等于()A tr .其中()0=-=A E f λλ称为矩阵A 的特征多项式,满足()0=-=A E f λλ的λ的值称为矩阵A 的特征值。
定义2.1.5 形为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=001010λλλJ 阶数为()s i n i ,2,1= 的矩阵称为若尔当块,其中λ为复数。
当00=λ时(若尔当矩阵的特例)称J 为幂零若尔当矩阵。
定义2.1.6 形为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=S J J J J 0021, 其中,由⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=i i i iJ λλλ0101阶数为()s i n i ,2,1=的若干个若尔当块组成的准对角称为若尔当形矩阵.定义2.1.7 设A 为n 阶方阵,A 的首项系数为1的最低次的化零多项式称为A 的最小多项式。
2.2 关于幂零矩阵的一些简单性质由上述所描述的有关幂零矩阵的定义,可以得出一些幂零矩阵的几条简单性质。
性质2.2.1 幂零矩阵都不可逆。
证明:设A 是任一n 阶幂零矩阵,则+Z ∈∃k ,使0=k A ,假设A 可逆,则0≠A ,于是0≠=kk A A ,故k A 也可逆,这与0=k A 矛盾。
性质2.2.2 幂零矩阵与一个与之可交换的矩阵之积仍是幂零矩阵。
证明:设0=m A ,BA AB =于是()()()()00=*===m m m mB B A AB AB AB AB ,所以AB 是幂零矩阵性质2.2.3 设A 是n 阶幂零矩阵,则T A ,)(Z ∈m mA 均为幂零矩阵。
证明:因为A 为幂零矩阵,+Z ∈∃k ,使得0=k A ,因为 ()()0==Tk kTA A()()()00=*==kk kkm A m mA所以T A ,)(Z ∈m mA 均为幂零矩阵。
性质2.2.4 幂零矩阵的行列式值为零。
证明:设A 是n 阶幂零矩阵,则存在一个自然数k ,使0=k A ,由行列式性质得0==kk A A所以0=A性质2.2.5 与幂零矩阵相似的矩阵是幂零矩阵证明:设A 是n 阶幂零矩阵,则存在一个自然数k ,使0=k A ,另设B 与A 相似,则存在可逆矩阵T ,使AT TB 1-=,因此()011===--T A T ATT B k kk ,得证。
3. 幂零矩阵的性质我们在给出有关幂零矩阵的定义和基本性质的基础上以及根据以下引理,同时参考多篇文献,进一步探讨幂零矩阵,并进行归纳和推理,得到一些更深一层的性质。
3.1 幂零矩阵的充分必要条件引理3.1.1 (哈密顿-凯莱定理)设A 是n 阶方阵,A 的特征多项式设为()A E f -=λλ,则()0=A f引理3.1.2设n λλλ,,,21 为n 阶矩阵A 的特征值,则有n trA λλλ+++= 21,n A λλλ 21=引理3.1.3 设A ,B 为n 阶方阵,则***=''='A B AB A B AB )(,)( 性质3.1.1 A 为幂零矩阵的充分必要是A 的特征值全为0。
证明:⇒设A 是n 阶幂零矩阵,+Z ∈∃k ,则0=k A ,于是,0==kk A A ,因此0=A 。
由此得()010=-=-=-A A A E n,这说明0是n 阶幂零矩阵A的特征值。
若λ为A 的任一特征值,α为相应的特征向量,则λαα=A ,0==αλαk k A ,则有0=k λ,故0=λ⇐:由于A 的特征值全是0,所以A 的特征多项式()n A E f λλλ=-= 由哈密顿-凯莱定理得()0==n A A f 由幂零矩阵的定义,A 是幂零矩阵。
借助这个结论,要证明幂零矩阵的伴随矩阵还是幂零矩阵就很方便了,证明如下:由这个充要条件,可以得出以下的几个推论:推论3.1.1 设A 是n 阶幂零矩阵,则*A 为幂零矩阵。
证明:由于A 为幂零矩阵,故0=A ,则*A 得秩只能为0或1 当0)(=*A r 时,0=*A 也是幂零矩阵,成立。
当1)(=*A r 时,有当1)(-=n A r 时,又A 的特征值全为0,存在可逆矩阵T , 使得T T A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-010101 同样也由这个充要条件,可以得出以下的几个推论:推论3.1.2 A 为幂零矩阵的充分必要条件为+Z ∈∃k 0=k trA 。
证明: ⇒为幂零矩阵,由性质1,知:A 的特征值全为0 即021====n λλλ 则k A 的特征值为021====kn kkλλλ 从而有 021=+++=kn kkk trA λλλ⇐由已知,+Z ∈∃k 021=+++=kn k k k trA λλλ (1) 令t λλλ,,,21 为A 的不为0的特征值 且i λ互不相同重数为()t i n i ,,2,1 = 由(1)式得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=+++00002211332231122222112211t t t t t t t t t t t n n n n n n n n n n n n λλλλλλλλλλλλ (2) 由于方程组(1.2)的系数行列式为()∏≤<≤-===ti j j ittttt tttttt t t B 111212111212222121111λλλλλλλλλλλλλλλλλλλλλλλ又()t i i ,,2,1 =λ互不相同且不为0,0≠∴B 从而知,方程(2)只有0解,即()t i n i ,,2,10 == 即A 没有非零的特征值A ∴的特征值全为0, 由性质1,得A 为幂零矩阵,得证。
推论3.1.3 若A 为幂零矩阵,则一定有1,1=-=+A E E A 成立 证明: 由性质1得A 的特征值021====n λλλ ,所以A E E A -+, 的特征值分别是11021=+='=='='n λλλ , 10121=-=''==''=''n λλλ , 且有11,112121==''''''=-=='''=+n n n n A E E A λλλλλλ ,. 即1,1=-=+A E E A .推论3.1.4 若E A +为幂零矩阵,则A 非退化 证明:令,,,,21n λλλ 为A 的特征值.若A 退化,则有021==n A λλλ ,所以至少存在00=i λ为A 的特征值,从而有0110≠=+i λ为E A +的一特征值,这与E A +为幂零矩阵相矛盾,得证A 为非退化.性质3.1.2 一个n 阶幂零矩阵A 的特征多项式()n f λλ=,从而它只有一个特征值零。