高一数学人教版A版必修二:1.1.1 多面体的结构特征
- 格式:pptx
- 大小:3.10 MB
- 文档页数:31
第一章空间几何体1·1 空间几何体的结构1·1·1 柱、锥、台、球的结构特征多面体的结构特征由平面多边形(包括它们内部的平面部分)围成的几何体称为多面体.其中,各个额多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.连结不在同一面上的两个顶点的线段叫做多面体的对角线.把多面体的任一个平面伸展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫做凸多面体.一个多面体至少四个面.多面体按照它的面数分别叫做四面体.五面体.六面体等.1.柱棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.棱柱主要从下面几点把握:(1)组成元素:底面、侧面、侧棱、顶点.(2)本质特征:①有两个面相互平行;②其余各面的两面的公共边相互平行.(3)结构特征:①侧棱都相等,侧面是平行四边形;②两个底面相互平行;③过不相邻的两条侧棱的截面是平行四边形.(4)分类:棱柱的分类方法有两种:①按底面多边形的边数可分为三棱柱、四棱柱、五棱柱等;②按侧棱与底面是否垂直分为直棱柱、斜棱柱.(5)表示方法:以底面个顶点的字母表示.圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆柱主要从下面几点把握:(1)组成元素:底面、侧面、轴、母线.(2)结构特征:①平行于底面的截面都是圆;②过轴的截面是全等的矩形.(3)表示方法:用表示轴的字母表示.棱柱与圆柱统称为柱体.2.锥棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.棱锥主要从下面几点把握:(1)组成元素:底面、侧面、侧棱、顶点.(2)结构特征:①有一个面是多边形;②其余各面是有一个公共点的三角形.(3)分类:①棱柱根据侧棱和底面的关系分为两种:一种当侧棱与底面不垂直时,称为斜棱柱;另一种当侧棱与底面垂直时,称为直棱柱.直棱柱的面若为正多边形则称为正棱柱.②按底面多边形的边数分为三棱锥、四棱锥、五棱锥等.(4)表示方法:用表示顶点和底面各顶点的字母表示.圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面.棱锥主要从下面几点把握:(1)组成元素:底面、侧面、轴、母线.(2)结构特征:①平行于底面的截面都是圆;②过轴的截面是全等的等腰三角形.(3)表示方法:用表示轴的字母表示.棱锥与圆锥统称为锥体.3.台棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点.棱台主要从下面几点把握:(1)组成元素:上、下底面、侧面、侧棱、顶点.(2)结构特征:各侧棱延长后相交于一点,两底面是平行的相似多边形.(3)分类:棱台是由棱锥用平行于底面的平面截得的,故其分类和棱锥的分类方法一样.(4)表示方法:用上、下底面个顶点的字母表示.圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;圆锥的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴.圆台主要从下面几点把握:(1)组成元素:底面、侧面、轴、母线.(2)结构特征:①平行于底面的截面都是圆;②过轴的截面是全等的等腰梯形;③母线长都相等,且其母线延长后,都与轴的延长线相交与同一点.(3)表示方法:用表示轴的字母表示.圆台和棱台统称为台体.4.球以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球主要从下面几点把握:(1)结构特征:由半圆绕直径旋转一周得到的几何体.(2)表示方法:用表示球心的字母表示.棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的示意图如下:几种常凸多面体间的关系例1.图9—12表示一个正方体表面的一种展开图,图中的四条线段AB、CD、EF和GH在原正方体中相互异面的有对.(例1题图)解析:相互异面的线段有AB与CD,EF与GH,AB与GH3对.评析:解决此类题目的关键是将平面图形恢复成空间图形,较强的考察了空间想象能力.例2. 如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题...是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:B.因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C正确,且在它的高上必能找到一点到各个顶点的距离相等,故D正确,B不正确,如底面是一个等腰梯形时结论就不成立.故选B评析:抓住本质的东西来进行判断,对于信息要进行加工再利用.1·1·2 简单组合体的结构特征由柱、锥、台、球等基本的几何体组合而成的几何体叫做组合体.现实生活中的物体大部分都是组合体.例1.如下图几何体是由哪些简单几何体构成的?解析:正四棱台上面放置一个球.(例1图)例2.请描述下列几何体的结构特征,并说出它的名称.(1)由7 个面围成,其中两个面是互相平行且全等的五边形,其它面都是全等的矩形;(2)如右图,一个圆环面绕着过圆心的直线l 旋转180°.解析:(1)特征:具有棱柱的特征,且侧面都是全等的矩形,底面是正五边形.几何体为正五棱柱.(2)由两个同心的大球和小球,大球里去掉小球剩下的部分形成的几何体,即空心球.(例2图)。