白车身制造过程尺寸控制方法
- 格式:ppt
- 大小:364.50 KB
- 文档页数:13
内燃机与配件0引言白车身即白车身本体,由加装车门、发动机罩、翼子板构成,承载上侧车身的上述构件组合为车身的基本载体。
白车身的制作环节牵涉到振动噪声、人机工程、空气动力学、车身造型等多种理论内容。
白车身的设计和制造要历经错综复杂的流程和环节,每个制造流程均内含一定偏差。
应该增加尺寸工程的精度,消除、降低车身本体存在的偏差,提前明确不同类型的构件的具体尺寸规格。
受到工艺约束等因素的影响,制作而成的冲压件无法保障最科学、最恰当的精度。
因此,应该提供事先设定好的零部件尺寸和公差,利用尺寸工程保障车身本体的稳定性。
从实际运用来看,尺寸工程涵盖公差解析专业软件、用于计算的相关尺寸链等。
通过多个步骤的设计和运算,结合当前工艺流程和生产实践的需要,满足车身制作的精确度,从整体上保障车身的稳固性与安全性。
1尺寸工程概述在工程设计和加工制造领域中,尺寸工程可以限定车身构件的具体尺寸。
就尺寸工程的内涵而言,尺寸工程可有效整合产品工装、零件外形、车身装配、制造的全部流程,具有显著的系统性特征。
在日常生产加工的过程中,尺寸工程对不同种类的白车身加工制作进行限定,以消除装配过程中的偏差。
它有利于有效解决白车身装配中的常见性干涉,原因是日常制作特定类型的车身时,难以真正除掉隐含的各种偏差。
假如发生误差,累积性误差会持续干扰到接下来的装配流程,进而导致装配障碍。
在初期设计环节,尺寸工程可消除零配件尺寸的潜在性偏差,稳妥控制和防范后续装配过程中的一些干扰,真正增强偏差监控、诊断的意识和能力。
与此同时,尺寸工程有利于车身优化,对制作加工的各个工艺、流程、步骤进行整合,对系统性公差进行优化。
唯有如此,才能有效提升零配件装配的精准度,才能有效缩减耗费的装配周期与总成本。
利用尺寸工程大批量制造车身配件是一种系统性工程,它的适用价值将会达到更高层次。
因此尺寸工程的合理使用,有利于精准防控更大误差,提升白车身制造过程的精细化、精准化和规范化水平。
10.16638/ki.1671-7988.2017.10.079试制白车身关键尺寸精度控制方法张财,吴焱杰,薛奎(安徽江淮汽车集团股份有限公司,安徽合肥230601)摘要:通过识别新车型的关键尺寸,结合验证方法和数据分析,发现影响样车试制阶段白车身精度的主要因素,确认白车身批量生产的工序能力。
关键词:关键尺寸;样车试制;验证中图分类号:U467.4 文献标识码:A 文章编号:1671-7988 (2017)10-231-03The key dimension precision control method of white bodyZhang Cai, Wu Yanjie, Xue Kui( Anhui Jianghuai Automobile group Co. Ltd., Anhui Hefei 230601 )Abstract:The key dimension recognition models, combined with the analysis and verification methods and data, find the main factors influencing the accuracy of prototype trial stage of BIW, confirm the process capability of BIW production. Keywords: key dimensions; testing; verificatioCLC NO.: U467.4 Document Code: A Article ID: 1671-7988 (2017)10-231-031、关键尺寸概述从产品尺寸特征中和测点中选择出来的反映产品重要功能而且必须保证的尺寸叫做关键尺寸,它在车身尺寸公差控制方面有着直观、简便且与整车质量表现关联性强的特点。
关键尺寸可分为测点的距离(如两孔的相对位置)和特征尺寸(如孔径或槽距),两者是相互联系的。
V205白车身车门装配尺寸控制原理及应用张皓源北京奔驰汽车有限公司 北京 100000摘要:通过Y向小三角控制原理,避免了车门单件尺寸波动带来的装配不稳定性,并且在Y向装配姿态稳定的基础上,规范了Z、X向控制点的位置。
通过多轮的试验及验证,制定了适合铁质车门的装配工艺卡,既保证了整车装配尺寸,又达到了令顾客满意的关门力,并成功消除了窗框区域的噪声问题。
关键词:白车身装配尺寸;车门Y向装配尺寸;车门Z向装配尺寸白车身装配尺寸是整车外观精致度的重要考核指标,且车门Y向装配尺寸对车门关门力的大小有直接影响,车门Z向装配尺寸对窗框噪声影响较大。
故车门装配尺寸的提升对整车装配尺寸及关门力噪声等考核项的优化至关重要。
V205白车身在试制阶段存在间隙平顺度问题及关门力大、窗框噪声问题,现有德国Daimler公司制定的车门装配工艺适用于德国不莱梅工厂的铝件,而北京奔驰V205车门采用铁件,由于材料的改变需要优化装配工艺。
车门装配尺寸控制原理的执行覆盖件装配可以执行物体在空间定位的3-2-1定位原则,尤其对于车门区域,针对间隙平顺度控制点的设置可以采用此原则。
1. 车门Y向装配尺寸小三角控制原理物体在空间定位采用3-2-1原则或N-2-1原则,对于前门及后门而言,Y方向装配尺寸执行小三角控制原理,即Y方向控制车门外板区域而不包括窗框区域。
相对车门外板区域,V205窗框区域冲压件的尺寸偏差会积累,且尺寸不稳定,这样可以避免窗框区域的尺寸波动对装配尺寸的影响。
如图1所示,红色三角由三个Y向控制点组成,分别为上下铰链深度及门锁区域Y0控制点。
对于后门而言,执行小三角控制原理之前,V205一致执行大三角控制原理,其中一个Y向控制点由车门窗框而非铰链上深度点,大三角控制无法抵消窗框自身的波动,从而使装配波动性变大。
前门Y向控制点的选择采用小三角控制原理,即选择前门上下铰链深度及前门归零点Y0,上下铰链深度分别为(29.5+0.5 -0.8)m m以及(31.5+0.5 -0.5)mm。
简析汽车白车身尺寸开发与控制摘要:随着消费者对汽车质量要求的不断提高,白车身尺寸作为对整车外观品质、性能都有着重要影响的一项因素,也逐渐受到了各个主机厂的重视。
在产品开发过程中,开发者需要根据市场、用户和车辆性能等多方面的需求,制定整车尺寸,再结合尺寸链分析将整车尺寸要求分解到各零部件,制定合理的零部件尺寸及其公差,进而制定白车身工艺、模具工装、检具的开发策略和零件测量计划,对关键的尺寸进行监控和分析,达到稳定控制白车身尺寸的目的。
关键词:汽车白车身;尺寸开发;控制引言随着国内经济的迅速发展,人民生活水平普遍提高,汽车保有量稳步提升。
汽车厂商为吸引广大消费者眼球,都在积极地对汽车进行更新设计,但大多数的情况是对白车身结构进行改变,其余部件没有太大的改变。
白车身制造涉及冲压和焊接工艺,涉及尺寸精度、焊接质量、外观质量控制等,白车身技术水平已经成为衡量车企制造水平的重要标志,车身制造过程复杂,影响因素众多,其中尺寸精度取决于各方面综合因素的共同作用。
1白车身尺寸影响因素1.1零部件尺寸误差车身零部件尺寸精度是车辆质量评价的关键因素,钣金单件冲压成型精度、零件焊接拼装位置精度等直接影响车身尺寸精度;同时,车身质量需求中,除对白车身尺寸精度有较高要求外,还对车身覆盖件的外观质量有着很高要求,外钣金件不能出现擦伤、波纹、拉痕、凹凸等外观缺陷问题,钣金单件冲压成型、零件分总成件焊接、零件取放及运输等过程中极易出现扭曲变形等问题,也会导致零件尺寸误差的产生及累积,影响白车身整体尺寸精度。
所以实际生产中,外观质量及尺寸精度需同时兼顾,对冲压焊接制造工艺水平的要求较高,也很难实现对实物尺寸精度的定量计算,要在理论分析基础上进行规范化在线测量,无形中增加了尺寸误差解决以及控制的难度系数。
在此基础上,白车身门盖件、小附件的零件装配尺寸误差也是影响车身整体尺寸精度一个重要因素,比如车门、翼子板等件装配位置精度误差,会导致白车身各配合件之间的间隙面差也存在较大的偏差。
汽车白车身制造过程中质量控制方法摘要:随着我国综合实力的增强,汽车工业方面的成绩也有目共睹,在汽车的生产制造流程中,白车身的质量对于整体质量起到至关重要的作用。
汽车白车身由成千上百的零件焊接而成,制造过程极其复杂,产生质量缺陷在所难免,本文将重点介绍白车身生产过程中易发生的质量问题及改进措施。
关键词:汽车制造;白车身制造;质量控制如果汽车车身结构设计不合理,白车身成品尺寸不合格,将对整车质量造成很大的影响。
白车身制造涉及到的质量的内容包括:车身尺寸精度、焊接质量,外观面质量等几方面。
白车身尺寸精度是保证后续工艺流程的基础。
白车身车身精度的质量水平已经成为衡量汽车制造水平的重要标志。
1 白车身外表面质量缺陷及其控制措施1.1 白车身常见表面质量缺陷白车身常见的外表质量缺陷主要表现在以下方面:一是车身外板焊钳坑、焊点半点;二是工位夹具夹紧状态下,与板件受力大造成凹坑或划痕;三是运输过程中因防护不到位造成的磕碰划伤。
1.2控制方法首先在后背门风窗牙边焊点焊接过程中,若焊点无限位,焊点易打在风窗弧度处,导致棱线坑,需要对工位工装夹具追加限位功能,限定焊点位置,便于员工操作,提高生产效率的同时也保证了焊点位置在1 条直线,增加车身外观完整度,有效抑制棱线坑的发生。
前舱轮罩焊接时,前挡板与减震器拼接处焊点位置存在盲点,员工操作过程中无法准确确认焊点位置,易导致半点、漏点等问题的出现,通过在夹具工装上增加导向限位,使员工操作焊钳紧挨着导向限位,保证焊点位置的准确,减少错漏装、半点质量灯问题的出现,提高车身品质。
其次在涉及到外观面的侧围,四门两盖外板件的拼接过程中,若采用硬度高的材质应用在夹具支撑、压紧点等位置,易出现夹伤、划伤等品质问题。
针对以上问题,夹具在此类用于与外观面接触的地方应采用尼龙块等材质,解决外表面的夹伤、压伤问题。
2 白车身焊点常见质量缺陷及其控制措施2.1 常见质量缺陷(1)外观焊点扭曲焊点扭曲是指焊接后焊点表面与周围板件相比,不在1条直线上,焊点周围板件存在凹凸不平状态,焊点扭曲幅度超过板件25°,车身外观焊点扭曲会使板件起皱,影响焊点强度,白车身表面在汽车行业可以分为A、B、C、D 区,车身质量要求A、B 区为表面件,客户可以直视的区域,焊点不允许存在扭曲现象。
探讨汽车白车身质量控制思路及方法长城汽车股份有限公司天津哈弗分公司天津市300462摘要:加强对白车身进行质量控制是提高汽车整体质量的重要环节之一,也是一个比较复杂的生产过程。
而汽车行业的飞速发展使得汽车生产的规模越来越大,生产效率也越来越高,在这种快节奏的生产模式下,如何控制好白车身的质量是一个非常有挑战性的生产环节,也是不断提高汽车生产技术的必然要求。
接下来,就汽车白车身质量控制思路与方法展开论述。
关键词:汽车白车身;质量控制;思路;方法一、注重提高汽车白身制造参数的有效传输1.1汽车白身制造参数的有效传输在汽车产品设计及制造环节中,设计人员会在产品设计方案中标注大量的详细产品制造与性能参数,这一参数信息也是整体汽车产品设计方案的具体表现形式。
但在汽车产品实际设计、制造过程中,受多方面因素干扰、影响,各类汽车制造参数在传输过程中会出现不完全传输、参数传输有误等问题,从而导致汽车白车身设计参数与实际制造车身参数出现差异性问题。
针对于此,需要在汽车白车身设计及制造环节中,秉持可制造性设计、失效模式及后果理念,对所构成、设计产品的零部件参数与具体工序流程开展逐步分析作业,提前对汽车白车身设计与制造环节中全部潜在的失效模式、可能出现的质量问题加以深入分析、总结,并在其基础上制定针对性问题解决措施。
简而言之,便是确保在汽车白车身设计与制造环节中,各项产品参数的有效传输与一致性。
1.2基准参数的传输有效性分析在汽车产品设计与制造环节中,主要的工序流程为,将所构建的产品三维设计模型的基准面数据加以有效传输,并采取复合工程,确保将汽车产品设计方案中的各项参数数据进行准确、有效传输。
例如在我国传统汽车制造行业发展模式中,所构建的汽车三维设计模型主要由图板、模板等部分共同构成,并以逆向工程作为汽车白车身产品设计的主要模式,以及汽车白车身各零部件尺寸设计参考方向。
二在当前汽车设计及制造模式下,则以复合工程为产品主要设计模式,并通过对原点定位等技术的灵活运用,大幅提高了汽车产品各项参数的传输稳定性、有效性。
焊装质量管理焊装作为轿车的四大工艺之一,是一个非常重要的工序,白车身表面和配合间隙影响整车的外观,尺寸偏差将严重影响着总装装配和整车性能,焊接质量则关系着整车的安全性能,并且因为焊装的质量问题对后序的影响将是后工序不可修复或难以改善的,所以整车的冲焊工序质量控制就尤为重要。
焊装的质量控制可分为四部分,白车身尺寸控制、白车身焊接质量控制、白车身外观质量控制、白车身扭矩控制。
一、白车身尺寸控制1、夹具的控制焊装白车身尺寸控制主要由现场夹具来保证,而夹具的精度和状态是首先必须保证的。
夹具的检查、点检由车间操作者执行,工艺员进行工艺检查,质保科监控;检查内容包括夹具上定位销、定位面等是否磨损、松动,有无异常等,设备科工装班和生产车间共同维护。
建立夹具工作状态清单,对易受影响产生精度下降的夹具定期标定与校正,保证车身尺寸的变动处于受控范围内。
质检组根据工序检查表对相关工位夹具进行工位审核,审核工位滚动调整。
凡涉及车身尺寸的问题需调整夹具,必须由车间结合3D测量数据和生产技术科、质保科共同确定,以保证现场车身夹具使用处于受控状态,对调整夹具后的白车身车身号有记录,对于工艺有变更的也必须有记录。
2、车身尺寸的控制通过近期不同车型IQG值情况反映,车身的尺寸一直存在波动,因为部分车身尺寸的偏差,造成总装装配困难,这就需要在车身上适当增加测量点,如侧围间距、大灯安装支架与翼子板的间距等。
根据3D测量数据的变动对车身部分测量点抽检,同时以一周为单位对车身尺寸进行检查。
3、检具测量现场生产的分总成件首件、中间件、末件要求上检具,对所生产件的状态,尤其是尺寸状态进行检验,确定生产前及生产中产品的一致性,合格性,保证对各个分总成的实际尺寸与检具的要求的差异能够及时发现,并对异常情况进行整改,防止批量问题的发生。
主要测量项目是孔、间隙、平度等。
对于关键总成件、表面件都直接影响白车身的尺寸,IQG,甚至整车的配合情况,要求焊装车间对于检具的使用及维护制定计划,按照计划实施。