2018高考数学试题分类汇编
- 格式:doc
- 大小:33.84 MB
- 文档页数:65
2018年高考数学分类汇编----排列组合1、(2018年高考全国卷1理科第15题)(5分)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有16种.(用数字填写答案)【解答】解:方法一:直接法,1女2男,有C21C42=12,2女1男,有C22C41=4根据分类计数原理可得,共有12+4=16种,方法二,间接法:C63﹣C43=20﹣4=16种,故答案为:162、(2018年高考全国卷II文科第5题)(5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6 B.0.5 C.0.4 D.0.3【解答】解:从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,故选中的2人都是女同学的概率P==0.3,故选:D.3、(2018年高考上海卷第9题)(5分)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.4、(2018年高考浙江卷第16题)(4分)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成1260个没有重复数字的四位数.(用数字作答)【解答】解:从1,3,5,7,9中任取2个数字有种方法,从2,4,6,0中任取2个数字不含0时,有种方法,可以组成=720个没有重复数字的四位数;含有0时,0不能在千位位置,其它任意排列,共有=540,故一共可以组成1260个没有重复数字的四位数.故答案为:1260.2018年高考数学分类汇编----程序框图1、(2018年高考全国卷II文科第8题)(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4【解答】解:模拟程序框图的运行过程知,该程序运行后输出的是S=N﹣T=(1﹣)+(﹣)+…+(﹣);累加步长是2,则在空白处应填入i=i+2.故选:B.2、(2018年高考全国卷II理科第14题)(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4【解答】解:模拟程序框图的运行过程知,该程序运行后输出的是S=N﹣T=(1﹣)+(﹣)+…+(﹣);累加步长是2,则在空白处应填入i=i+2.故选:B.3、(2018年高考北京卷文科第3题)(5分)执行如图所示的程序框图,输出的s值为()A.B.C.D.【解答】解:在执行第一次循环时,k=1,S=1.在执行第一次循环时,S=1﹣=.由于k=2≤3,所以执行下一次循环.S=,k=3,直接输出S=,故选:B.4、(2018年高考北京卷理科第3题)(5分)执行如图所示的程序框图,输出的s值为()A.B.C.D.【解答】解:在执行第一次循环时,k=1,S=1.在执行第一次循环时,S=1﹣=.由于k=2≤3,所以执行下一次循环.S=,k=3,直接输出S=,故选:B.5、(2018年高考江苏卷第4题)(5分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为8.【解答】解:模拟程序的运行过程如下;I=1,S=1,I=3,S=2,I=5,S=4,I=7,S=8,此时不满足循环条件,则输出S=8.故答案为:8.6、(2018年高考天津卷文科第4题)(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.4【解答】解:若输入N=20,则i=2,T=0,==10是整数,满足条件.T=0+1=1,i=2+1=3,i≥5不成立,循环,=不是整数,不满足条件.,i=3+1=4,i≥5不成立,循环,==5是整数,满足条件,T=1+1=2,i=4+1=5,i≥5成立,输出T=2,故选:B.7、(2018年高考天津卷理科第3题)(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.4【解答】解:若输入N=20,则i=2,T=0,==10是整数,满足条件.T=0+1=1,i=2+1=3,i≥5不成立,循环,=不是整数,不满足条件.,i=3+1=4,i≥5不成立,循环,==5是整数,满足条件,T=1+1=2,i=4+1=5,i≥5成立,输出T=2,故选:B.2018年高考数学分类汇编----二项展开式1、(2018年高考全国卷III理科第5题)(5分)(x2+)5的展开式中x4的系数为()A.10 B.20 C.40 D.80【解答】解:由二项式定理得(x2+)5的展开式的通项为:T r+1=(x2)5﹣r()r=,由10﹣3r=4,解得r=2,∴(x2+)5的展开式中x4的系数为=40.故选:C.2、(2018年高考上海卷第3题)(4分)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【解答】解:二项式(1+x)7展开式的通项公式为T r+1=•x r,令r=2,得展开式中x2的系数为=21.故答案为:21.3、(2018年高考天津卷理科第10题)(5分)在(x﹣)5的展开式中,x2的系数为.【解答】解:(x﹣)5的二项展开式的通项为=.由,得r=2.∴x2的系数为.故答案为:.4、(2018年高考浙江卷第14题)(4分)二项式(+)8的展开式的常数项是7.【解答】解:由=.令=0,得r=2.∴二项式(+)8的展开式的常数项是.故答案为:7.。
2018年全国各地高考数学试题及解答分类汇编大全( 14 算法初步、框图 )一、选择题1.(2018北京文、理)执行如图所示的程序框图,输出的s 值为( )A .12B .56C .76D .7121.【答案】B【解析】初始化数值1k =,1s = 循环结果执行如下:第一次:()1111122s =+-⋅=,2k =,23k =≥不成立;第二次:()21151236s =+-⋅=,3k =,33k =≥成立,循环结束,输出56s =,故选B .2 (2018天津文、理)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为( )(A )1 (B )2 (C )3 (D )4 4.【答案】B【解析】结合流程图运行程序如下:首先初始化数据:20N =,2i =,0T =, 20102N i ==,结果为整数,执行11T T =+=,13i i =+=, 此时不满足5i ≥; 203N i =,结果不为整数,执行14i i =+=,此时不满足5i ≥; 2054N i ==,结果为整数,执行12T T =+=,15i i =+=, 此时满足5i ≥;跳出循环,输出2T =.故选B .3.(2018全国新课标Ⅱ文、理)为计算11111123499100S =-+-++-,设计了如图的程序框图, 则在空白框中应填入( )A .1i i =+B .2i i =+C .3i i =+D .4i i =+ 3.【答案】B【解析】由11111123499100S =-+-+⋯+-得程序框图先对奇数项累加,偶数项累加,最后再相减. 因此在空白框中应填入2i i =+,选B .二、填空1.(2018江苏)一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 ▲ .1.【答案】8【解析】由伪代码可得3I =,2S =;5I =,4S =;7I =,8S =;因为76>,所以结束循环,输出8S =.三、解答题。
2018年全国各地高考数学分类试题答案及详细解析第一节 集合一、选择题:1.(2018北京文)已知集合{}2A x x =<,{}–2,0,1,2B =,则A B =( )A .{}0,1B .{}–1,0,1C .{}–2,0,1,2D .{}–1,0,1,21.【答案】A【解析】2x <,22x ∴-<<,因此{}(){}2,0,1,22,20,1A B =--=,故选A . 2.(2018北京理)已知集合A ={x ||x |<2},B ={–2,0,1,2},则A B =( )(A ){0,1} (B ){–1,0,1} (C ){–2,0,1,2} (D ){–1,0,1,2} 2.【答案】A【解析】2x <,22x ∴-<<,因此{}(){}2,0,1,22,20,1A B =--=,故选A .3.(2018浙江)已知全集U ={1,2,3,4,5},A ={1,3},则=U A ( ) A .∅ B .{1,3} C .{2,4,5} D .{1,2,3,4,5}3.答案:C解答:由题意知U C A ={2,4,5}. 4.(2018天津文)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-≤<R ,则()A B C =( )(A ){1,1}- (B ){0,1} (C ){1,0,1}- (D ){2,3,4} 4.【答案】C【解析】由并集的定义可得{}1,0,1,2,3,4A B =-,结合交集的定义可知:(){}1,0,1A B C =-.故选C .5 (2018天津理)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R A B ( )(A) {01}x x <≤ (B) {01}x x << (C) {12}x x ≤< (D) {02}x x <<5.【答案】B【解析】由题意可得{}1Bx x =<R ,结合交集的定义可得(){}01A Bx =<<R ,故选B .6.(2018全国新课标Ⅰ文)已知集合{}02A =,,{}21012B =--,,,,,则A B =( )A .{}02,B .{}12,C .{}0D .{}21012--,,,, 6.答案:A解答:{0,2}A B ⋂=,故选A.7.(2018全国新课标Ⅰ理)已知集合{}220A x x x =-->,则A =R( )A .{}12x x -<<B .{}12x x -≤≤C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥7. 答案:B解答:{|2A x x =>或1}x <-,则{|12}R C A x x =-≤≤.8.(2018全国新课标Ⅱ文)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =( )A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,78.【答案】C【解析】{}1,3,5,7A =,{}2,3,4,5B =,{}3,5A B ∴=,故选C .9.(2018全国新课标Ⅱ理)已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 ( )A .9B .8C .5D .49.【答案】A【解析】223x y +≤,23x ∴≤,x ∈Z ,1x ∴=-,0,1, 当1x =-时,1y =-,0,1;当0x =时,1y =-,0,1; 当1x =-时,1y =-,0,1;所以共有9个,故选A .10.(2018全国新课标Ⅲ文、理)已知集合{}|10A x x =-≥,{}012B =,,,则A B =( )A .{}0B .{}1C .{}12,D .{}012,,10.答案:C解答:∵{|10}{|1}A x x x x =-≥=≥,{0,1,2}B =,∴{1,2}A B =.故选C.二、填空题:1.(2018江苏)已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么A B = ▲ .1.【答案】{}1,8【解析】由题设和交集的定义可知,{}1,8A B =.第二节 常用逻辑用语一.选择题:1.(2018北京文)设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 1.【答案】B【解析】当4a =,1b =,1c =,14d =时,a ,b ,c ,d 不成等比数列,所以不是充分条件;当a ,b ,c ,d 成等比数列时,则ad bc =,所以是必要条件.综上所述,“ad bc =”是“a ,b ,c ,d 成等比数列”的必要不充分条件.故选B .2.(2018北京理)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 2.【答案】C【解析】2222223333699+6a b a b a b a b a a b b a a b b -=+⇔-=+⇔-⋅+=⋅+,因为a ,b 均为单位向量,所以2222699+6=0a a b b a a b b a b a b -⋅+=⋅+⇔⋅⇔⊥, 即“33a b a b -=+”是“a b ⊥”的充分必要条件.故选C .3.(2018浙江)已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3..答案:A解答:若“//m n ”,平面外一条直线与平面内一条直线平行,可得线面平行,所以“//m α”;当“//m α”时,m 不一定与n 平行,所以“//m n ”是“//m α”的充分不必要条件.4. (2018上海)已知a R ∈,则“1a ﹥”是“1a1﹤”的( )(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分又非必要条件答案:A知识点:一元二次不等式及其解法 考查能力:运算求解能力解析:1a 1﹤→a>1或a<0,由子集推导关系可知选择A 。
2018年普通高等学校招生全国统一考试数学(理工农医类)分类整理排列组合、二项式定理与概率统计(全国卷Ⅰ)(14)9)12(x x -的展开式中,常数项为 。
(用数字作答) (20)(本大题满分12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑内的种子都没发芽,则这个坑需要补种。
假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望。
(精确到01.0)(全国卷Ⅱ)15.在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有 个.19.(本小题满分12分)甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001)(全国卷Ⅲ)(3)在(x −1)(x+1)8的展开式中x 5的系数是(A )−14 (B )14 (C )−28 (D )28(17)(本小题满分12分)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。
已知在某一小时内,甲、乙都需要照顾的概率为0.18,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;(Ⅱ)计算这个小时内至少有一台需要照顾的概率.(北京卷)(7)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为(A )124414128C C C (B )124414128C A A (C )12441412833C C C A (D )12443141283C C C A (11)6(x 的展开式中的常数项是 (用数字作答) (14)已知n 次多项式1011()n n n n n P x a x a x a x a --=++++,如果在一种算法中,计算0k x (k =2,3,4,…,n )的值需要k -1次乘法,计算30()P x 的值共需要9次运算(6次乘法,3次加法),那么计算0()n P x 的值共需要 次运算.下面给出一种减少运算次数的算法:0011(),()()k k k P x a P x xP x a ++==+(k =0,1,2,…,n -1).利用该算法,计算30()P x 的值共需要6次运算,计算0()n P x 的值共需要 次运算.(17)(本小题共13分)甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率32, (I )记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E ξ;(II )求乙至多击中目标2次的概率;(III )求甲恰好比乙多击中目标2次的概率.(上海卷)4、在10)(a x -的展开式中,7x 的系数是15,则实数a =__________。
2018年全国各地高考数学试题及解答分类汇编大全 (12圆锥曲线与方程)一、选择题1.(2018浙江)双曲线221 3=x y -的焦点坐标是( )A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)1..答案:B解答:∵2314c =+=,∴双曲线2213x y -=的焦点坐标是(2,0)-,(2,0).2. (2018上海)设P 是椭圆 ²5x +²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )(A )2(B )2(C )2(D )43.(2018天津文、理)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为( )(A )22139x y -= (B )22193x y -=(C )221412x y -= (D )221124x y -= 3.【答案】A【解析】设双曲线的右焦点坐标为(),0F c ,()0c >,则A B x x c ==, 由22221c y a b-=可得2b y a =±,不妨设2,b A c a ⎛⎫ ⎪⎝⎭,2,b B c a ⎛⎫- ⎪⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得22122bc b bc b d c a b --=+,22222bc b bc b d c a b ++==+, 则12226bcd d b c +===,则3b =,29b =,双曲线的离心率:2229112c b e a a a==++,据此可得23a =,则双曲线的方程为22139x y -=.故选A .4.(2018全国新课标Ⅰ文)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为( ) A .13B .12C .22D .2234、答案:C解答:知2c =,∴2228a b c =+=,22a =,∴离心率22e =.5.(2018全国新课标Ⅰ理)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=( )A .32B .3C .23D .45. 答案:B解答:渐近线方程为:2203x y -=,即33y x =±,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴3NM k =,直线MN 方程为3(2)y x =-.联立333(2)y x y x ⎧=-⎪⎨⎪=-⎩∴33(,)22N -,即3ON =,∴3MON π∠=,∴3MN =,故选B.6.(2018全国新课标Ⅰ理)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5 B .6 C .7 D .86. 答案:D解答:由题意知直线MN 的方程为2(2)3y x =+,设1122(,),(,)M x y N x y ,与抛物线方程联立有22(2)34y x y x⎧=+⎪⎨⎪=⎩,可得1112x y =⎧⎨=⎩或2244x y =⎧⎨=⎩,∴(0,2),(3,4)FM FN ==,∴03248FM FN ⋅=⨯+⨯=.7.(2018全国新课标Ⅱ文)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A.1-B.2 CD1 7.【答案】D【解析】在12F PF △中,1290F PF ∠=︒,2160PF F ∠=︒,设2PF m =,则1222c F F m ==,1PF =,又由椭圆定义可知)1221a PF PF m =+=则离心率212c c e a a===,故选D .8.(2018全国新课标Ⅱ文、理)双曲线22221(0,0)x y a b a b-=>>则其渐近线方程为( )A.y = B.y = C.y =D.y = 8.【答案】A【解析】c e a ==,2222221312b c a e a a -∴==-=-=,b a ∴,因为渐近线方程为b y x a =±,所以渐近线方程为y =,故选A .9.(2018全国新课标Ⅱ理)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A.23 B .12 C .13D .14 9.【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以2122PF F F c ==, 由AP得,2tan PAF ∠,2sin PAF ∴∠=,2cos PAF ∠=,由正弦定理得2222sin sin PF PAF AF APF ∠=∠,2225sin 3c a c PAF ∴===+-∠ ⎪⎝⎭, 4a c ∴=,14e =,故选D .10.(2018全国新课标Ⅲ文)已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为( )AB .2C .2D .10.答案:D解答:由题意c e a ==1ba=,故渐近线方程为0x y ±=,则点(4,0)到渐近线的距离为d ==.故选D.11.(2018全国新课标Ⅲ理)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A .5 B .2C .3D .211.答案:C解答:∵2||PF b =,2||OF c =,∴ ||PO a =; 又因为1||6||PF OP =,所以1||6PF a =; 在2Rt POF ∆中,22||cos ||PF bOF cθ==; ∵在12Rt PF F ∆中,2222121212||||||cos 2||||PF F F PF bPF F F cθ+-==⋅⋅,∴222222222224(6)464463322b c a bb c a b c a c a b c c+-=⇒+-=⇒-=-⋅ 223c a ⇒=3e ⇒=.二、填空1.(2018北京文)已知直线l 过点()1,0且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.1.【答案】()1,0【解析】1a =,24y x ∴=,由抛物线方程可得,24p =,2p =,12p=, ∴焦点坐标为()1,0.2.(2018北京文)若双曲线()222104x y a a -=>5,则a =_________. 2.【答案】4【解析】在双曲线中,2224c a b a =++,且5c e a ==245a +,22454a a +=,216a ∴=,04a a >∴=.3.(2018北京理)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.3.【答案】31-;2【解析】由正六边形性质得椭圆上一点到两焦点距离之和为3c c +,再根据椭圆定义得32c c a +=,所以椭圆M 的离心率为23113c a ==-+.双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为π3,222πtan 33n m ∴==,222222234m n m me m m ++∴===,2e ∴=.4. (2018上海)双曲线2214x y -=的渐近线方程为。
2018年全国统一考试高考数学试题汇编(精校版Word版含答案)2018年全国卷高考文科数学真题(全国卷Ⅰ)Word版-------------- 2018年全国卷高考文科数学真题(全国卷Ⅰ)Word版答案-------- 2018年全国卷高考理科数学真题(全国卷Ⅰ)Word版------------- 2018年全国卷高考理科数学真题(全国卷Ⅰ)Word版答案------ 2018年全国卷文科数学高考真题(全国卷II)Word版--------------- 2018年全国卷文科数学高考真题(全国卷II)Word版答案-------- 2018年全国卷理科数学高考真题(全国卷II)Word版--------------- 2018年全国卷理科数学高考真题(全国卷II)Word版答案-------- 2018年全国卷文科数学高考真题(全国卷Ⅲ)Word版-------------- 2018年全国卷文科数学高考真题(全国卷Ⅲ)Word版答案------- 2018年全国卷理科数学高考真题(全国卷Ⅲ)Word版-------------- 2018年全国卷理科数学高考真题(全国卷Ⅲ)Word版答案-------- 2018年文科数学高考真题(北京卷)Word版含答案---------------- 2018年理科数学高考真题(北京卷)Word版含答案----------------- 2018年文科数学高考真题(天津卷)Word版含答案---------------- 2018年理科数学高考真题(天津卷)Word版含答案---------------- 2018年理科数学高考真题(上海卷)Word版含答案---------------- 2018年理科数学高考真题(浙江卷)Word版含答案----------------绝密★启用前2018年普通高等学校招生全国统一考试(全国一卷)文科数学试题注意事项:1.答卷前,考生务必将自己的九名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A =,,{}21012B =--,,,,,则A B = ( ) A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设121iz i i-=++,则z =( )A .0B .12C .1 D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC -B .1344AB AC -C .3144AB AC +D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱 侧面上,从M 到N 的路径中,最短路径的长度为( )A .B .C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( )A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()f x f x x a =++( ),若()g x 存在2个零点,则a 的取值范围是A .[)10-,B .[)+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( ) A .32B .3 C. D .412.设函数()2010x x f x y -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________.16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知s i n s i n 4s i n s b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。
2018年全国高考试题分类汇编免费教育资源网解析几何部分参考答案、选择题二、填空题1.22x2y2411.用代数的方法研究图形的几何性质2 152 .2x y2 112. 5 23 1 13.44.5 14.[-1,3]15.455(0,-1) 1 2 a 1 216.2x- y+4=06.x 2+(y+1) 2=1 1-2 ≤ a≤1+ 2 17.213 18.11[ ,0) (0, ]7( ,13)10 1048.(5,0) 19.22(x 1)2 (y 1)2 259.22(x- 2)2+(y+3) 2=520.12210. (x- 2)2+(y+3) 2=5三、解答题1.(本小题主要考查直线和双曲线的概念和性质,综合解题能力 .满分 14 分 .解:( I)由 C 与 t 相交于两个不同的点,故知方程组x2y2 1,2y21,a x y 1.平面向量的运算等解析几何的基本思想和有两个不同的实数解 .消去 y 并整理得(1-a2)x2+2a2x-2a2=0. ① ⋯⋯ 2 分双曲线的离心率即离心率 e 的取值范围为 ( 6, 2) ( 2, ). 6分II)设 A(x 1,y 1),B(x 2,y 2), P 1(0,1)2. 本小题主要考查抛物线的性质,直线与抛物线的关系以及解析几何的基本方法、思想和 综合解题能力。
满分 12 分。
解:(Ⅰ) C 的焦点为 F(1, 0),直线 l 的斜率为 1,所以 l 的方程为y x 1.22将 y x 1代入方程 y 2 4x ,并整理得 x 26x 1 0.设A (x 1, y 1),B (x 2,y 2),则有 x 1 x 2 6,x 1x 2 1.OA OB (x 1, y 1) (x 2,y 2) x 1x 2 y 1y 2 2x 1x 2 (x 1 x 2) 1 3. | OA ||OB | x 12y 12x 22y 22x 1x 2[x 1x 2 4(x 1 x 2) 16] 41.OA OB 3 14 cos(OA, OB) . |OA| |OB | 41314 所以 OA 与OB 夹角的大小为 arccos3 14. 41(Ⅱ)由题设 FB AF 得 (x 2 1,y 2)(1 x 1, y 1),即x 2 1 (1 x 1), ①y2y1.②所以 21 a 20. 4 2 24a 4 8a 2(1 a 2) 0.解得 0 a 2且a 1.e1 a 212 1. 0 a 2且 a 1, a 255 PA 5 PB, (x 1,y 1 1) 5(x 2,y 2 1). 12 12由此得 x 1 152x 2. 8分 由于 x 1,x 2 都是方程①的根,且 所以 17 x 2 12 22 1a12 17.13.14分 5 x 222a 2 2a 2 2891 a2 .消去, x 2 ,得 1 a 2 60 由 a 0,所以 a2a 2y12 4x1,y22 4x2, ∴ x22x1. ③联立①、③解得x2 ,依题意有0.∴B( ,2 ),或B( , 2 ),又 F(1,0),得直线 l方程为( 1)y 2 (x 1)或( 1)y 2 (x 1),当[4,9]时,l 在方程 y轴上的截距为2或 1由②得y22 2y12,2 2 2 11 可知2在[4,9]上是递减的,4,4 23,3 134,4直线 l 在 y 轴上截距的变化范围为[ 43 3] [3,4].4] [4,3]. 以及综合. 满分 14 分 .解:( 1)由题设有m 0,c m.设点 P的坐标为(x0,y0),由PF1 PF2,得y0x0 cy0x0 c1,化简得x02y02m. ①2 将①与x0 m1y021联立,解得 2x02m 1 2,y0由m 0,x021 0,得 m 1. 所以 m 的取值范围是1.2)准线 L 的方程为m 1.设点 Q的坐标为(x1,y1),则m x1m 1.mm1m |QF2 | x1 c m|PF| c x m x2 m1 |QF2| 22m m 1.将x0 代入②,化简得.满分 12 分 .2m1代入②,化简得由题设 |QF 2| | PF 2 |2 3 ,得 mm 21 2 3 ,无解 .将 x.满分 12 分 .m|QF 2 | 1m m 2 1.|PF 2 | m m 21由题设 ||QPF F22 || 2 3 ,得 m m 21 2 3.解得 m=2.从而 x 03, y 02,c 2, 得到 PF 2 的方程22y ( 3 2)(x 2).4.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力 满分 12 分 . 解: y ′ =2x+1.直线 l 1 的方程为 y=3 x - 3.设直线 l 2过曲线 y=x 2+x -2 上 的点 B( b, b 2+b -2),则 l 2的方程为y=(2b+1) x -b 2-2 1因为 l 1⊥ l 2,则有 2b+1= ,b 1 231 x所以直线 l 2的方程为 y2 322II )解方程组 y 3x 3,1 22yx391 x, 6 5 y2(1, 5).(6, 2).221,0)、 ( ,0).3所以直线 l 1和 l 2 的交点的坐标为 l 1、l 2与 x 轴交点的坐标分别为(2 32 125.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力 解:直线 l 的方程为 x y1,即 bx ay ab 0.aba 1ly 1 2(y 2 2),∴y 1 y 24d1b(a 1)a 2b 2同理得到点(- 1, 0) b(a 1)2到直线 l 的距离 d 2a2 bs d 1 d 22ab2aba 2b 2由 s4c,得 2ab 4c,5 c 5即 5a c 2 a 2 2c 2.于是得 5 e 2 1 2e 2,即4e 425e 225 0.解不等式,得 54 e 25.由于 e 1 0,所以 e 的取值范围是25 e 5.26.(Ⅰ)由已知条件 ,可设抛物线的方程为 y 2∵点 P(1,2) 在抛物线上 , ∴ 222p 1, 得 p =2.2故所求抛物线的方程是 y 2准线方程是 x=-- 1.(Ⅱ ) 设直线 PA 的斜率为 k PA ,直线 PB 的斜率为 k PB , ∵PA 与 PB 的斜率存在且倾斜角互补 ,∴k PA k PB .由 A(x 1,y 1), B(x 2,y 2)在抛物线上 ,得2 y14x 1, ① 4x 2, ②2 y 2 221221 y2 14 2 y2y 1 1 4 y 1由① --②得直线 AB 的斜率y2 y1 4 4kAB1(x1 x2). (14 分)x2 x1 y1 y2 47.本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力、满分 14 分。
2018年高考数学数列分类汇编1、选择题1.【2018全国一卷4】设为等差数列的前项和,若,,则nS{}n a n3243S S S=+12a==5aA.B.C.D.12-10-10122.【2018北京卷4】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为C D3.【2018浙江卷10】10.已知成等比数列,1234,,,a a a a且.若,则1234123ln()a a a a a a a+++=++11a>A.B.C.D.1324,a a a a<<1324,a a a a><1324,a a a a<>1324,a a a a>>2、填空题1.【2018全国一卷14】记为数列的前项和,若,则nS{}n a n21n nS a=+_____________.6S=2.【2018北京卷9】设是等差数列,且,则的通项公式为}{na36,3521=+=aaa}{na__________.3.【2018江苏卷14】已知集合,.将*{|21,}A x x n n ==-∈N *{|2,}n B x x n ==∈N 的所有元素从小到大依次排列构成一个数列.记为数列的前n 项和,A B {}n a n S {}n a 则使得成立的n 的最小值为.112n n S a +>4.【2018上海卷6】记等差数列的前几项和为S n ,若,,则S 7=.{} n a 03=a 1476=+a a 5.【2018上海卷10】设等比数列{}的通项公式为(n ∈N *),前n 项和为S n .若a n 1-=n n q a ,则q=____________1Sn 1lim2n n a →∞+=三、解答题1.【2018全国二卷17】记nS 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求nS ,并求nS 的最小值.2.【2018全国三卷17】等比数列{}n a 中,15314a a a ==,.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .3.【2018天津卷18】(18)设是等比数列,公比大于0,其前n 项和为,{}n a ()n S n *∈N 是等差数列. 已知,,,.{}n b 11a =322a a =+435a b b =+5462a b b =+(I )求和的通项公式;{}n a {}n b(II )设数列的前n 项和为,{}n S ()n T n *∈N (i )求;n T (ii )证明.221()22()(1)(2)2n nk k k k T b b n k k n +*+=+=-∈+++∑N 4.【2018江苏卷20】设是首项为,公差为d 的等差数列,是首项为,公比为{}n a 1a {}n b 1b q 的等比数列.(1)设,若对均成立,求d 的取值范围;110,1,2a b q ===1||n n a b b -≤1,2,3,4n =(2)若,证明:存在,使得对*110,,a b m q =>∈∈N d ∈R 1||n n a b b -≤均成立,并求的取值范围(用表示).2,3,,1n m =+L d 1,,b m q 5.【2018浙江卷20】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n .(Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.6.【2018上海卷21】21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定无穷数列{a n },若无穷数列{b n }满足:对任意,都有,则称*n N ∈1||n n b a -≤ “接近”.{}{}n n b a 与(1)设{a n }是首项为1,公比为的等比数列,,,判断数列1211n n b a +=+*n N ∈是否与接近,并说明理由;{}n b {}n a (2)设数列{a n }的前四项为:a ₁=1,a ₂=2,a ₃=4,=8,{b n }是一个与{a n }接近a 4的数列,记集合M={x |x =b i ,i =1,2,3,4},求M 中元素的个数m ;(3)已知{a n }是公差为d 的等差数列,若存在数列{b n }满足:{b n }与{a n }接近,且在b ₂-b ₁,b ₃-b ₂,…b 201-b 200中至少有100个为正数,求d 的取值范围.参考答案1、选择题1.B2.D3.B2、填空题1. 2. 3. 27 4. 14 5.363-63n a n =-3、解答题1.解:(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =-得d =2.所以{}n a 的通项公式为29n a n =-.(2)由(1)得228(4)16n S n n n =-=--.所以当n =4时,n S 取得最小值,最小值为−16.2.解:(1)设{}n a 的公比为q ,由题设得1n n a q-=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m=,解得6m =.综上,6m =.3.解:(I )设等比数列的公比为q.由可得.{}n a 1321,2,a a a ==+220q q --=因为,可得,故.0q >2q =12n n a -=设等差数列的公差为d ,由,可得由,{}n b 435a b b =+13 4.b d +=5462a b b =+可得 从而 故131316,b d +=11,1,b d ==.n b n =所以,数列的通项公式为,数列的通项公式为{}n a 12n n a -={}n b .n b n =(II )(i )解:由(I ),有,故122112nn n S -==--.1112(12)(21)22212n nnk kn n k k T n n n +==⨯-=-=-=-=---∑∑(ii )证明:因为,11212()(222)222(1)(2)(1)(2)(1)(2)21k k k k k k+k T +b b k k k k k k k k k k k k ++++--++⋅===-++++++++所以,.324321221()2222222()((2(1)(2)3243212n n n nk k k k T b b k k n n n ++++=+=-+-++-=-+++++∑既证。
2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ1.已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么A B =I ▲ . [答案]{1,8}2.若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为 ▲ . [答案]23.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 ▲ .[答案]904.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 ▲ .[答案]85.函数2()log 1f x x =-的定义域为 ▲ .[答案][)∞+,26.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ . [答案]1037.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ . [答案]6-π8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b -=>>的右焦点(c,0)F 到一条渐近线的距离为3c ,则其离心率的值是 ▲ . [答案]29.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤ 则((15))f f 的值为 ▲ .[答案]22 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .[答案]34 11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ . [答案]-312.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为 ▲ . [答案]313.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 与点D ,且1BD =,则4a c +的最小值为 ▲ .[答案]914.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ . [答案]2715.在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.[答案]16.已知,αβ为锐角,4tan 3α=,5cos()αβ+=-.(1)求cos2α的值; (2)求tan()αβ-的值. [答案]17.某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN 构成.已知圆O的半径为40米,点P到MN的距离为50米.先规划在此农田上修建两个温室大棚,大△,要求,A B均在线段MN上,,C D均在棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为CDP圆弧上.设OC与MN所成的角为θ.△的面积,并确定sinθ的取值范围;(1)用θ分别表示矩形ABCD和CDP(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.[答案]18.如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为267,求直线l 的方程.[答案]19.记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()x b g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.[答案]20.设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,(1,2]m a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+L 均成立,并求d 的取值范围(用1,,b m q 表示). [答案]2018 年普通高等学校招生全国统一考试(全国I卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
2018年高考数学分类汇编函数一.选择题1、(2018年高考全国卷I文科5)(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.2、(2018年高考全国卷1文科9)(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.3、(2018年高考全国卷1理科2)(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}【解答】解:集合A={x|x2﹣x﹣2>0},可得A={x|x<﹣1或x>2},则:∁R A={x|﹣1≤x≤2}.故选:B.4、(2018年高考全国卷1理科5)(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.5、(2018年高考全国卷1理科9)(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.6、(2018年高考全国卷2文科3)(5分)函数f(x)=的图象大致为()A.B.CD.【解答】解:函数f(﹣x)==﹣=﹣f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e﹣>0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.7、(2018年高考全国卷2文科12)(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.8、(2018年高考全国卷2理科3)(5分)函数f(x)=的图象大致为()A.B.C.D.【解答】解:函数f(﹣x)==﹣=﹣f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e﹣>0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.9.(2018年高考全国卷2理科11)(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.10.(2018年高考全国卷3文科7)(5分)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x) D.y=ln(2+x)【解答】解:首先根据函数y=lnx的图象,则:函数y=lnx的图象与y=ln(﹣x)的图象关于y轴对称.由于函数y=lnx的图象关于直线x=1对称.则:把函数y=ln(﹣x)的图象向右平移2个单位即可得到:y=ln(2﹣x).即所求得解析式为:y=ln(2﹣x).故选:B.11.(2018年高考全国卷3文科9)(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.【解答】解:函数过定点(0,2),排除A,B.函数的导数f′(x)=﹣4x3+2x=﹣2x(2x2﹣1),由f′(x)>0得2x(2x2﹣1)<0,得x<﹣或0<x<,此时函数单调递增,排除C,故选:D.12.(2018年高考全国卷3理科7)(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.【解答】解:函数过定点(0,2),排除A,B.函数的导数f′(x)=﹣4x3+2x=﹣2x(2x2﹣1),由f′(x)>0得2x(2x2﹣1)<0,得x<﹣或0<x<,此时函数单调递增,排除C,故选:D.13.(2018年高考全国卷3理科12)(5分)设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b【解答】解:∵a=log0.20.3=,b=log20.3=,∴=,,∵,,∴ab<a+b<0.故选:B.14.(2018年北京市高考数学试卷文科8)(5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A【解答】解:当a=﹣1时,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y ≥1,﹣x+y>4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以A,C不正确;当a=4,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x ﹣4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确;故选:D.15.(2018年北京市高考数学试卷理科8)(5分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay ≤2},则()A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A【解答】解:当a=﹣1时,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y ≥1,﹣x+y>4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以A,C不正确;当a=4,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x ﹣4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确;故选:D.16.(2018年上海市高考数学试卷16)(5分)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【解答】解:设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,故f(1)=cos=,故选:B.17.(2018年浙江省高考数学试卷5)(4分)函数y=2|x|sin2x的图象可能是()A.B.C.D.【解答】解:根据函数的解析式y=2|x|sin2x,得到:函数的图象为奇函数,故排除A和B.当x=时,函数的值也为0,故排除C.故选:D.18.(2018年天津市高考数学试卷文科3)(5分)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由x3>8,得x>2,则|x|>2,反之,由|x|>2,得x<﹣2或x>2,则x3<﹣8或x3>8.即“x3>8”是“|x|>2”的充分不必要条件.故选:A.19.(2018年天津市高考数学试卷文科5)(5分)已知a=log3,b=(),c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:∵a=log 3,c=log=log35,且5,∴,则b=()<,∴c>a>b.故选:D.20.(2018年天津市高考数学试卷理科5)(5分)已知a=log2e,b=ln2,c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:a=log 2e>1,0<b=ln2<1,c=log=log23>log2e=a,则a,b,c的大小关系c>a>b,故选:D.二.填空题1.(2018年高考全国卷I文科13)(5分)已知函数f(x)=log2(x2+a),若f(3)=1,则a=.【解答】解:函数f(x)=log2(x2+a),若f(3)=1,可得:log2(9+a)=1,可得a=﹣7.故答案为:﹣7.2.(2018年高考全国卷2文科13)(5分)曲线y=2lnx在点(1,0)处的切线方程为.【解答】解:∵y=2lnx,∴y′=,当x=1时,y′=2∴曲线y=2lnx在点(1,0)处的切线方程为y=2x﹣2.故答案为:y=2x﹣2.3.(2018年高考全国卷2理科13)(5分)曲线y=2ln(x+1)在点(0,0)处的切线方程为.【解答】解:∵y=2ln(x+1),∴y′=,当x=0时,y′=2,∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.故答案为:y=2x.4.(2018年高考全国卷3文科16)(5分)已知函数f(x)=ln(﹣x)+1,f(a)=4,则f(﹣a)=.【解答】解:函数g(x)=ln(﹣x)满足g(﹣x)=ln(+x)==﹣ln(﹣x)=﹣g(x),所以g(x)是奇函数.函数f(x)=ln(﹣x)+1,f(a)=4,可得f(a)=4=ln(﹣a)+1,可得ln(﹣a)=3,则f(﹣a)=﹣ln(﹣a)+1=﹣3+1=﹣2.故答案为:﹣2.5.(2018年高考全国卷3理科14)(5分)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=.【解答】解:曲线y=(ax+1)e x,可得y′=ae x+(ax+1)e x,曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,可得:a+1=﹣2,解得a=﹣3.故答案为:﹣3.6.(2018年北京市高考数学试卷理科13)(5分)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.【解答】解:例如f(x)=sinx,尽管f(x)>f(0)对任意的x∈(0,2]都成立,当x∈[0,)上为增函数,在(,2]为减函数,故答案为:f(x)=sinx.7.(2018年江苏省高考数学试卷5)(5分)函数f(x)=的定义域为.【解答】解:由题意得:≥1,解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).8.(2018年江苏省高考数学试卷9)(5分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x)=,则f(f(15))的值为.【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1+|=,f()=cos()=cos=,即f(f(15))=,故答案为:9.(2018年江苏省高考数学试卷11)(5分)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.【解答】解:∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()=﹣+1=0,解得a=3,f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],f′(x)>0的解集为(﹣1,0),f(x)在(﹣1,0)上递增,在(0,1)上递减,f(﹣1)=﹣4,f(0)=1,f(1)=0,∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,∴f(x)在[﹣1,1]上的最大值与最小值的和为:f(x)max+f(x)min=﹣4+1=﹣3.10(2018年上海市高考数学试卷4)(4分)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.10.(2018年上海市高考数学试卷7)(5分)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.11.(2018年上海市高考数学试卷11)(5分)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:612.(2018年上海市高考数学试卷12)(5分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然d1+d2≤AB=1,即+的最大值为1,故答案为:1.13.(2018年天津市高考数学试卷文科10)(5分)已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为.【解答】解:函数f(x)=e x lnx,则f′(x)=e x lnx+•e x;∴f′(1)=e•ln1+1•e=e.故答案为:e.14.(2018年天津市高考数学试卷文科13)(5分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为.【解答】解:a,b∈R,且a﹣3b+6=0,可得:3b=a+6,则2a+==≥2=,当且仅当2a=.即a=﹣3时取等号.函数的最小值为:.故答案为:.15.(2018年天津市高考数学试卷文科14)(5分)己知a∈R,函数f(x)=.若对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则a的取值范围是.【解答】解:当x≤0时,函数f(x)=x2+2x+a﹣2的对称轴为x=﹣1,抛物线开口向上,要使x≤0时,对任意x∈[﹣3,+∞),f(x)≤|x|恒成立,则只需要f(﹣3)≤|﹣3|=3,即9﹣6+a﹣2≤3,得a≤2,当x>0时,要使f(x)≤|x|恒成立,即f(x)=﹣x2+2x﹣2a,则直线y=x的下方或在y=x上,由﹣x2+2x﹣2a=x,即x2﹣x+2a=0,由判别式△=1﹣8a≤0,得a≥,综上≤a≤2,故答案为:[,2].16.(2018年天津市高考数学试卷理科13)(5分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为.【解答】解:a,b∈R,且a﹣3b+6=0,可得:3b=a+6,则2a+==≥2=,当且仅当2a=.即a=﹣3时取等号.函数的最小值为:.故答案为:.17.(2018年天津市高考数学试卷理科14)(5分)已知a>0,函数f(x)=.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是.【解答】解:当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=﹣x2,得a=﹣,设g(x)=﹣,则g′(x)=﹣=﹣,由g(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,由g(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,得x2﹣ax+2a=0,得a(x﹣2)=x2,当x=2时,方程不成立,当x≠2时,a=设h(x)=,则h′(x)==,由h(x)>0得x>4,此时递增,由h(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为:(4,8)19(2018年浙江省高考数学试卷15)(6分)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.【解答】解:当λ=2时函数f(x)=,显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式f(x)<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数f(x)恰有2个零点,函数f(x)=的草图如图:函数f(x)恰有2个零点,则λ∈(1,3].故答案为:{x|1<x<4};(1,3].三.解答题1.(2018年高考全国卷I文科21)(12分)已知函数f(x)=ae x﹣lnx﹣1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.【解答】解:(1)∵函数f(x)=ae x﹣lnx﹣1.∴x>0,f′(x)=ae x﹣,∵x=2是f(x)的极值点,∴f′(2)=ae2﹣=0,解得a=,∴f(x)=e x﹣lnx﹣1,∴f′(x)=,当0<x<2时,f′(x)<0,当x>2时,f′(x)>0,∴f(x)在(0,2)单调递减,在(2,+∞)单调递增.证明:(2)当a≥时,f(x)≥﹣lnx﹣1,设g(x)=﹣lnx﹣1,则﹣,当0<x<1时,g′(x)<0,当x>1时,g′(x)>0,∴x=1是g(x)的最小值点,故当x>0时,g(x)≥g(1)=0,∴当a≥时,f(x)≥0.2.(2018年高考全国卷I理科21)(12分)已知函数f(x)=﹣x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x)=﹣﹣1+=﹣,设g(x)=x2﹣ax+1,当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0时,判别式△=a2﹣4,①当0<a≤4时,△≤0,即g(x)>0,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2时,x,f′(x),f(x)的变化如下表:x(0,)(,)(,+∞)f′(x)﹣0+0﹣f(x)递减递增递减综上当a≤2时,f(x)在(0,+∞)上是减函数,当a>2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,0<x1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则=﹣2+,则问题转为证明<1即可,即证明lnx1﹣lnx2>x1﹣x2,即证2lnx1>x1﹣在(0,1)上恒成立,设h(x)=2lnx﹣x +,(0<x<1),其中h(1)=0,求导得h′(x)=﹣1﹣=﹣=﹣<0,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x +>0,故2lnx>x﹣,则<a﹣2成立.3.(2018年高考全国卷2文科21)(12分)已知函数f(x)=x3﹣a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)证明:f(x)只有一个零点.【解答】解:(1)当a=3时,f(x)=x3﹣a(x2+x+1),所以f′(x)=x2﹣6x﹣3时,令f′(x)=0解得x=3,当x∈(﹣∞,3﹣2),x∈(3﹣2,+∞)时,f′(x)>0,函数是增函数,当x∈(3﹣2时,f′(x)<0,函数是单调递减,综上,f(x)在(﹣∞,3﹣2),(3﹣2,+∞),上是增函数,在(3﹣2上递减.(2)证明:因为x2+x+1=(x+)2+,所以f(x)=0等价于,令,则,所以g(x)在R上是增函数;取x=max{9a,1},则有=,取x=min{9a,﹣1},则有=,所以g(x)在(min{9a,﹣1},max{9a,1})上有一个零点,由单调性则可知,f(x)只有一个零点.4.(2018年高考全国卷2理科21)(12分)已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【解答】证明:(1)当a=1时,函数f(x)=e x﹣x2.则f′(x)=e x﹣2x,令g(x)=e x﹣2x,则g′(x)=e x﹣2,令g′(x)=0,得x=ln2.当∈(0,ln2)时,h′(x)<0,当∈(ln2,+∞)时,h′(x)>0,∴h(x)≥h(ln2)=e ln2﹣2•ln2=2﹣2ln2>0,∴f(x)在[0,+∞)单调递增,∴f(x)≥f(0)=1,解:(2),f(x)在(0,+∞)只有一个零点⇔方程e x﹣ax2=0在(0,+∞)只有一个根,⇔a=在(0,+∞)只有一个根,即函数y=a与G(x)=的图象在(0,+∞)只有一个交点.G,当x∈(0,2)时,G′(x)<0,当∈(2,+∞)时,G′(x)>0,∴G(x)在(0,2)递增,在(2,+∞)递增,当→0时,G(x)→+∞,当→+∞时,G(x)→+∞,∴f(x)在(0,+∞)只有一个零点时,a=G(2)=.5.(2018年高考全国卷3文科21)(12分)已知函数f(x)=.(1)求曲线y=f(x)在点(0,﹣1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.【解答】解:(1)=﹣.∴f′(0)=2,即曲线y=f(x)在点(0,﹣1)处的切线斜率k=2,∴曲线y=f(x)在点(0,﹣1)处的切线方程方程为y﹣(﹣1)=2x.即2x﹣y﹣1=0为所求.(2)证明:函数f(x)的定义域为:R,可得=﹣.令f′(x)=0,可得,当x时,f′(x)<0,x时,f′(x)>0,x∈(2,+∞)时,f′(x)<0.∴f(x)在(﹣),(2,+∞)递减,在(﹣,2)递增,注意到a≥1时,函数g(x)=ax2+x﹣1在(2,+∞)单调递增,且g(@)=4a+1>0函数g(x)的图象如下:∵a≥1,∴,则≥﹣e,∴f(x)≥﹣e,∴当a≥1时,f(x)+e≥0.6.(2018年高考全国卷3理科21)(12分)已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x.(1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.【解答】(1)证明:当a=0时,f(x)=(2+x)ln(1+x)﹣2x,(x>﹣1).,,可得x∈(﹣1,0)时,f″(x)≤0,x∈(0,+∞)时,f″(x)≥0∴f′(x)在(﹣1,0)递减,在(0,+∞)递增,∴f′(x)≥f′(0)=0,∴f(x)=(2+x)ln(1+x)﹣2x在(﹣1,+∞)上单调递增,又f(0)=0.∴当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)解:由f(x)=(2+x+ax2)ln(1+x)﹣2x,得f′(x)=(1+2ax)ln(1+x)+﹣2=,令h(x)=ax2﹣x+(1+2ax)(1+x)ln(x+1),h′(x)=4ax+(4ax+2a+1)ln(x+1).当a≥0,x>0时,h′(x)>0,h(x)单调递增,∴h(x)>h(0)=0,即f′(x)>0,∴f(x)在(0,+∞)上单调递增,故x=0不是f(x)的极大值点,不符合题意.当a<0时,h″(x)=8a+4aln(x+1)+,显然h″(x)单调递减,①令h″(0)=0,解得a=﹣.∴当﹣1<x<0时,h″(x)>0,当x>0时,h″(x)<0,∴h′(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,∴h′(x)≤h′(0)=0,∴h(x)单调递减,又h(0)=0,∴当﹣1<x<0时,h(x)>0,即f′(x)>0,当x>0时,h(x)<0,即f′(x)<0,∴f(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,∴x=0是f(x)的极大值点,符合题意;②若﹣<a<0,则h″(0)=1+6a>0,h″(e﹣1)=(2a﹣1)(1﹣e)<0,∴h″(x)=0在(0,+∞)上有唯一一个零点,设为x0,∴当0<x<x0时,h″(x)>0,h′(x)单调递增,∴h′(x)>h′(0)=0,即f′(x)>0,∴f(x)在(0,x0)上单调递增,不符合题意;③若a<﹣,则h″(0)=1+6a<0,h″(﹣1)=(1﹣2a)e2>0,∴h″(x)=0在(﹣1,0)上有唯一一个零点,设为x1,∴当x1<x<0时,h″(x)<0,h′(x)单调递减,∴h′(x)>h′(0)=0,∴h(x)单调递增,∴h(x)<h(0)=0,即f′(x)<0,∴f(x)在(x1,0)上单调递减,不符合题意.综上,a=﹣.7.(2018年北京市高考数学试卷文科19)(13分)设函数f(x)=[ax2﹣(3a+1)x+3a+2]e x.(Ⅰ)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求a;(Ⅱ)若f(x)在x=1处取得极小值,求a的取值范围.【解答】解:(Ⅰ)函数f(x)=[ax2﹣(3a+1)x+3a+2]e x的导数为f′(x)=[ax2﹣(a+1)x+1]e x.曲线y=f(x)在点(2,f(2))处的切线斜率为0,可得(4a﹣2a﹣2+1)e2=0,解得a=;(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(a+1)x+1]e x=(x﹣1)(ax﹣1)e x,若a=0则x<1时,f′(x)>0,f(x)递增;x>1,f′(x)<0,f(x)递减.x=1处f(x)取得极大值,不符题意;若a>0,且a=1,则f′(x)=(x﹣1)2e x≥0,f(x)递增,无极值;若a>1,则<1,f(x)在(,1)递减;在(1,+∞),(﹣∞,)递增,可得f(x)在x=1处取得极小值;若0<a<1,则>1,f(x)在(1,)递减;在(,+∞),(﹣∞,1)递增,可得f(x)在x=1处取得极大值,不符题意;若a<0,则<1,f(x)在(,1)递增;在(1,+∞),(﹣∞,)递减,可得f(x)在x=1处取得极大值,不符题意.综上可得,a的范围是(1,+∞).8.(2018年北京市高考数学试卷理科18)(13分)设函数f(x)=[ax2﹣(4a+1)x+4a+3]e x.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;(Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围.【解答】解:(Ⅰ)函数f(x)=[ax2﹣(4a+1)x+4a+3]e x的导数为f′(x)=[ax2﹣(2a+1)x+2]e x.由题意可得曲线y=f(x)在点(1,f(1))处的切线斜率为0,可得(a﹣2a﹣1+2)e=0,解得a=1;(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(2a+1)x+2]e x=(x﹣2)(ax﹣1)e x,若a=0则x<2时,f′(x)>0,f(x)递增;x>2,f′(x)<0,f(x)递减.x=2处f(x)取得极大值,不符题意;若a>0,且a=,则f′(x)=(x﹣2)2e x≥0,f(x)递增,无极值;若a>,则<2,f(x)在(,2)递减;在(2,+∞),(﹣∞,)递增,可得f(x)在x=2处取得极小值;若0<a<,则>2,f(x)在(2,)递减;在(,+∞),(﹣∞,2)递增,可得f(x)在x=2处取得极大值,不符题意;若a<0,则<2,f(x)在(,2)递增;在(2,+∞),(﹣∞,)递减,可得f(x)在x=2处取得极大值,不符题意.综上可得,a的范围是(,+∞).9.(2018年江苏省高考数学试卷19)(16分)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g (x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.【解答】解:(1)证明:f′(x)=1,g′(x)=2x+2,则由定义得,得方程无解,则f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)f′(x)=2ax,g′(x)=,x>0,由f′(x)=g′(x)得=2ax,得x=,f()=﹣=g()=﹣lna2,得a=;(3)f′(x)=﹣2x,g′(x)=,(x≠0),由f′(x0)=g′(x0),得b=﹣>0,得0<x0<1,由f(x0)=g(x0),得﹣x02+a==﹣,得a=x02﹣,令h(x)=x2﹣﹣a=,(a>0,0<x<1),设m(x)=﹣x3+3x2+ax﹣a,(a>0,0<x<1),则m(0)=﹣a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上连续不断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则f(x)与g(x)在区间(0,+∞)内存在“S”点.10.(2018年天津市高考数学试卷文科20)(14分)设函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(Ⅰ)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若d=3,求f(x)的极值;(Ⅲ)若曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,求d的取值范围.【解答】解:(Ⅰ)函数f(x)=(x﹣t1)(x﹣t2)(x﹣t3),t2=0,d=1时,f(x)=x(x+1)(x﹣1)=x3﹣x,∴f′(x)=3x2﹣1,f(0)=0,f′(0)=﹣1,∴y=f(x)在点(0,f(0))处的切线方程为y﹣0=﹣1×(x﹣0),即x+y=0;(Ⅱ)d=3时,f(x)=(x﹣t2+3)(x﹣t2)(x﹣t2﹣3)=﹣9(x﹣t2)=x3﹣3t2x2+(3﹣9)x ﹣+9t2;∴f′(x)=3x2﹣6t2x+3﹣9,令f′(x)=0,解得x=t2﹣或x=t2+;当x变化时,f′(x),f(x)的变化情况如下表;x(﹣∞,t2﹣)t2﹣(t2﹣,t2+)t2+(t2+,+∞)f′(x)+0﹣0+f(x)单调增极大值单调减极小值单调增∴f(x)的极大值为f(t2﹣)=﹣9×(﹣)=6,极小值为f(t2+)=﹣9×=﹣6;(Ⅲ)曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有三个互异的公共点,等价于关于x的方程(x﹣t2+d)(x﹣t2)(x﹣t2﹣d)+(x﹣t2)﹣6=0有三个互异的实数根,令u=x﹣t2,可得u3+(1﹣d2)u+6=0;设函数g(x)=x3+(1﹣d2)x+6,则曲线y=f(x)与直线y=﹣(x﹣t2)﹣6有3个互异的公共点,等价于函数y=g(x)有三个不同的零点;又g′(x)=3x2+(1﹣d2),当d2≤1时,g′(x)≥0恒成立,此时g(x)在R上单调递增,不合题意;当d2>1时,令g′(x)=0,解得x1=﹣,x2=;∴g(x)在(﹣∞,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上也单调递增;∴g(x)的极大值为g(x1)=g (﹣)=+6>0;极小值为g(x2)=g ()=﹣+6;若g(x2)≥0,由g(x)的单调性可知,函数g(x)至多有两个零点,不合题意;若g(x2)<0,即>27,解得|d|>,此时|d|>x2,g(|d|)=|d|+6>0,且﹣2|d|<x1;g(﹣2|d|)=﹣6|d|3﹣2|d|+6<0,从而由g(x)的单调性可知,函数y=g(x)在区间(﹣2|d|,x1),(x1,x2),(x2,|d|)内各有一个零点,符合题意;∴d的取值范围是(﹣∞,﹣)∪(,+∞).11.(2018年天津市高考数学试卷理科20)(14分)已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=;(Ⅲ)证明当a≥e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.【解答】(Ⅰ)解:由已知,h(x)=a x﹣xlna,有h′(x)=a x lna﹣lna,令h′(x)=0,解得x=0.由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表:x(﹣∞,0)0(0,+∞)h′(x)﹣0+h(x)↓极小值↑∴函数h(x)的单调减区间为(﹣∞,0),单调递增区间为(0,+∞);(Ⅱ)证明:由f′(x)=a x lna,可得曲线y=f(x)在点(x1,f(x1))处的切线的斜率为lna.由g′(x)=,可得曲线y=g(x)在点(x2,g(x2))处的切线的斜率为.∵这两条切线平行,故有,即,两边取以a为底数的对数,得log a x2+x1+2log a lna=0,∴x1+g(x2)=;(Ⅲ)证明:曲线y=f(x)在点()处的切线l1:,曲线y=g(x)在点(x2,log a x2)处的切线l2:.要证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a≥时,存在x1∈(﹣∞,+∞),x2∈(0,+∞)使得l1与l2重合,即只需证明当a≥时,方程组由①得,代入②得:,③因此,只需证明当a≥时,关于x1的方程③存在实数解.设函数u(x)=,既要证明当a≥时,函数y=u(x)存在零点.u′(x)=1﹣(lna)2xa x,可知x∈(﹣∞,0)时,u′(x)>0;x∈(0,+∞)时,u′(x)单调递减,又u′(0)=1>0,u′=<0,故存在唯一的x0,且x0>0,使得u′(x0)=0,即.由此可得,u(x)在(﹣∞,x0)上单调递增,在(x0,+∞)上单调递减,u(x)在x=x0处取得极大值u(x0).∵,故lnlna≥﹣1.∴=.下面证明存在实数t,使得u(t)<0,由(Ⅰ)可得a x≥1+xlna,当时,有u(x)≤=.∴存在实数t,使得u(t)<0.因此,当a≥时,存在x1∈(﹣∞,+∞),使得u(x1)=0.∴当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.12.(2018年浙江省高考数学试卷22)(15分)已知函数f(x)=﹣lnx.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【解答】证明:(Ⅰ)∵函数f(x)=﹣lnx,∴x>0,f′(x)=﹣,∵f(x)在x=x1,x2(x1≠x2)处导数相等,∴=﹣,∵x1≠x2,∴+=,由基本不等式得:=≥,∵x1≠x2,∴x1x2>256,由题意得f(x 1)+f(x2)==﹣ln(x1x2),设g(x)=,则,∴列表讨论:x(0,16)16(16,+∞)g′(x)﹣0+g(x)↓2﹣4ln2↑∴g(x)在[256,+∞)上单调递增,∴g(x1x2)>g(256)=8﹣8ln2,∴f(x1)+f(x2)>8﹣8ln2.(Ⅱ)令m=e﹣(|a|+k),n=()2+1,则f(m)﹣km﹣a>|a|+k﹣k﹣a≥0,f(n)﹣kn﹣a<n(﹣﹣k)≤n(﹣k)<0,∴存在x0∈(m,n),使f(x0)=kx0+a,∴对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点,由f(x)=kx+a,得k=,设h(x)=,则h′(x)==,其中g(x)=﹣lnx,由(1)知g(x)≥g(16),又a≤3﹣4ln2,∴﹣g(x)﹣1+a≤﹣g(16)﹣1+a=﹣3+4ln2+a≤0,∴h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,∴方程f(x)﹣kx﹣a=0至多有一个实根,综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.312018高考数学汇编函数第页共页。
2018年普通高等学校招生全国统一考试理科数学(全国Ⅰ卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2018·高考全国卷Ⅰ)设z=1-i1+i+2i,则|z|=( )A.0 B.1 2C.1 D. 22.(2018·高考全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( ) A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}3.(2018·高考全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.(2018·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12 B.-10 C .10D.125.(2018·高考全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2x B.y =-x C .y =2xD.y =x6.(2018·高考全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB→=( )A.34AB →-14AC →B.14AB →-34AC →C.34AB →+14AC → D.14AB →+34AC → 7.(2018·高考全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B.25C .3 D.28.(2018·高考全国卷Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →=( ) A .5 B.6 C .7D.89.(2018·高考全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧e x , x ≤0ln x , x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0) B.[0,+∞) C .[-1,+∞)D.[1,+∞)10.(2018·高考全国卷Ⅰ)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A .p 1=p 2 B.p 1=p 3 C .p 2=p 3D.p 1=p 2+p 311.(2018·高考全国卷Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=( )A.32B.3 C .23D.412.(2018·高考全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A.334B.233C.324D.32二、填空题:本题共4小题,每小题5分,共20分.13.(2018·高考全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0x -y +1≥0y ≤0,则z =3x +2y 的最大值为________.14.(2018·高考全国卷Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________.15.(2018·高考全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.(2018·高考全国卷Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(2018·高考全国卷Ⅰ)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.(1)求cos∠ADB;(2)若DC=22,求BC.18.(2018·高考全国卷Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.19.(2018·高考全国卷Ⅰ)设椭圆C:x22+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.20.(2018·高考全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值,已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?21.(2018·高考全国卷Ⅰ)已知函数f (x )=1x-x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.22.(2018·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的方程为y =k |x |+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程. 23.(2018·高考全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围.22018年普通高等学校招生全国统一考试理科数学 (全国 Ⅱ 卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2018·高考全国卷Ⅱ)1+2i1-2i=( )A .-45-35i B .-45+35i C .-35-45i D .-35+45i2.(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8C.5 D.43.(2018·高考全国卷Ⅱ)函数f(x)=e x-e-xx2的图象大致为( )4.(2018·高考全国卷Ⅱ)已知向量a,b满足|a|=1,a·b=-1,则a·(2a -b)=( )A.4 B.3C.2 D.05.(2018·高考全国卷Ⅱ)双曲线x2a2-y2b2=1(a>0,b>0)的离心率为3,则其渐近线方程为( )A.y=±2x B.y=±3xC.y=±22x D.y=±32x6.(2018·高考全国卷Ⅱ)在△ABC中,cos C2=55,BC=1,AC=5,则AB=( )A.4 2 B.30C.29D.2 57.(2018·高考全国卷Ⅱ)为计算S=1-12+13-14+…+199-1100,设计了右侧的程序框图,则在空白框中应填入( )A.i=i+1B.i=i+2C.i=i+3D.i=i+48.(2018·高考全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112B. 1 14C.115D. 1 189.(2018·高考全国卷Ⅱ)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为( )A.15B.56C.55D.2210.(2018·高考全国卷Ⅱ)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( )A.π4B.π2 C.3π4D.π 11.(2018·高考全国卷Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ),若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( )A .-50 B.0 C .2D.5012.(2018·高考全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23B.12 C.13D.14 二、填空题:本题共4小题,每小题5分,共20分.13.(2018·高考全国卷Ⅱ)曲线y =2ln(x +1)在点(0,0)处的切线方程为________.14.(2018·高考全国卷Ⅱ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0x -2y +3≥0x -5≤0,则z =x +y的最大值为________.15.(2018·高考全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.16.(2018·高考全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(2018·高考全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.(1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.18.(2018·高考全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:y^=-30.4+13.5 t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:y^=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.19.(2018·高考全国卷Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.20.(2018·高考全国卷Ⅱ)如图,在三棱锥PABC中,AB=BC=22,PA =PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M-PA-C为30°,求PC与平面PAM所成角的正弦值.21.(2018·高考全国卷Ⅱ)已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.22.(2018·高考全国卷Ⅱ)在直角坐标系xOy中,曲线C的参数方程为⎩⎪⎨⎪⎧x =2cos θy =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =2+t sin α(t 为参数). (1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 23.(2018·高考全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围.2018年普通高等学校招生全国统一考试理科数学 (全国 Ⅲ 卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2018·高考全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( )A .{0}B .{1}C .{1,2}D .{0,1,2} 2.(2018·高考全国卷Ⅲ)(1+i)(2-i)=( ) A .-3-i B.-3+i C .3-iD.3+i3.(2018·高考全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )4.(2018·高考全国卷Ⅲ)若sin α=13,则cos 2α=( )A.89B.79 C .-79D.-895.(2018·高考全国卷Ⅲ)(x 2+2x)5的展开式中x 4的系数为( )A .10 B.20 C .40D.806.(2018·高考全国卷Ⅲ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( )A .[2,6] B.[4,8] C .[2,32]D.[22,32]7.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )8.(2018·高考全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p, 各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX =2.4,P (X =4)<P (X =6),则p =( )A .0.7B.0.6 C .0.4D.0.39.(2018·高考全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3 C.π4D.π6 10.(2018·高考全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ABC 体积的最大值为( )A .12 3 B.18 3 C .243D.54311.(2018·高考全国卷Ⅲ)设F 1,F 2是双曲线C :x 2a2-y 2b 2=1(a >0,b >0)的左,右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( ) A. 5 B.2 C.3D.212.(2018·高考全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0B.ab <a +b <0C.a+b<0<ab D.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分.13.(2018·高考全国卷Ⅲ)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=________.14.(2018·高考全国卷Ⅲ)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=________.15.(2018·高考全国卷Ⅲ)函数f(x)=cos(3x+π6)在[0,π]的零点个数为________.16.(2018·高考全国卷Ⅲ)已知点M(-1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(2018·高考全国卷Ⅲ)等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.18.(2018·高考全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)异?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),P(K2≥k).050.0100.001k3.8416.63510.82819.(2018所在的平面与半圆弧CD︵所在平面垂直,M是CD︵上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.20.(2018·高考全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:|FA →|,|FP →|,|FB→|成等差数列,并求该数列的公差. 21.(2018·高考全国卷Ⅲ)已知函数f(x)=(2+x +ax 2)ln (1+x)-2x. (1)若a =0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0; (2)若x =0是f(x)的极大值点,求a.22.(2018·高考全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.(2018·高考全国卷Ⅲ)设函数f(x)=|2x +1|+|x -1|. (1)画出y =f(x)的图象;(2)当x ∈[0,+∞)时,f(x)≤ax +b ,求a +b 的最小值.2018年普通高等学校招生全国统一考试·(全国卷Ⅰ)·理1.解析:选C.法一:因为z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i=-i +2i =i ,所以|z |=1,故选C.法二:因为z =1-i 1+i +2i =1-i +2i (1+i )1+i =-1+i1+i,所以|z |=⎪⎪⎪⎪⎪⎪-1+i 1+i =|-1+i||1+i|=22=1,故选C. 2.解析:选B.法一:A ={x |(x -2)(x +1)>0}={x |x <-1或x >2},所以∁R A ={x |-1≤x ≤2},故选B.法二:因为A ={x |x 2-x -2>0},所以∁R A ={x |x 2-x -2≤0}={x |-1≤x ≤2},故选B.3.解析:选A.法一:设建设前经济收入为a ,则建设后经济收入为2a ,则由饼图可得建设前种植收入为0.6a ,其他收入为0.04a ,养殖收入为0.3a .建设后种植收入为0.74a ,其他收入为0.1a ,养殖收入为0.6a ,养殖收入与第三产业收入的总和为1.16a ,所以新农村建设后,种植收入减少是错误的.故选A.法二:因为0.6<0.37×2,所以新农村建设后,种植收入增加,而不是减少,所以A 是错误的.故选A.4.解析:选B.设等差数列{a n }的公差为d ,因为3S 3=S 2+S 4,所以3(3a 1+3×22d )=2a 1+d +4a 1+4×32d ,解得d =-32a 1,因为a 1=2,所以d =-3,所以a 5=a 1+4d =2+4×(-3)=-10.故选B.5.解析:选D.法一:因为函数f (x )=x 3+(a -1)x 2+ax 为奇数,所以f (-x )=-f (x ),所以(-x )3+(a -1)(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0,因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.法二:因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-1)+f (1)=0,所以-1+a -1-a +(1+a -1+a )=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.6.解析:选A.法一:如图所示,EB →=ED →+DB →=12AD →+12CB →=12×12(AB→+AC →)+12(AB →-AC →)=34AB →-14AC→,故选A. 法二:EB →=AB →-AE →=AB →-12AD →=AB →-12×12(AB →+AC →)=34AB →-14AC→,故选A. 7.解析:选B.由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN ,则MS =2,SN =4,则从M 到N 的路径中,最短路径的长度为MS 2+SN 2=22+42=2 5.故选B.8.解析:选D.法一:过点(-2,0)且斜率为23的直线的方程为y=23(x +2),由⎩⎨⎧y =23(x +2),y 2=4x ,得x 2-5x +4=0,解得x =1或x =4,所以⎩⎨⎧x =1,y =2或⎩⎨⎧x =4,y =4,不妨设M (1,2),N (4,4),易知F (1,0),所以FM→=(0,2),FN →=(3,4),所以FM →·FN →=8.故选D. 法二:过点(-2,0)且斜率为23的直线的方程为y =23(x +2),由⎩⎨⎧y =23(x +2),y 2=4x ,得x 2-5x +4=0,设M (x 1,y 1),N (x 2,y 2),则y 1>0,y 2>0,根据根与系数的关系,得x 1+x 2=5,x 1x 2=4.易知F (1,0),所以FM →=(x 1-1,y 1),FN →=(x 2-1,y 2),所以FM →·FN →=(x 1-1)(x 2-1)+y 1y 2=x 1x 2-(x x +x 2)+1+4x 1x 2=4-5+1+8=8.故选D.9.解析:选C.函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点,作出直线y =-x -a 与函数f (x )的图象,如图所示,由图可知,-a ≤1,解得a ≥-1,故选C.10.解析:选A.法一:设直角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,则区域Ⅰ的面积即△ABC 的面积,为S 1=12bc ,区域Ⅱ的面积S 2=12π×⎝ ⎛⎭⎪⎫c 22+12π×⎝ ⎛⎭⎪⎫b 22-⎣⎢⎡⎦⎥⎤π×⎝ ⎛⎭⎪⎫a 222-12bc=18π(c 2+b 2-a2)+12bc =12bc ,所以S 1=S 2,由几何概型的知识知p 1=p 2,故选A.法二:不妨设△ABC 为等腰直角三角形,AB =AC =2,则BC =22,所以区域Ⅰ的面积即△ABC 的面积,为S 1=12×2×2=2,区域Ⅱ的面积S 2=π×12-⎣⎢⎡⎦⎥⎤π×(2)22-2=2,区域Ⅲ的面积S 3=π×(2)22-2=π-2.根据几何概型的概率计算公式,得p 1=p 2=2π+2,p 3=π-2π+2,所以p 1≠p 3,p 2≠p 3,p 1≠p 2+p 3,故选A. 11.解析:选B.因为双曲线x 23-y2=1的渐近线方程为y =±33x ,所以∠MON =60°.不妨设过点F 的直线与直线y =33x 交于点M ,由△OMN 为直角三角形,不妨设∠OMN =90°,则∠MFO =60°,又直线MN 过点F (2,0),所以直线MN 的方程为y =-3(x -2), 由⎩⎪⎨⎪⎧y=-3(x -2),y =33x ,得⎩⎪⎨⎪⎧x =32,y =32,所以M ⎝ ⎛⎭⎪⎫32,32,所以|OM |=⎝ ⎛⎭⎪⎫322+⎝⎛⎭⎪⎫322=3,所以|MN |=3|OM |=3,故选B.12.解析:选A.记该正方体为ABCD A ′B ′C ′D ′,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱A ′A ,A ′B ′,A ′D ′与平面α所成的角都相等.如图,连接AB ′,AD ′,B ′D ′,因为三棱锥A ′AB ′D ′是正三棱锥,所以A ′A ,A ′B ′,A ′D ′与平面AB ′D ′所成的角都相等.分别取C ′D ′,B ′C ′,BB ′,AB ,AD ,DD ′的中点E ,F ,G ,H ,I ,J ,连接EF ,FG ,GH ,IH ,IJ ,JE ,易得E ,F ,G ,H ,I ,J六点共面,平面EFGHIJ 与平面AB ′D ′平行,且截正方体所得截面的面积最大.又EF =FG =GH =IH =IJ =JE =22,所以该正六边形的面积为6×34×⎝ ⎛⎭⎪⎫222=334,所以α截此正方体所得截面面积的最大值为334,故选A.13.解析:作出可行域为如图所示的△ABC 所表示的阴影区域,作出直线3x+2y=0,并平移该直线,当直线过点A(2,0)时,目标函数z=3x+2y取得最大值,且z max=3×2+2×0=6.答案:614.解析:法一:因为S n=2a n+1,所以当n=1时,a1=2a1+1,解得a1=-1;当n=2时,a1+a2=2a1+1,解得a2=-2;当n=3时,a1+a2+a3=2a3+1,解得a3=-4;当n=4时,a1+a2+a3+a4=2a4+1,解得a4=-8;当n=5时,a1+a2+a3+a4+a5=2a5+1,解得a5=-16;当n=6时,a1+a2+a3+a4+a5+a6=2a6+1,解得a6=-32;所以S6=-1-2-4-8-16-32=-63.法二:因为S n=2a n+1,所以当n=1时,a1=2a1+1,解得a1=-1,当n≥2时,a n=S n-S n-1=2a n+1-(2a n-1+1),所以a n=2a n-1,所以数列{a n}是以-1为首项,2为公比的等比数列,所以a n=-2n-1,所以S6=-1×(1-26)1-2=-63.答案:-6315.解析:法一:可分两种情况:第一种情况,只有1位女生入选,不同的选法有C12C24=12(种);第二种情况,有2位女生入选,不同的选法有C22C14=4(种).根据分类加法计数原理知,至少有1位女生入选的不同的选法有16种.法二:从6人中任选3人,不同的选法有C36=20(种),从6人中任选3人都是男生,不同的选法有C34=4(种),所以至少有1位女生入选的不同的选法有20-4=16(种).答案:1616.解析:法一:因为f (x )=2sin x +sin 2x ,所以f ′(x )=2cos x +2cos 2x =4cos 2x +2cos x -2=4⎝⎛⎭⎪⎫cos x -12(cos x +1),由f ′(x )≥0得12≤cos x ≤1,即2k π-π3≤x ≤2k π+π3,k ∈Z ,由f ′(x )≤0得-1≤cos x ≤12,即2k π+π≥x ≥2k π+π3或2k π-π≤x ≤2k π-π3,k ∈Z ,所以当x =2k π-π3(k ∈Z )时,f (x )取得最小值,且f (x )min =f ⎝ ⎛⎭⎪⎫2k π-π3=2sin ⎝ ⎛⎭⎪⎫2k π-π3+sin 2⎝⎛⎭⎪⎫2k π-π3=-332.法二:因为f (x )=2sin x +sin 2x =2sin x (1+cos x )=4sin x2cosx2. 2cos 2x 2=8sin x 2cos 3 x 2=833sin 2x 2cos 6x2,所以[f (x )]2=643×3sin 2 x 2cos 6 x 2≤643.⎝ ⎛⎭⎪⎫3sin 2x 2+cos 2x 2+cos 2x 2+cos 2x 244=274,当且仅当3sin 2 x 2=cos 2 x 2,即sin 2 x 2=14时取等号,所以0≤[f (x )]2≤274,所以-332≤f (x )≤332,所以f (x )的最小值为-332.答案:-33217.解:(1)在△ABD 中,由正弦定理得BD sin ∠A =ABsin ∠ADB. 由题设知,5sin 45°=2sin ∠ADB ,所以sin ∠ADB =25.由题设知,∠ADB <90°,所以cos ∠ADB =1-225=235.(2)由题设及(1)知,cos ∠BDC =sin ∠ADB =25.在△BCD 中,由余弦定理得BC 2=BD 2+DC 2-2·BD ·DC ·cos ∠BDC=25+8-2×5×22×25=25. 所以BC =5.18.解:(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE =3.又PF =1,EF =2,故PE ⊥PF .可得PH =32,EH =32.则H (0,0,0),P ⎝⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP→·DP →|HP →||DP →|=343=34.所以DP 与平面ABFD 所成角的正弦值为34.19.解:(1)由已知得F (1,0),l 的方程为x =1.由已知可得,点A 的坐标为⎝⎛⎭⎪⎫1,22或⎝ ⎛⎭⎪⎫1,-22. 所以AM 的方程为y =-22x +2或y =22x - 2.(2)当l 与x 轴重合时,∠OMA =∠OMB =0°.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2),则x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA +k MB =y 1x 1-2+y 2x 2-2. 由y 1=kx 1-k ,y 2=kx 2-k 得k MA +k MB =2kx 1x 2-3k (x 1+x 2)+4k(x 1-2)(x 2-2).将y =k (x -1)代入x 22+y 2=1得(2k 2+1)x 2-4k 2x +2k 2-2=0. 所以,x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0.从而k MA +k MB =0,故MA ,MB 的倾斜角互补.所以∠OMA =∠OMB .综上,∠OMA =∠OMB .20.解:(1)20件产品中恰有2件不合格品的概率为f (p )=C 220p 2(1-p )18.因此f ′(p )=C 220[2p (1-p )18-18p 2(1-p )17]=2C 220p (1-p )17(1-10p ).令f ′(p )=0,得p =0.1.当p ∈(0,0.1)时f ′(p )>0;当p ∈(0.1,1)时,f ′(p )<0.所以f (p )的最大值点为p 0=0.1. (2)由(1)知,p =0.1.(i)令Y 表示余下的180件产品中的不合格品件数,依题意知Y ~B (180,0.1),X =20×2+25Y ,即X =40+25Y .所以EX =E (40+25Y )=40+25EY =490.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于EX >400,故应该对余下的产品作检验.21.解:(1)f (x )的定义域为(0,+∞),f ′(x )=-1x2-1+a x=-x 2-ax +1x2.(i)若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时f ′(x )=0,所以f (x )在(0,+∞)单调递减.(ii)若a >2,令f ′(x )=0得,x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42单调递增. (2)由(1)知,f (x )存在两个极值点时,当且仅当a >2.由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0,所以x 1x 2=1,不妨设x 1<x 2,则x 2>1.由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2,所以f (x 1)-f (x 2)x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x-x +2ln x ,由(1)知,g (x )在(0,+∞)单调递减,又g (1)=0,从而当x ∈(1,+∞)时,g (x )<0.所以1x 2-x 2+2ln x 2<0,即f (x 1)-f (x 2)x 1-x 2<a -2.22.解:(1)由x =ρcos θ,y =ρsin θ得C 2的直角坐标方程为(x +1)2+y 2=4.(2)由(1)知C 2是圆心为A (-1,0),半径为2的圆.由题设知,C 1是过点B (0,2)且关于y 轴对称的两条射线.记y 轴右边的射线为l 1,y 轴左边的射线为l 2.由于B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点.当l 1与C 2只有一个公共点时,A 到l 1所在直线的距离为2,所以|-k +2|k 2+1=2,故k =-43或k =0.经检验,当k =0时,l 1与C 2没有公共点;当k =-43时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点.当l 2与C 2只有一个公共点时,A 到l 2所在直线的距离为2,所以|k +2|k 2+1=2,故k =0或k =43.经检验,当k =0时,l 1与 C 2没有公共点;当k =43时,l 2与C 2没有公共点.综上,所求C 1的方程为y =-43|x |+2.23.解:(1)当a =1时,f (x )=|x +1|-|x -1|,即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为{x |x >12}.(2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立.若a ≤0,则当x ∈(0,1)时|ax -1|≥1;若a >0,|ax -1|<1的解集为0<x <2a ,所以2a≥1,故0<a ≤2.综上,a 的取值范围为(0,2].2018年普通高等学校招生全国统一考试·(全国卷Ⅱ)·理1.解析:选D.1+2i 1-2i =(1+2i )(1+2i )(1-2i )(1+2i )=-35+45i ,故选D.2.解析:选A.法一:由x 2+y 2≤3知,-3≤x ≤3,-3≤y ≤3.又x ∈Z ,y ∈Z ,所以x ∈{-1,0,1},y ∈{-1,0,1},所以A 中元素的个数为C 13C 13=9,故选A.法二:根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆x 2+y 2=3中有9个整点,即为集合A 的元素个数,故选A.3.解析:选B.当x <0时,因为e x -e -x <0,所以此时f (x )=e x -e -xx2<0,故排除A 、D ;又f (1)=e -1e>2,故排除C ,选B.4.解析:选B.a ·(2a -b )=2a 2-a ·b =2-(-1)=3,故选B. 5.解析:选A.法一:由题意知,e =ca=3,所以c =3a ,所以b =c 2-a 2=2a ,所以b a=2,所以该双曲线的渐近线方程为y =±b ax =±2x ,故选A.法二:由e =ca=1+⎝ ⎛⎭⎪⎪⎫b a 2=3,得b a=2,所以该双曲线的渐近线方程为y =±b ax =±2x ,故选A.6.解析:选A.因为cos C =2cos 2C2-1=2×15-1=-35,所以由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C =25+1-2×5×1×⎝ ⎛⎭⎪⎪⎫-35=32,所以AB =42,故选A.7.解析:选B.由程序框图的算法功能知执行框N=N+1i计算的是连续奇数的倒数和,而执行框T=T+1i+1计算的是连续偶数的倒数和,所以在空白执行框中应填入的命令是i=i+2,故选B.8.解析:选C.不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有C210种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率P=3C210=115,故选C.9.解析:选C.如图,连接BD1,交DB1于O,取AB的中点M,连接DM,OM,易知O 为BD1的中点,所以AD1∥OM,则∠MOD为异面直线AD1与DB1所成角.因为在长方体ABCDA1B1C1D1中,AB=BC=1,AA1=3,AD1=AD2+DD21=2,DM=AD2+⎝⎛⎭⎪⎪⎫12AB2=52,DB1=AB2+AD2+DD21=5,所以OM=12AD1=1,OD=12DB1=52,于是在△DMO中,由余弦定理,得cos∠MOD=12+⎝⎛⎭⎪⎪⎫522-⎝⎛⎭⎪⎪⎫5222×1×52=55,即异面直线AD1与DB1所成角的余弦值为55,故选C.10.解析:选A.法一:f(x)=cos x-sin x=2cos⎝⎛⎭⎪⎪⎫x+π4,且函数y=cos x在区间[0,π]上单调递减,则由0≤x +π4≤π,得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数,所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4,所以0<a ≤π4,所以a 的最大值是π4,故选A.法二:因为f (x )=cos x -sin x ,所以f ′(x )=-sin x -cos x ,则由题意,知f ′(x )=-sin x -cos x ≤0在[-a ,a ]上恒成立,即sin x +cos x ≥0,即2sin ⎝⎛⎭⎪⎪⎫x +π4≥0在[-a ,a ]上恒成立,结合函数y =2sin ⎝⎛⎭⎪⎪⎫x +π4的图象可知有⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,解得a ≤π4,所以0<a ≤π4,所以a 的最大值是π4,故选A.11.解析:选C.因为f (x )是定义域为(-∞,+∞)的奇函数,所以f (-x )=-f (x ),且f (0)=0.因为f (1-x )=f (1+x ),所以f (x )=f (2-x ),f (-x )=f (2+x ),所以f (2+x )=-f (x ),所以f (4+x )=-f (2+x )=f (x ),所以f (x )是周期函数,且一个周期为4,所以f (4)=f (0)=0,f (2)=f (1+1)=f (1-1)=f (0)=0,f (3)=f (1+2)=f (1-2)=-f (1)=-2,所以f (1)+f (2)+f (3)+f (4)+…+f (50)=12×0+f (49)+f (50)=f (1)+f (2)=2,故选C.12.解析:选D.由题意可得椭圆的焦点在x 轴上,如图所示,设|F 1F 2|=2c ,因为△PF 1F 2为等腰三角形,且∠F 1F 2P =120°,所以|PF 2|=|F 1F 2|=2c ,所以|OF 2|=c ,所以点P 坐标为(c +2c cos 60°,2c sin 60°),即点P (2c ,3c ).因为点P 在过点A ,且斜率为36的直线上,所以3c2c +a =36,解得c a =14,所以e =14,故选D.13.解析:因为y=2ln(x+1),所以y′=2x+1.当x=0时,y′=2,所以曲线y=2ln(x+1)在点(0,0)处的切线方程为y-0=2(x-0),即y=2x.答案:y=2x14.解析:画出不等式组所表示的平面区域,如图中阴影部分所示.作出直线x+y=0,平移该直线,当直线过点B(5,4)时,z取得最大值,z max=5+4=9.答案:915.解析:因为sin α+cos β=1,cos α+sin β=0,所以sin2α+cos2β+2sin αcos β=1 ①,cos2α+sin2β+2cos αsin β=0 ②,①②两式相加可得sin2α+cos2α+sin2β+cos2β+2(sin αcos β+cos αsin β)=1,所以sin(α+β)=-1 2 .答案:-1 216.解析:如图所示,设S在底面的射影为S′,连接AS′,SS′.△SAB的面积为12·SA·SB·sin∠ASB=12·SA2·1-cos2∠ASB=1516·SA2=515,所以SA2=80,SA=4 5.因为SA与底面所成的角为45°,所以∠SAS′=45°,AS′=SA·cos45°=45×22=210.所以底面周长l=2π·AS′=410π,所以圆锥的侧面积为12×45×410π=402π.答案:402π17.解:(1)设{a n }的公差为d ,由题意得3a 1+3d =-15. 由a 1=-7得d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.18.解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y ^=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 y ^=99+17.5×9=256.5(亿元). (2)利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =-30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y ^=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.19.解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2. 所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k 2.由题设知4k 2+4k 2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16, 解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144. 20.解:(1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =23.连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB→的方向为x 轴正方向,建立空间直角坐标系O -xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP→=(0,2,23).取平面PAC 的一个法向量OB→=(2,0,0).设M (a ,2-a ,0)(0<a ≤2),则AM →=(a ,4-a ,0).设平面PAM 的法向量为n =(x ,y ,z ). 由AP→·n =0,AM →·n =0得 ⎩⎪⎨⎪⎧2y +23z =0,ax +(4-a )y =0,可得n =(3(a -4),3a ,-a ),所以cos 〈OB →,n 〉=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB →,n 〉|=32,所以23|a -4|23(a -4)2+3a 2+a 2=32,解得a =-4(舍去),a =43,所以n =⎝ ⎛⎭⎪⎪⎫-833,433,-43.又PC→=(0,2,-23),所以cos 〈PC→,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34.21.解:(1)当a =1时,f (x )≥1等价于(x 2+1)e -x -1≤0.设函数g (x )=(x 2+1)e -x -1,则g ′(x )=-(x 2-2x +1)e -x =-(x -1)2e -x . 当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1.(2)设函数h (x )=1-ax 2e -x .f (x )在(0,+∞)只有一个零点当且仅当h (x )在(0,+∞)只有一个零点. (ⅰ)当a ≤0时,h (x )>0,h (x )没有零点;(ⅱ)当a >0时,h ′(x )=ax (x -2)e -x .当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0.所以h (x )在(0,2)单调递减,在(2,+∞)单调递增. 故h (2)=1-4ae 2是h (x )在[0,+∞)的最小值.①若h (2)>0,即a <e 24,h (x )在(0,+∞)没有零点;②若h (2)=0,即a =e 24,h (x )在(0,+∞)只有一个零点;③若h (2)<0,即a >e 24,由于h (0)=1,所以h (x )在(0,2)有一个零点.由(1)知,当x >0时,e x >x 2,所以h (4a )=1-16a 3e 4a =1-16a 3(e 2a )2>1-16a 3(2a )4=1-1a >0.故h (x )在(2,4a )有一个零点.因此h (x )在(0,+∞)有两个零点. 综上,f (x )在(0,+∞)只有一个零点时,a =e 24.22.解:(1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tan α·x +2-tan α, 当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0. ①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为t 1,t 2,则t 1+t 2=0.又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2.23.解:(1)当a =1时, f (x )=⎩⎪⎨⎪⎧2x +4,x ≤-1,2,-1<x ≤2,-2x +6,x >2.可得f (x )≥0的解集为{x |-2≤x ≤3}. (2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立.故f (x )≤1等价于|a +2|≥4.由|a +2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞).2018年普通高等学校招生全国统一考试·全国Ⅲ卷·理1.解析:选C.由题意知,A ={x |x ≥1},则A ∩B ={1,2}. 2.解析:选D.(1+i)(2-i)=2-i +2i -i 2=3+i.3.解析:选A.由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.4.解析:选B.cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎪⎫132=79.5.解析:选C.T r +1=C r 5(x 2)5-r ⎝ ⎛⎭⎪⎪⎫2x r=C r 52r x 10-3r ,由10-3r =4,得r =2,所以x 4的系数为C 25×22=40.6.解析:选A.圆心(2,0)到直线的距离d =|2+0+2|2=22,所以点P 到直线的距离d 1∈[2,32].根据直线的方程可知A ,B 两点的坐标分别为A (-2,0),B (0,-2),所以|AB |=22,所以△ABP 的面积S =12|AB |d 1=2d 1.因为d 1∈[2,32],所以S ∈[2,6],即△ABP 面积的取值范围是[2,6].7.解析:选D.当x =0时,y =2,排除A ,B.由y ′=-4x 3+2x =0,得x =0或 x =±22,结合三次函数的图象特征,知原函数在(-1,1)上有三个极值点,所以排除C ,故选D.8.解析:选B.由题意知,该群体的10位成员使用移动支付的概率分布符合二项分布,所以DX =10p (1-p )=2.4,所以p =0.6或p =0.4.由P (X =4)<P (X=6),得C 410p 4(1-p )6<C 610p 6(1-p )4,即(1-p )2<p 2,所以p >0.5,所以p =0.6.9.解析:选C.根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24,所以sin C =a 2+b 2-c 22ab=cos C ,所以在△ABC 中,C =π4.10.解析:选B.设等边三角形ABC 的边长为x ,则12x 2sin 60°=93,得x。
设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为(A) 6 (B) 19 (C) 21 (D) 45 已知,a b ∈R ,且360a b -+=,则128ab +的最小值为 . 我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。
凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x ,y ,z ,则100,153100,3x y z x y z ++=⎧⎪⎨++=⎪⎩当81z =时,x =___________,y =___________. 若,x y 满足约束条件0,26,2,x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩则3z x y =+的最小值是___________,最大值是___________.在51()2x x-的展开式中,2x 的系数为 .已知圆2220x y x +-=的圆心为C ,直线21,2232⎧=-+⎪⎪⎨⎪=-⎪⎩x t y t (t 为参数)与该圆相交于A ,B 两点,则ABC△的面积为 .二项式831()2x x+的展开式的常数项是___________. 从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)有编号互不相同的五个砝码,期中5克,3克,1克砝码各两个,从中随机挑选三个,则这三个砝码的总质量为9克的概率为___________(结果用最简分数表示)一卷理科一卷文科二卷理科三卷文科北京文科江苏解析:()()'1,'22f x g x x ==+,若存在,则有()()200002211222x x x x ⎧+-=⋅⋅⋅⎪⎨=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎪⎩; 由()2可得:012x =-代入()1不符合,因此不存在;()()1'2,'f x ax g x x ==;根据题意有:()()200001ln 1122ax x ax x⎧-=⋅⋅⋅⎪⎨=⋅⋅⋅⋅⋅⋅⋅⋅⋅⎪⎩且00x >; 根据()2得到012x a =代入()1得到2ea =;()()()21'2,'x be x f x x g x x -=-=;根据题意有:()()()020000201122x x be x a x be x x x ⎧-+=⋅⋅⋅⋅⋅⋅⋅⎪⎪⎨-⎪-=⋅⋅⎪⎩根据()2有:0200020011x x be x x -=>⇒<<-;问题转化为:22000201x x a x -++=-;()3220000120x x a x x -++-+=()()32310m x x x a x =-++-=,转化为()m x 存在零点0x ,且001x <<;因为:()()00,120m a m =-<=>; 所以:恒存在零点001x <<;所以:对任意0a >,均存在0b >,使得存在"S 点"已知2log e =a ,ln 2b =,11log 3c =,则a ,b ,c 的大小关系为(A) a b c >> (B) b a c >> (C) c b a >> (D) c a b >>将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A)在区间35[,]44ππ上单调递增(B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减 已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++≤=⎨-+->⎩若关于x 的方程()f x ax =恰有2个互异的实数解,则a的取值范围是 .已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为(A )a b c >> (B )b a c >> (C )c b a >>(D )c a b >>将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数(A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π上单调递减(C )在区间[,]42ππ 上单调递增 (D )在区间[,]2ππ 上单调递减已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为__________.已知a ∈R ,函数()22220220x x a x f x x x a x ⎧++-≤⎪=⎨-+->⎪⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.函数y =||2x sin2x 的图象可能是A .B .C .D .在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =___________,c =___________.已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎪⎨-+<⎪⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.设常数a R ∈,函数()()2log f x x a =+,若()f x 的反函数的图像经过点()3,1,则()a =;已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭.若函数()f x x α=为奇函数,且在()0,+∞上递减,则()α=;已知常数0a >,函数()22x x f x ax =+的图像经过点61,,,55P p Q q ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,若236p qpq +=,则()a =;设D 是含l 的的有限实数集, ()f x 是定义在D 上的函数。
若()f x 的图像绕原点逆时针旋转6π后与原图像重合,则在以下各项中, ()f l 的可能取值只能是( )A. 3B.32C.33D. 0设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件设x ∈R ,则“38x >”是“||2x >” 的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件已知a R ∈,则“1a >”是“11a<”的( ) A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件答案:1.2.①②解析:1.由题意解得即椭圆标准方程为2.设,则显然斜率存在,设, 则,将代入,得∴与椭圆方程联立得①与椭圆相切,则,即将代入,解得(舍去)或由于在第一象限,则即②设与轴交点为在中令,得,即假设的纵坐标大于的纵坐标而即将代入化简得解此方程,得,(由已知条件,舍)或由于在第一象限,则回代入,得如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴; (Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围. (Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,21200||22(4)y y y x -=-. 因此,PAB △的面积3221200132||||(4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是1510[62,]4.FP FQ FE+=,解得解得2x=点(3,0)A∆FP FQ FE+=,解得已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为(A)221412x y -=(B)221124x y -= (C) 22139x y -=(D) 22193x y -= 在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.双曲线221 3=x y -的焦点坐标是A .(−2,0),(2,0)B .(−2,0),(2,0)C.(0,−2),(0,2) D.(0,−2),(0,2)已知点P(0,1),椭圆24x+y2=m(m>1)上两点A,B满足AP=2PB,则当m=_____5______时,点B横坐标的绝对值最大.设p是椭圆22153x y+=上的动点,则p到该椭圆的两个焦点的距离之和为( )A.22B.23C.25D.42阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为(A) 1 (B) 2 (C) 3 (D) 4设0<p<1,随机变量ξ的分布列是ξ0 1 2P 12p122p则当p在(0,1)内增大时,A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小如图,AD BC ∥且AD =2BC ,AD CD ⊥,EG AD ∥且EG =AD ,CD FG ∥且CD =2FG ,DG ABCD ⊥平面,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:MN CDE ∥平面; (II )求二面角E BC F --的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.已知圆锥的顶点为P ,底面圆心为O ,半轻为2 1.设圆锥的母线长为4,求圆锥的体积2.设4,,PO OA OB =是底面半径,且90o AOB ∠=,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小文科:如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=23,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为 .如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱柱A 1–BB 1D 1D 的体积为__________.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为__________.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .2B .4C .6D .8已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-. (I )求角B 的大小;(II )设a =2,c =3,求b 和sin(2)A B -的值.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455-,-).(Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求cos β的值.设常数a R ∈,函数()2sin 22cos f x a x x =+1.若()f x 为偶函数,求a 的值;。