方差分析(二)
- 格式:ppt
- 大小:587.50 KB
- 文档页数:44
西北农林科技大学实验报告学院名称:理学院专业年级:2006级信计1班姓名:袁金龙学号:15206012课程:多元统计分析报告日期:实验二方差分析一.实验题目1.对表5的数据进行方差分析:表5:某个因数下的3个处理的2个指标的不同结果2. 对表6的数据进行方差分析:二、实验分析:1.从题目要求来看,该题属于单向分类多元方差分析,根据spss软件,得到如下结果:⑴数据输入:⑵spss操作步骤:选择[Analyze]=>[General Linear Model]=>[Multivariate...],打开[Multivariate...]主对话框(如图1所示)。
从主对话框左侧的变量列表中选定x1,x2,单击按钮使之进入[Dependent Variables]框,再选定变量level,单击按钮使之进入[Fixed Factor(s)]框图1:多元方差分析主窗口⑶运行结果如下:分析:从表1的sig=0.942>0.05,以及表3的四个统计量的sig最大值为0.003小于0.05,因此,该因数下的3个处理水平的均值不全相同,即该因素下的不同水平间有显著差异,则下面的各指标的比较以及指标内部的比较才有意义。
从表2的x1,x2的sig值为:0.658,0.563大于0.05,则表明指标1与指标2的各自3个不同的处理间有显著的差异。
从表4可以看出:原理(sig<0.05表明该指标下的两个处理间显著,sig>0.05表明该指标下的两个处理间不太显著,sig越小越显著),则指标1下:处理1与处理2之间显著,处理1与处理3之间不显著,处理2与处理3之间不显著;指标2下:处理1与处理2之间显著, 处理1与处理3之间显著, 处理2与处理3之间不显著。
2.从题目要求来看,该题属于两向分类多元方差分析,根据spss软件,得到如下结果:⑴spss操作步骤:选择[Analyze]=>[General Linear Model]=>[Multivariate...],打开[Multivariate...]主对话框(如图1所示)。
⽅差分析2(双因素⽅差分析、多元⽅差分析、可视化)1 双因素⽅差分析1.1 双因素⽅差分析的实战dat<-ToothGrowthdatattach(dat)table(dat$supp,dat$dose)aggregate(len,by=list(dat$supp,dat$dose),FUN=mean)解释:根据投⽅式(橙汁OJ,维C素VC)supp和剂量dose来对⽛齿的长度len进⾏求均值dose<-factor(dose)解释:为了避免把dose变量认为是数值变量,⽽是把dose认为成分组变量,所以设置成因⼦类型factorfit<-aov(dat$len~dat$supp*dat$dose)解释:aov()做⽅差分析,把 + 换成了 * ,这两项dat$supp和dat$dosee就变成了交互项summary(fit)结果分析:可以看出P值很⼩,三个P值都⼩于0.05,说明不同的投喂⽅式supp对⽛齿的⽣长长度len是有显著影响的;说明不同的剂量dose对⽛齿的⽣长长度len是有显著影响的;说明在两种投喂⽅式下,不同的投喂⽅式supp和剂量dose的交互效应对⽛齿的⽣长长度len是有显著影响的1.2 可视化⽅法1interaction.plot(dat$dose,dat$supp,dat$len,type = "b",col=c("red","blue"),pch=c(16,18),main="XX")1.3 可视化⽅法2library(gplots)plotmeans(dat$len~interaction(dat$supp,dat$dose,sep=" "),connect=list(c(1,3,5),c(2,4,6)),col=c("red","blue"),main="XX",xlab="xlab")1.4 可视化⽅法3library(HH)interaction2wt(dat$len~dat$supp*dat$dose)2 重复测量⽅差分析dat<-CO2CO2$conc<-factor(CO2$conc)w1b1<-subset(CO2,Treatment=="chilled")uptake是植物光合作⽤对⼆氧化碳的吸收量,是因变量y,type是组间因⼦,是互斥的,表⽰的是两个不同地区的植物类型,要么是加拿⼤的植物,要么是美国的植物,不可能两个地⽅都是,conc是不同的⼆氧化碳的浓度,每⼀种植物都在所有的⼆氧化碳浓度下,所以conc是组内因⼦研究不同地区的植物作⽤,在某种⼆氧化碳的浓度作⽤下,对植物的光合作⽤效果有没有影响2.1 含有单个组内因⼦w和单个组间因⼦B的重复测量ANOVAfit<-aov(uptake~conc*Type+Error(Plant/(conc)),w1b1)summary(fit)结果分析:⼆氧化碳浓度和类型对植物光合作⽤都有显著影响2.2 可视化图形呈现(1)⽅式⼀par(las=2)par(mar=c(10,4,4,2))with(w1b1,interaction.plot(conc,Type,uptake,type = "b",col=c("red","blue"),pch=c(16,18)))(2)⽅式⼆boxplot(uptake~Type*conc,data=w1b1,col=c("red","blue"))3 多元⽅差分析library(MASS)attach(UScereal)dat<-UScerealshelf<-factor(shelf)y<-cbind(calories,fat,sugars)fit<-manova(y~shelf)summary(fit)结果分析:不同的货架shelf上,⾷物的热量calories,脂肪含量fat和含糖量sugars是⾮常显著不同的3.1 多元正态性center<-colMeans(y)n<-nrow(y) #⾏数p<-ncol(y) #列数cov<-cov(y) #计算⽅差d<-mahalanobis(y,center,cov)coord<-qqplot(qchisq(ppoints(n),df=p),d) #画图abline(a=0,b=1) #画参考线identify(coord$x,coord$y,labels = s(UScereal)) #给出交互式标出离群点3.2 稳健多元⽅差分析install.packages("rrcov")library(rrcov)wilks.test(y,shelf,method="mcd")结果分析:P值⼩于0.05,说明结果是显著性的,即不同货架上⾷物的热量calories,脂肪含量fat和含糖量sugars是⾮常显著不同的4 ⽤回归来做ANOVAlibrary(multcomp)dat<-cholesterollevels(dat$trt)fit.aov<-aov(response~trt,data=dat)summary(fit.aov)结果分析:aov⽅差分析,trt对response的影响⾮常显著fit.lm<-lm(response~trt,data=dat)summary(fit.lm)结果分析:lm回归分析,trt对response的影响⾮常显著,并且trt的每⼀项都显⽰出来了。
第二节单因素试验资料的方差分析在方差分析中,根据所研究试验因素的多少,可分为单因素、两因素和多因素试验资料的方差分析。
单因素试验资料的方差分析是其中最简单的一种,目的在于正确判断该试验因素各水平的优劣。
根据各处理内重复数是否相等,单因素方差分析又分为重复数相等和重复数不等两种情况。
上节讨论的是重复数相等的情况。
当重复数不等时,各项平方和与自由度的计算,多重比较中标准误的计算略有不同。
本节各举一例予以说明。
一、各处理重复数相等的方差分析【例6.3】抽测5个不同品种的若干头母猪的窝产仔数,结果见表6-12,试检验不同品种母猪平均窝产仔数的差异是否显著。
表6-12五个不同品种母猪的窝产仔数这是一个单因素试验,k=5,n=5。
现对此试验结果进行方差分析如下:1、计算各项平方和与自由度2、列出方差分析表,进行F检验表6-13不同品种母猪的窝产仔数的方差分析表根据df1=df t=4,df2=df e=20查临界F值得:F0.05(4,20)=2.87,F0.05(4,20)=4.43,因为F>F0.01(4,20),即P<0.01,表明品种间产仔数的差异达到1%显著水平。
3、多重比较采用新复极差法,各处理平均数多重比较表见表6-14。
表6-14不同品种母猪的平均窝产仔数多重比较表(SSR法)-8.2 -9.6因为MS e=3.14,n=5,所以为:根据df e=20,秩次距k=2,3,4,5由附表6查出α=0.05和α=0.01的各临界SSR 值,乘以=0.7925,即得各最小显著极差,所得结果列于表6-15。
表6-15SSR值及LSR值将表6-14中的差数与表6-15中相应的最小显著极差比较并标记检验结果。
检验结果表明:5号品种母猪的平均窝产仔数极显著高于2号品种母猪,显著高于4号和1号品种,但与3号品种差异不显著;3号品种母猪的平均窝产仔数极显著高于2号品种,与1号和4号品种差异不显著;1号、4号、2号品种母猪的平均窝产仔数间差异均不显著。
多元方差分析2篇第一篇:多元方差分析概述及应用实例1. 多元方差分析概述多元方差分析(MANOVA)是一种常用的统计分析方法,主要用于研究两个或两个以上自变量对多个因变量的影响。
多元方差分析不仅可以检验不同自变量的主效应,还可以考虑交互作用效应和调节效应。
该方法可以有效地比较各组之间的差异,较为全面地描述实验结果,具有较高的精度和可靠性,是社会科学、医学和心理学等领域中常用的方法之一。
2. 应用实例以医药行业作为研究对象,采用多元方差分析方法来探究两个自变量(药物种类、给药途径)对多个因变量(疗效、不良反应、治疗费用)的影响。
选取两种常见的药物种类进行比较,分别为A药和B药,给药途径分为口服和注射两种。
选取250名患者分为四组进行实验,每组患者分别接受A药口服、A药注射、B药口服、B药注射治疗,分别观测疗效、不良反应和治疗费用三个因变量。
数据处理采用SPSS软件,进行多元方差分析。
结果显示,不同药物种类在疗效和不良反应方面都存在显著差异,在治疗费用方面差异不显著。
不同给药途回路在三个因变量上均无显著差异。
两个自变量的交互作用未达到显著水平。
结果表明,在选择治疗方案时需要综合考虑药物种类和给药途径,进行个体化治疗。
3. 结论多元方差分析是一种非常有效的研究方法,可以全面地描述实验结果,提供实验数据的更多信息,对于研究者来说具有重要的参考价值。
在医药行业中,该方法可用于评估不同药物种类、给药途径和治疗方案的优劣,提供科学的依据,具有十分广泛的应用价值。
第二篇:多元方差分析模型建立及数据处理方法1. 多元方差分析模型建立多元方差分析模型的建立需要考虑用于分析的多个自变量、多个因变量之间的关系。
在建立模型时,首先要确定自变量和因变量的类型和数量,然后进行数据收集,并对原始数据进行清洗和预处理,如去除极值、填补缺失值、变量标准化等。
接下来,应选择合适的统计方法进行建模,并进行实验和数据处理,提取分析结果并进行解释。
如何正确运用单因素方差分析———药物研究中的统计学(二)《药学与临床研究》编辑部图1不同分组箱线图药物临床研究中平行设计的随机对照试验(RCT )较为常用,人们希望同时考察多个实验组所代表的总体均值之间的差异是否有统计学意义,其最常用的统计分析方法就是单因素方差分析(ONEWAY procedure )。
正确处理单因素多水平设计定量资料,关键就在于能够正确地辨析出适用条件与前提条件。
本文以探讨三种药物是否能降低血清胆固醇的案例为基础,介绍单因素方差分析基本概念、软件操作与结果解读,讨论如何正确应用单因素方差分析处理平行设计的随机对照试验的定量资料。
1基本概念随机对照试验的基本方法是,将研究对象随机分组,对不同组实施不同的干预,以对照效果的不同。
它具有能够最大程度地避免临床试验设计、实施中可能出现的各种偏倚,平衡混杂因素,提高统计学检验的有效性等诸多优点,被公认为是评价干预措施的金标准。
2案例解读2.1问题与数据假设在某动物试验中检验三种药物降低胆固醇的效果有无差异。
现将24只大鼠随机分为三组,每组8只,分别用A 药物,B 药物以及对照组药物喂养后,评价各组受试动物的血清胆固醇降低的程度。
目的是检测这三种药物的作用是否有差异。
现以SPSS 25.0统计软件为例。
2.2适用类型单因素方差分析适用于2种类型的研究设计:(1)判断3个及以上独立的组间均数是否存在差异;(2)判断前后变化的差值是否存在差异。
2.3前提条件使用单因素方差分析时,需要考虑6个前提。
主要包括因变量为连续变量;有一个包含2个及以上分类、且组别间相互独立的自变量;每组间和组内的观测值相互独立;每组内没有明显异常值;每组内因变量符合正态分布;进行方差齐性检验,确定每组方差相等。
3方差分析适用性判断的软件操作在主菜单点击[分析]>[描述统计]>[探索],把因变量t 送入[因变量列表]框中,把自变量group 送入[因子列表]框中。
第二章课件2:金融风险与收益的均值-方差分析风险与收益的协方差分析平均回报率和方差,或者标准差,提供了单只证券或者一个证券组合的回报分布的信息。
然而,这些数值并没有告诉我们不同证券回报之间的相互关联及其关联的方式。
假定在某个给定的月份之中,一个证券产生了高于其平均回报的回报。
假如我们知道发生了这样的结果,那么它对其他某个股票在同一时期产生的回报率的预期会有什么样的影响呢?当一个股票产生了高于其平均回报的回报,其他的股票也有出现同样结果的倾向吗?提供关于这个问题的一些信息的统计指标就是两个股票的协方差。
如果说方差是个绝对性的概念和分析方法的话,那么协方差就是个相对性的概念和分析方法。
因此,这个分析及其结果说明这样的基本思想:对于由不同风险的资产组成的投资组合,既要考虑它们各自的收益与风险之间的比较,又要考虑它们之间的相对收益比较和相对风险比较。
下面要研究的主要结果是,如何使一个投资组合的风险溢价是对应于状态价格密度的收益与投资组合收益之间的协方差。
现在考虑L 种不同的风险资产i Z ,1,2,,i L =⋅⋅⋅ (2.2.2)资产i Z 在投资组合中的数量是i k ,其现值是0i Z (即在日期0t =的价值)。
如果投资到该组合中的总财富是W ,则i k 和0i Z 应该满足 01L ii i k Z W ==∑ (2.2.3)在做金融资产收益和风险的研究中,人们都首先考虑无风险(金融术语是风险中性概率)的收益,然后再对比进行风险资产的研究。
下述字母和符号的含义分别为:ω—随机状态变量;()P ω—概率侧度,且()0P ω>;()Q ω—风险中性概率侧度;()()()Q L P ωωω=—状态价格向量。
因为风险资产的收益是随机变量,所以应该表示为 00()()i i i i i z T z R R z z -≡≡,1,2,,i L =⋅⋅⋅ (2.2.4) 类似地,可以把银行账户的收益定义为00()B T B R B -≡它们与公式 ()()()cov((),())j j j V Z E z q z E z V Z -≡比较,两者对风险资产收益的分析原理是一致的。
实验设计与数据处理:2⽅差分析(09级温淑平修正均值为µ)第2章⽅差分析2.1 概述⽅差分析(analysis of variance)是数理统计的基本⽅法之⼀,是分析试验数据的⼀种有效⼯具。
⽅差分析是在20世纪20年代初由英国统计学家费歇尔(R.A.Fisher)所创,最早⽤于⽣物学和农业实验,后在⼯业⽣产和科学研究中的许多领域⼴泛应⽤,取得良好的效果。
⼀、⽅差分析的必要性在第1章中,我们已经讨论了两个正态总体均值相等的假设检验问题。
但在实际⽣产中,经常遇到检验多个正态总体均值是否相等的问题。
例2-1 以淀粉为原料⽣产葡萄糖的过程中,残留有许多糖蜜,可作为⽣产酱⾊的原料。
在⽣产酱⾊之前应尽可能彻底除杂,以保证酱⾊质量。
为此,对除杂⽅法进⾏选择。
在试验中选⽤五种不同的除杂⽅法,每种⽅法做四次试验,即重复四次,结果见表2-1。
表2-1 不同除杂⽅法的除杂量(g/kg)本试验的⽬的是判断不同的除杂⽅法对除杂量是否有显著影响,以便确定最佳除杂⽅法。
我们可以认为,同⼀除杂⽅法重复试验得到的4个数据的差异是由随机误差造成的,⽽随机误差常常是服从正态分布的,这时除杂量应该有⼀个理论上的均值。
⽽对不同的除杂⽅法,除杂量应该有不同的均值。
这种均值之间的差异是由于除杂⽅法的不同造成的。
于是我们可以认为,五种除杂⽅法所得数据是来⾃五个均值不同的五个正态总体,且由于试验中其它条件相对稳定,因⽽可以认为每个总体的⽅差是相等的,即五个总体具有⽅差齐性。
这样,判断除杂⽅法对除杂效果是否有显著影响的问题,就转化为检验五个具有相同⽅差的正态总体均值是否相同的问题了,即检验假设H0: µ1=µ2=µ3=µ4=µ5对于这种多个总体样本均值的假设检验,第1章介绍的⽅法不再适⽤,须采⽤⽅差分析⽅法。
⼆、⽅差分析的基本思想⽅差分析的实质就是检验多个正态总体均值是否相等。
那么,如何检验呢?从表2-1可见,20个试验数据(除杂量)是参差不齐的。
方差分析表2篇【方差分析表1】一、前言方差分析表是统计分析中常用的一种表格形式。
它可以帮助我们进行多个变量之间的比较和检验,广泛应用于医学、宏观经济、社会科学等领域。
本文将详细介绍方差分析表的构成和应用。
二、构成方差分析表通常由以下几个部分组成:1. 组内变异:指同一组内各个数据与该组平均数之间的差异。
2. 组间变异:指不同组之间各个数据平均数之间的差异。
3. F统计量:用于判断组间差异是否显著。
4. P值:指F统计量的显著性水平,通常设置为0.05或0.01。
5. 自由度:指样本数据中自由变动的数量。
三、应用方差分析表主要用于以下两种情况:1. 比较多个组之间的平均数是否有显著差异。
在这种情况下,我们要将数据分成多个组,并计算出每个组的平均数。
然后,通过方差分析表判断各组之间的平均数是否有显著差异。
如果有显著差异,则可以进一步进行比较分析。
2. 比较同一组数据在不同时间点或不同处理条件下的差异。
在这种情况下,我们要将数据按照时间点或处理条件分成多组,并计算出每个组的平均数。
然后,同样利用方差分析表判断各组之间的平均数是否有显著差异。
如果差异显著,则说明时间点或处理条件对数据产生了影响,可进一步分析影响因素。
四、总结方差分析表是进行多个变量之间比较和检验的常用工具。
它主要由组内变异、组间变异、F统计量、P值和自由度等组成,可用于比较多个组之间的平均数差异和同一组数据在不同时间点或处理条件下的差异。
在数据分析过程中,我们应当灵活运用方差分析表,以提高分析结果的准确性和实用性。
【方差分析表2】一、前言方差分析表是一种常用的多组分析工具,凭借着它的灵活性和实用性,已经广泛应用于医学、生物、社会科学等各个领域。
本文将详细介绍方差分析表的构成和应用。
二、构成方差分析表主要由以下几个部分组成:1. 总变异(SS(total)):指所有数据与总体均值之间的差异。
2. 组间变异(SS(between)):指不同组之间所有数据平均数与总体均值之间的差异。