第四章 方差分析2
- 格式:ppt
- 大小:1.06 MB
- 文档页数:56
i ng si n第四章 t 检验和单因素方差分析命令与输出结果说明·单因素方差分析单因素方差分析又称为Oneway ANOVA ,用于比较多组样本的均数是否相同,并假 定:每组的数据服从正态分布,具有相同的方差,且相互独立,则无效假设。
原假设:H 0:各组总体均数相同。
在STATA 中可用命令:oneway 观察变量 分组变量[, means bonferroni]其中子命令bonferroni 是用于多组样本均数的两两比较检验。
例:测定健康男子各年龄组的淋巴细胞转化率(%),结果见表,问:各组的淋巴细 胞转化率的均数之间的差别有无显著性?健康男子各年龄组淋巴细胞转化率(%)的测定结果:11-20 岁 组:58 61 61 62 63 68 70 70 74 7841-50 岁 组:54 57 57 58 60 60 63 64 6661-75 岁 组:43 52 55 56 60用变量x 表示这些淋巴细胞转化率以及用分组变量group=1,2,3分别表示 11-20岁组,41-50岁组和61-75岁组,即:数据表示为:x 586161626368707074785457group 111111111122x 575860606364664352555660group 222222233333则 用 STATA 命 令:oneway x group, mean bonferroni| Summary of xgroup | Mean ①-------------+------------1 | 66.52 | 59.8888893 | 53.2------+------------Total | 61.25 ②Analysis of VarianceSource SS df MS F Prob > F------------------------------------------------------------------------------- Between groups 616.311111③ 2 ④ 308.155556⑤ 9.77⑥ 0.0010⑦Within groups 662.188889⑧ 21⑨ 31.5328042⑴-------------------------------------------------------------------------------Total 1278.50 23 55.586956(2)Bartlett's test for equal variances:chi2(2) = 2.1977 (3)Prob>chi2=0.333Comparison of x by group(Bonferroni)Row Mean- |Col Mean | 1 2-------------- --|--------------------------------------2 | -6.61111 (4)| 0.054 (5)|3 | -13.3 (6) -6.68889(8)| 0.001 (7) 0.134 (9)①对应三个年龄组的淋巴细胞转化率的均数;②三组合并在一起的总的样本均数;③组间离均差平方和;④组间离均差平方和的自由度;⑤组间均方和(即:⑤=③/④);⑧组内离均差平方和;⑨组内离均差平方和的自由度;(1)组内均方和(即:(1)=⑧/⑨);⑥为F 统计值(即为⑤/(1));⑦为相应的p值;(2)为方差齐性的Bartlett检验;(3)方差齐性检验相应的p值;(4)第二组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(5)第二和第一组均数差的显著性检验所对应p 值;(6)第三组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(7)第三和第一组均数差的显著性检验所对应的 p 值;(8)第三组的淋巴细胞转化率样本均数—第二组的淋巴细胞转化率的样本均数的差;(9)第三和第二组均数差的显著性检验所对应的p 值。
第四章 t检验和单因素方差分析命令与输出结果说明·单因素方差分析单因素方差分析又称为Oneway ANOVA,用于比较多组样本的均数是否相同,并假定:每组的数据服从正态分布,具有相同的方差,且相互独立,则无效假设。
原假设:H0:各组总体均数相同。
在STATA中可用命令:oneway 观察变量分组变量[, means bonferroni]其中子命令bonferroni是用于多组样本均数的两两比较检验。
例:测定健康男子各年龄组的淋巴细胞转化率(%),结果见表,问:各组的淋巴细胞转化率的均数之间的差别有无显著性?健康男子各年龄组淋巴细胞转化率(%)的测定结果:11-20 岁组:58 61 61 62 63 68 70 70 74 7841-50 岁组:54 57 57 58 60 60 63 64 6661-75 岁组:43 52 55 56 60用变量x 表示这些淋巴细胞转化率以及用分组变量group=1,2,3分别表示11-20岁组,41-50岁组和61-75岁组,即:数据表示为:x586161626368707074785457 group111111111122x575860606364664352555660 group222222233333则用 STATA 命令:oneway x group, mean bonferroni| Summary of xgroup | Mean ①-------------+------------1 | 66.52 | 59.8888893 | 53.2------+------------Total | 61.25 ②Analysis of VarianceSource SS df MS F Prob > F------------------------------------------------------------------------------- Between groups 616.311111③ 2 ④ 308.155556⑤ 9.77⑥ 0.0010⑦Within groups 662.188889⑧ 21⑨ 31.5328042⑴-------------------------------------------------------------------------------Total 1278.50 23 55.586956(2)Bartlett's test for equal variances:chi2(2) = 2.1977 (3)Prob>chi2=0.333Comparison of x by group(Bonferroni)Row Mean- |Col Mean | 1 2-------------- --|--------------------------------------2 | -6.61111 (4)| 0.054 (5)|3 | -13.3 (6) -6.68889(8)| 0.001 (7) 0.134 (9)①对应三个年龄组的淋巴细胞转化率的均数;②三组合并在一起的总的样本均数;③组间离均差平方和;④组间离均差平方和的自由度;⑤组间均方和(即:⑤=③/④);⑧组内离均差平方和;⑨组内离均差平方和的自由度;(1)组内均方和(即:(1)=⑧/⑨);⑥为F 统计值(即为⑤/(1));⑦为相应的p值;(2)为方差齐性的Bartlett检验;(3)方差齐性检验相应的p值;(4)第二组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(5)第二和第一组均数差的显著性检验所对应p 值;(6)第三组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(7)第三和第一组均数差的显著性检验所对应的 p 值;(8)第三组的淋巴细胞转化率样本均数—第二组的淋巴细胞转化率的样本均数的差;(9)第三和第二组均数差的显著性检验所对应的p 值。
⽅差分析2⽅差分析是⽤于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,⼀是不可控的随机因素,另⼀是研究中施加的对结果形成影响的可控因素。
⽅差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献⼤⼩,从⽽确定可控因素对研究结果影响⼒的⼤⼩。
⽅差分析主要⽤途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作⽤,③分析因素间的交互作⽤,④⽅差齐性检验。
在科学实验中常常要探讨不同实验条件或处理⽅法对实验结果的影响。
通常是⽐较不同实验条件下样本均值间的差异。
例如医学界研究⼏种药物对某种疾病的疗效;农业研究⼟壤、肥料、⽇照时间等因素对某种农作物产量的影响;不同化学药剂对作物害⾍的杀⾍效果等,都可以使⽤⽅差分析⽅法去解决。
⽅差分析原理⽅差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,⽤变量在各组的均值与该组内变量值之偏差平⽅和的总和表⽰,记作SS w,组内⾃由度df w。
(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。
⽤变量在各组的均值与总均值之偏差平⽅和表⽰,记作SS b,组间⾃由度df b。
总偏差平⽅和 SS t = SS b + SS w。
组内SS t、组间SS w除以各⾃的⾃由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均⽅MS w和MS b,⼀种情况是处理没有作⽤,即各组样本均来⾃同⼀总体,MS b/MS w≈1。
另⼀种情况是处理确实有作⽤,组间均⽅是由于误差与不同处理共同导致的结果,即各样本来⾃不同总体。
那么,MS b>>MS w(远远⼤于)。
MS b/MS w⽐值构成F分布。
⽤F值与其临界值⽐较,推断各样本是否来⾃相同的总体。
⽅差分析的假设检验假设有m个样本,如果原假设H0:样本均数都相同即µ1=µ2=µ3=…=µm=µ,m个样本有共同的⽅差。
第四章多个样本均数比较的方差分析方差分析的基本思想是通过比较各组或处理的均值差异与各组内的个体间差异来判断是否存在显著差异。
在进行方差分析之前,需要满足一些前提条件,如对总体的抽样是简单随机抽样、各样本之间是独立的等。
这些前提条件的满足保证了方差分析的可靠性。
多个样本的方差分析是通过计算组间离差平方和(SSTr)、组内离差平方和(SSE)和总离差平方和(SST)来比较各组或处理之间的差异。
计算公式为:SSTr = Σni(x̄i - x̄)²SSE = ΣΣ(xij - x̄i)²SST=SSTr+SSE其中,n是每组或处理的样本个数,ni是第i组或处理的样本个数,x̄i是第i组或处理的样本均值,x̄是全部样本的均值,xij是第i组或处理的第j个样本值。
通过计算SSTr和SSE,可以得到均方值(MS):MStr = SSTr / (r - 1)MSE=SSE/(N-r)其中,r是组或处理的个数,N是总样本个数。
接下来,需要计算F值,用于判断各组或处理均值是否有显著差异:F = MStr / MSE根据F值和自由度,可以查找F表来确定是否存在显著差异。
如果F 计算值大于F临界值,则拒绝原假设,表示均值之间存在显著差异。
方差分析还可以进行多重比较,用于确定具体哪些组或处理之间存在显著差异。
常用的多重比较方法有Tukey的HSD(最大均值差异)和Bonferroni方法。
方差分析的优点是可以同时比较多个样本的均值差异,具有较好的统计效应。
然而,方差分析也存在一些限制,如对正态性和方差齐性的要求较高。
总之,多个样本均数比较的方差分析是一种常用的统计方法,在科学研究和实验设计中得到广泛应用。
它可以帮助研究人员确定不同处理或组之间的差异,为决策提供支持。