轻烃回收装置工艺
- 格式:doc
- 大小:12.38 KB
- 文档页数:1
两种轻烃回收装置流程对比与分析摘要:以某新建轻烃回收装置为基础,对两种常用的轻烃回收装置工艺流程,即吸收塔-脱吸塔-稳定塔流程和吸收塔-稳定塔-脱乙烷塔流程,使用ProII 9.2软件进行模拟计算,并对计算结果进行对比与分析。
与脱乙烷塔流程相比,脱吸塔流程可以显著减少设备投资费用,蒸汽消耗费用,产值也高于脱乙烷塔流程,所以该新建轻烃回收装置选用脱吸塔流程。
关键词:轻烃回收;液化石油气;稳定石脑油;干气中图分类号:文献标识码:文章编号:国内原油一般密度较大,轻烃含量较少,因此以前建设的原油常减压装置基本上没有轻烃回收设施。
近年来随着加工进口原油量不断增大,进口原油中轻烃组分相对较高,所以后来设计的常减压装置中常带有轻烃回收部分。
随着炼油厂装置规模日益扩大,现有设计趋向于将各装置的轻烃回收部分进行整合。
单独设置轻烃回收装置回收全厂的轻烃组分,可以有效提高生产效率,降低投资,降低全厂能耗[1]。
轻烃回收装置的主要生产目的是回收原料(原料油、原料气)中的液化气,同时干气中C3、C4的含量满足指标要求。
采取的技术手段主要是吸收、解吸、稳定等,均为物理过程。
通过能量消耗达到回收液化气、轻重石脑油、降低干气中C3、C4组分含量的目的。
液化气回收率的高低直接影响装置的能耗,液化气回收率越高装置的能耗也越高。
原料油及原料气的轻烃回收工艺技术,在国内大多采用成熟的吸收、再吸收、脱吸的气体加工工艺以及石脑油的稳定工艺(如催化裂化装置、延迟焦化装置均有类似的吸收稳定流程)。
吸收过程中的吸收剂多采用石脑油或汽油等轻质油品;吸收塔底油经脱吸后送稳定塔回收液化气;贫再吸收剂可使用煤油馏份;富再吸收油返回装置主分馏塔。
轻烃回收装置有两种常用流程可选:吸收塔-脱吸塔-稳定塔流程和吸收塔-稳定塔-脱乙烷塔流程,这两种流程各有特点。
1.原料情况某炼厂计划新建一套轻烃回收装置,规模为200万吨/年,年开工时数为8400小时。
根据全厂总流程安排,本套轻烃回收装置原料为常减压装置,加氢裂化装置,重整装置来的轻烃组分,产品为干气,液化气和稳定石脑油。
目录1装臵简介 (2)2标定的目的及范围 (4)2.1标定的目的 (4)2.2标定的范围 (5)3工艺操作条件 (5)4物料平衡 (7)4.1原料 (7)4.2产品 (7)4.3物料平衡 (8)5产品性质 (8)6三剂消耗 (10)7能耗指标 (10)8产品方案 (10)9标定过程 (11)10工艺技术标定结果及分析 (11)10.1生产能力 (11)10.2工艺操作条件对比分析 (12)10.3物料平衡对比分析 (13)10.4原料指标对比分析 (14)10.5产品指标对比分析 (15)10.6化工原料消耗指标对比分析 (16)10.7公用工程指标对比分析 (16)11标定中发现的问题和瓶颈 (17)12标定结论 (17)13 改进建议 (17)14附录 (18)轻烃回收装臵工艺标定报告1装臵简介中国神华鄂尔多斯煤制油分公司煤液化生产中心轻烃回收装臵由中国石化工程建设公司承担设计、采购和建设,于2007年全面建成,轻烃回收部分采用低温下(12 ℃)的油吸收工艺,回收气体中的C3及C3以上组分。
制冷介质采用液氨,由制氢装臵提供。
PSA部分利用吸附剂对气体的吸附容量随压力变化而变化的特性,吸附剂在选择吸附的条件下,加压吸附气体中的某些组分,减压脱附这些组分,使吸附剂得到再生,而氢气等组分作为弱吸附组分通过床层。
本装臵设计年加工进料气体33.3万吨/年,年加工进料石脑油2.9万吨/年,产品氢45000标立方米/小时。
轻烃回收装臵自2008年底开工以来,经过3年多时间的运行及几次大的技改后装臵目前运行平稳,操作弹性较大。
来自费托合成F-T的释放气经释放气水冷器(E-701)冷却后与大PSA富气、油品加工富气混合至829富气线,829富气与煤液化装臵的常顶气、加氢稳定装臵的塔顶气、加氢改质装臵的含硫气、PSA 部分的解吸气混合,经气压机入口分液罐(D-101)分液后,由气体压缩机升压到1.4 MPa(表)。
1 轻烃回收装置预期产品轻烃回收装置的产品分别是:吸收塔顶富含C 2组分的干气、脱乙烷塔顶富含C 2组分干气、C 3H 8、C 4H 10、正丁烷、石脑油、C 5轻石脑油。
2 工艺技术路线2.1 采用三塔分馏工艺轻烃回收部分通常采用“吸收-脱丁烷-脱乙烷”的后脱乙烷流程,原料适应性强,可以在脱丁烷塔前后分别加工C 5含量不同的原料。
同时,在装置原料性质变化、操作波动时,具有灵活的调节手段,操作时根据原料的性质,甚至可以单独切除脱乙烷塔。
作为全厂性的轻烃回收装置,加工原料复杂,特别是需要加工大量的来自柴油加氢裂化装置和蜡油加氢裂化装置的粗液化气,这些液化气C 5+含量较少,C 2含量高,不需要进脱丁烷塔二次重沸分离C 5,只需要进脱乙烷塔脱除C 2即可。
同时,采用“吸收-脱丁烷-脱乙烷”的后脱乙烷流程具有原料适应性强、抗波动能力强等优点。
由于常减压蒸馏装置的初馏塔采用了提压操作方式,常减压的轻烃可以通过液化石油气组分溶解在初顶油中以液体的形态进行回,同时液化气吸收塔的设置也可以回收柴油加氢裂化装置、蜡油加氢裂化装置、渣油加氢装置和重整装置来的酸性尾气中的轻烃。
通过采用上述工艺,可以使该单元避免设置压缩机,从而避开因有压缩机而带来的流程复杂、操作不便、投资高、噪音大、能耗高、机械故障多、设备维修困难等问题。
此外,由于轻烃回收单元处理多个装置的物料,采用无压缩机回收轻烃,也为其他相关装置的平稳运行提供了更好的保障。
0 引言恒力石化450万吨/年轻烃回收装置于2019年12月建成投产,装置的原料为来常减压的液态烃石脑油、渣油加氢气体、重整含硫燃料气及蜡油加氢含硫液化气等[1]。
轻烃回收单元包含液化气吸收、脱丁烷和脱乙烷;液化气分离单元包含脱丙烷、脱异丁烷。
轻烃回收单元集中对全厂的常减压装置、加氢装置、连续重整装置等液态烃石脑油和含烃类气体进行处理,以回收其中高附加值轻烃组分;液化气分离部分将轻烃回收部分的液化气进一步分离成C 3H 8和C 4H 10,原料性质如表1所示。
摘要轻烃又称为天然气凝液(NGL ),在组成上覆盖+62~C C ,含有凝析油组分(52~C C )。
轻烃回收是指天然气中比甲烷或乙烷更重的组分以液态形式回收的过程。
轻烃回收的目的一方面是为了控制天然气的烃露点以达到商品气质量指标,避免气液两相流动;另一方面,回收的液烃有很大的经济价值,可直接用作燃料或进一步分离为乙烷、丙烷、丁烷、或丙丁烷化合物(液化气)、轻油等,也可以用做化工原料。
另外,轻烃作为一种新型的清洁能源,市场前景非常可观。
所以,设计合理的轻烃回收装置,在化工生产中具有很大的必要性。
本设计主要针对轻烃的回收装置进行,根据原料气的组成及产品指标,计算出合理的分离序列。
通过计算可以得到脱乙烷塔和丙丁烷塔的塔径分别是1.5m 和1.8m ,理论板数分别为10块和11块,回流比分别为1.500和1.083。
脱乙烷塔的操作条件为塔顶-31.75C ︒,1.164MPa ,塔底为40.52C ︒,1.400MPa ,丙丁烷塔的操作条件为29.58C ︒,0.910MPa ,塔底为107.9C ︒,0.930MPa 。
确定塔的形式都为浮阀塔,分别对两个塔的各项参数进行了设计,并对塔进行了水力学校核,所得的塔能较好的达到分离要求。
关键词: 轻烃;分离;精馏;设计ABSTRACTLight hydrocarbon, which is also called the Natural gas condensate, in the composition is covered by +62~C C , and contains oil condensate components. Light hydrocarbon is point to the process that to recovery the composition as liquid that more heavy than methane or ethane in the Natural gas. The purpose of the light hydrocarbon recovery is to control the gas hydrocarbon dew point in order to achieve quality goods gas index, avoid gas-liquid two phase flow; On the other hand, the liquid hydrocarbon recovery has a great economic value, it can be directly used for fuel or further separation for ethane ,propane ,butane ,or propane and butane compounds (liquefied petroleum gas) , light oil etc ,also can be used as raw material for chemical industry. In addition, as a new clean energy, light hydrocarbon’s market foreground is very considerable. So ,to design the reasonable light hydrocarbon recycling equipment has great necessity in chemical production.The design for the main light recovery device ,according to the composition of the gas material and product index ,calculate reasonable separation sequence. Through the calculation can get to take off the ethane tower and the tower propane and butane tower diameter are 1.5 m and 1.8 m, respectively ,theory respectively numbers of plate are 10 and 11 piece ,reflux ratio are 1.500 and 1.083,respectively.The operation condition for take off ethane tower are -31.75C ︒,1.164MPa for the top and 40.52C ︒,1.400MPa for the bottom of propane and butane tower are 29.58C ︒,0.910MPa for the top and 107.9C ︒,0.930MPa for the bottom .Determine the form of tower for the float valve tower, design various parameters for the two towers ,check them from hydraulics and then they can achieve separation requirements.Keywords : Light ;hydrocarbon ;Abruption ;Distillation ;Design目录1 前言 (1)1.1 气质条件及生产要求 (1)1.2 轻烃回收方法 (2)1.3 轻烃回收装置设计意义 (3)2工艺方案及流程 (4)2.1 工艺方案 (4)2.2 装置原则工艺流程图 (4)2.3 生产流程简述 (4)3 物料衡算 (5)3.1 脱乙烷塔的物料衡算 (5)3.1.1 清晰分割 (5)3.1.2 确定最小理论板数 (7)3.1.3最小回流比及实际回 (7)3.1.4 确定实际板数及进料位置 (7)3.1.5 确定适宜的进料温度 (8)3.2 丙丁烷塔的物料衡算 (8)3.2.1 清晰分割 (8)3.2.2 确定最小理论板数 (10)3.2.3最小的回流比及实际回流比计算 (10)3.2.4 确定实际板数及进料位置 (10)3.2.5 确定适宜的进料温度 (10)4能量衡算 (11)4.1 脱乙烷塔的能量衡算 (11)4.1.1 D-104热负荷 (11)4.1.2 D-105热负荷 (11)4.1.3 循环水用量 (12)4.2 丙丁烷塔的能量衡算 (12)4.2.1 D-106热负荷 (12)4.2.2 D-107热负荷 (13)4.2.3循环水用量 (14)4.3 其他热量衡算 (14)4.3.1 热负荷计算 (14)4.3.2 水循环计算 (14)5 设备的工艺计算及选型 (15)5.1 压缩机的工艺计算与选型 (15)5.2 分子筛干燥器的设计与计算 (15)5.3 低温分离器的设计与计算 (16)5.3.1 D-101的设计与计算 (16)5.3.2 D-102的设计与计算 (18)5.4 膨胀机的设计与计算 (21)5.5 精馏塔的设计与选型 (21)5.5.1 脱乙烷塔的设计与选型 (21)5.5.2 丙丁烷塔的设计与选型 (27)5.6 换热器的设计与选型 (34)5.7 换热器选型一览表 (36)6 原材料,动力消耗定额及消耗量 (37)6.1 原材料 (37)6.2 动力消耗 (37)6.2.1 冷却水及蒸汽用量 (37)6.2.2 压缩机及膨胀机功率 (37)7设计结果汇总 (39)8结论与建议 (43)8.1 结论 (43)8.2 建议 (43)谢辞 (44)参考文献 (45)1前言1.1 气质条件及生产要求表1.1 原料气组成序号 组成名称摩尔组成,n%1 1C 0.7192 2 2C 0.11163 3C0.0797 4 4iC0.0189 5 4nC 0.0271 6 5iC 0.0035 7 5nC0.0063 8 +5C 0.0052 9 2N0.0280 10 O H 20.0005 总结1.0000原料气处理量d Nm /108034⨯,条件为MPa C 37.030,︒(绝)。
轻烃回收工艺技术及其进展1. 引言1.1 轻烃回收工艺技术的重要性轻烃是一种重要的化工原料,包括一系列碳数在1~4之间的烃类物质,如甲烷、乙烷、乙烯等。
轻烃在石油、天然气开采和化工生产中得到广泛应用,是许多化工产品的重要组成部分。
轻烃回收工艺技术的重要性主要体现在以下几个方面:轻烃是一种宝贵的资源,资源的再利用是推动可持续发展的重要途径。
随着我国经济的快速发展和化工产业的不断壮大,对轻烃的需求量逐渐增加。
有效回收和利用轻烃资源,不仅可以降低生产成本,提高资源利用效率,还可以减少对环境的污染,符合现代工业发展的可持续性原则。
轻烃作为化工原料,具有广泛的应用前景。
乙烯、丙烯等轻烃是合成许多重要化工产品的原料,如塑料、合成橡胶等。
轻烃回收工艺技术的发展和应用,对促进我国化工产业的创新与发展具有重要意义。
轻烃在石油、天然气加工中的回收利用,还可以提高能源利用效率,减少能源浪费,有利于能源资源的节约和清洁能源的发展。
研究和推广轻烃回收工艺技术,对于我国的能源战略和资源安全具有重要意义。
1.2 研究现状及意义当前,轻烃是石化工业中一类重要的原料,包括乙烯、丙烯、丁烷等,广泛应用于石油化工、合成橡胶、胶粘剂等行业。
轻烃在生产和运输过程中往往会发生泄露和挥发,不仅造成资源浪费,还对环境和人体健康造成危害。
研究和发展轻烃回收工艺技术具有重要意义。
目前,我国的轻烃回收工艺技术主要集中在传统的吸附、吸附-脱附、凝聚等方法上,这些方法在一定程度上可以实现轻烃的回收,但存在能耗高、设备大、操作复杂等缺点。
随着工业生产的不断发展和对环保要求的提高,对轻烃回收工艺技术的要求也日益增加,迫切需要研究新型的、高效节能的轻烃回收工艺技术。
通过研究和探索新型的轻烃回收工艺技术,可以提高轻烃回收率,降低能耗,减少对环境的污染,实现资源的可持续利用。
深入研究轻烃回收工艺技术,不仅有助于推动我国石化工业的发展,也有利于促进绿色环保产业的发展,具有重要的现实意义和深远的影响。
DHX 工艺在轻烃回收装置中的运用曾庆超大庆油田有限责任公司天然气分公司油气加工九大队 ,黑龙江大庆163511要 目前在油气田的轻烃回收装置主要是回收 C 3 气体 ,C 3 气体主要用来制造液化石油气。
DHX 工艺可以在 摘不回收 C 2 的情况下 ,提高 C 3 的回收率 ,对于能源的利用率的提升有着十分重大意义 ,同时还省去了分离 C 2 的工艺 , 节省了工业成本。
C /C 2 比值也影响 DHX 工艺的回收效果。
关 键 词 DHX 工艺 ;C /C 2 比值 ;回收装置 ;适用性 文章编号 1674-6708(2012)67-0102-02中图分类号文献标识码DHX 工艺是加拿大埃索公司 1984 年首次应用的。
我国在 1995 引进这个技术 ,但是在 DHX 的研究还存在不足。
根据 DHX 工艺对不同原料气体的适应性的原理工作 ,取决于原料 气体中 C 3 的含量 ,含量增加 ,吸收率逐渐下降 ,当含量大于 11% 时已经不适合采用 DHX 工艺。
本文根据 DHX 工艺的操 作条件、产品和 C 3 的回收率及能耗方面阐述 DHX 工艺。
1 油田伴生气的组成下面列举了部分油气田原料气中 C 3 和 C 1 /C 2 比值和 C 2 气体分离出来 ,由于乙烷气体的气化制冷和吸收的作用 ,分馏塔的轻组分气体的温度比进料温度低。
这个过程在脱乙烷 塔顶不仅分离了轻组分混合气中的大部分 C 3 的气体 ,同时对 于膨胀机的 C 3 的冷凝量也大幅增加 ,C 3 气体的回收率大大提 高。
2)DHX 工艺脱乙烷塔的回流操作合理安全。
轻烃回收装 置回收的是油田的伴生气中 C 3 气体 ,DHX 工艺利用脱乙烷塔 的全塔分馏方式来提高 C 3 的回收率。
如果脱乙烷塔采用常规 装置全回流操作时 ,消耗能量加大 ,增加了分离成本 ,同时由 于回流液中 C 等其它轻组分气体较多 ,使分馏塔顶的回流泵 2 无法正常操作 ,影响 C 3 回收。
轻烃回收工艺流程
《轻烃回收工艺流程》
轻烃是指碳原子数较少的烃类物质,包括甲烷、乙烷、丙烷等。
在石化工业中,轻烃是一种重要的石油烃原料,广泛应用于化工生产和能源领域。
在炼油厂和化工厂中,轻烃回收工艺是一项关键的环节,可以有效减少能源消耗和资源浪费,提高产品质量和生产效率。
轻烃回收工艺流程通常包括以下几个步骤:
1. 蒸馏分离:将原油经过初步加热后,通过蒸馏塔进行分馏
分离,将不同碳原子数的轻烃分离出来。
这是最基本的轻烃回收步骤,也是生产过程中最早的一道工艺流程。
2. 冷凝回收:将分离出的轻烃气体通过冷凝器进行冷凝,使
得气态轻烃转变为液态,然后通过收集器收集起来。
这一步是为了将轻烃气体回收,并降低气态轻烃的能源损失。
3. 脱硫脱碳:在冷凝回收后的轻烃液体中,通常会含有少量
的杂质,比如硫化氢和二氧化碳。
这时需要进行脱硫和脱碳处理,以提高轻烃的纯度和质量,满足工业生产的需求。
4. 催化裂化:对一些重质的烃类原料进行裂化处理,利用催
化剂使其分解成轻烃产品,进一步提高轻烃回收率和产品质量。
5. 尾气处理:在整个轻烃回收工艺流程中产生的尾气,需要
进行处理,以降低对环境的影响,同时也可回收其中有价值的烃类物质。
综上所述,轻烃回收工艺流程是一个复杂的工程系统,需要对石油烃类原料进行精细加工和处理,以提高产品质量和资源利用率。
各个工艺步骤相互关联,需要在整个生产流程中协调运行,才能实现高效的轻烃回收和利用,这样才能更好地满足工业生产的需求,实现资源和能源的可持续利用。
设计轻烃回收工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 原料气预处理。
原料气进入装置后,首先经过过滤器去除固体颗粒和杂质。
轻烃回收工艺主要有三类:油吸收法;吸附法;冷凝分离法。
当前主要采用冷凝分离法实现轻烃回收。
1、吸附法利用固体吸附剂(如活性氧化铝和活性炭)对各种烃类吸附容量不同,而,将吸附床上的烃类脱附,经冷凝分离出所需的产品。
吸使天然气各组分得以分离的方法。
该法一般用于重烃含量不高的天然气和伴生气的加工办法,然后停止吸附,而通过少量的热气流附法具有工艺流程简单、投资少的优点,但它不能连续操作,而运行成本高,产品范围局限性大,因此应用不广泛。
2、油吸收法油吸收法是基于天然气中各组分在吸收油中的溶解度差异,而使不同的烃类得以分离。
根据操作温度的不同,油吸收法可分为常温吸收和低温吸收。
常温吸收多用于中小型装置,而低温吸收是在较高压力下,用通过外部冷冻装置冷却的吸收油与原料气直接接触,将天然气中的轻烃洗涤下来,然后在较低压力下将轻烃解吸出来,解吸后的贫油可循环使用,该法常用于大型天然气加工厂。
采用低温油吸收法C3收率可达到(85~90%),C2收率可达到(20~60%)。
油吸收法广泛应用于上世纪60年代中期,但由于其工艺流程复杂,投资和操作成本都较高,上世纪70年代后,己逐步被更合理的冷凝分离法所取代。
上世纪80年代以后,我国新建的轻烃回收装置己较少采用油吸收法。
3、冷凝分离法(1)外加冷源法天然气冷凝分离所需要的冷量由独立设置的冷冻系统提供。
系统所提供冷量的大小与被分离的原料气无直接关系,故又可称为直接冷凝法。
根据被分离气体的压力、组分及分离的要求,选择不同的冷冻介质。
制冷循环可以是单级也可以是多级串联。
常用的制冷介质有氨、氟里昂、丙烷或乙烷等。
在我国,丙烷制冷工艺应用于轻烃回收装置还不到10年时间,但山于其制冷系数较大,制冷温度为(-35~-30℃),丙烷制冷剂可由轻烃回收装置自行生产,无刺激性气味,因此近儿年来,该项技术迅速推广,我国新建的外冷工艺天然气轻烃回收装置基本都采用丙烷制冷工艺,一些原设计为氨制冷工艺的老装置也在改造成丙烷制冷工艺。
天然气轻烃回收工艺一.轻烃回收工艺从天然气中回收轻烃凝液经常采用的工艺包括油吸收法,吸附法,冷凝法。
国内外近20多年已建成的轻烃回收装置大多采用冷凝法。
冷凝法回收轻烃工艺就是利用天然气中各烃类组分冷凝温度的不同,在逐步降温过程中依次将沸点较高的烃类冷凝分离出来的方法。
该法的基点是在于:需要提供较低温位的冷量使原料气降温。
按制冷温度不同,又可分为浅冷分离和深冷分离工艺。
浅冷是以回收丙烷为主要目的,制冷温度一般在-15~-25℃左右,深冷则以回收乙烷为目的或要求丙烷收率大于90%。
制冷温度一般在-90~-100℃左右。
常用的制冷工艺主要有三种:①冷剂循环制冷工艺;②膨胀制冷工艺;③冷剂制冷与膨胀制冷的联合制冷工艺。
常用的原料气脱水工艺主要采用分子筛(3A或4A)脱水法和甘醇脱水法。
二.轻烃回收工艺选择1.选择依据含量及自身可利用的压力降大小等多方面因素来选择合适根据油气田中C2的制冷工艺。
根据原料气预冷温度要求的脱水深度及天然气组成等多方面因素来选择合适的天然气脱水工艺。
2.制冷工艺的选择① 冷剂制冷工艺冷剂制冷是利用某些物质(制冷工质)在低温下冷凝分离(如融化、汽化、升华)时的吸热效应产生的冷量。
在NGL(Natural Gas Liquids天然气凝液)回收中常用乙烷、丙烷、氨、氟里昂等由液体汽化吸热冷。
这就需要耗功,用压缩机将气体压缩升压,冷凝液化、蒸发吸热、产生冷量必须消耗热能。
冷剂制冷工艺流程比较复杂,投资较高,但稳定性比较好。
② 膨胀机制冷工艺膨胀机制冷是非常接近于等熵膨胀的过程,气体经过膨胀降压之后温度降低(可能有凝液产生)。
这部分气体与原料气换冷或通过别的途径放出冷量。
膨胀机制冷可以回收一部分功,一般匹配同轴压缩机。
膨胀机制冷工艺中的单级膨胀制冷理论上可达到深冷工艺要求的制冷温度,但对天然气轻烃回收量较大的装置,制冷量需求较大。
如采用单级膨胀制冷工艺,则天然气的压缩功会太大,能耗较高,并由于较高的原料气压力使操作稳定性降低。
大庆油田轻烃回收装置生产工艺的改造分析【摘要】近年来,我国针对油田轻烃回收装置现状做了详细的调查、研究,并对其进行分析,发现,我国油田轻烃回收装置主要原料来自大庆油田,通过增压、制冷等方式将轻烃分离出来,得到合格干气。
本文主要针对大庆油田的轻烃回收装置运行的过程中,产生的一些冷量能资源消耗、氨压缩机以及负荷过大等问题,并且提出对油田生产工艺的流程进行改造,充分利用油田冷量资源,为我国油田节约能源,以此来提高我国的轻烃收率。
【关键词】大庆油田轻烃回收装置生产工艺改造冷量我国的大庆油田轻烃回收装置是整个黑龙江省油田第一套创新的轻烃回收处理装置。
利用油田的可再利用资源,节省油田的产能资源,促进了油田的可持续发展。
轻烃回收装置通过增压、制冷等方式将轻烃分离出来,进行处理产生液化气、干气、溶剂油等多种产品,其中干气经过外输管网作为商品天然气进行外输。
轻烃回收装置在设计过程中,运用的主要原料是原油伴生气与气井气。
原油伴生气主要是经过天然气压缩机对其进行压缩、冷却,最后进行分离,将分离出的气相放入氨蒸发器进行制冷,制冷后放入低温分离器进行再次分离,得出的气相再与气井气进行混合制冷,开始进入膨胀机组绝热膨胀制冷,较低的温度经过换热后与脱乙烷顶部的气相混合进入换热器换热,最后经由膨胀机组增压,增压过后以干气作为外输气体。
1 油田轻烃回收装置生产工艺改造中存在的问题膨胀制冷系统停止之后,由原油伴生气产生的原料气进入装置,经初级分离器进行游离水、杂质处理,之后进入天然气压缩机进行压缩、换热,换热后再进入三相分离器内,将分离出的轻烃灌入料罐内,往料罐内注入防冻剂,再次进入氨蒸发器进行制冷,温度约在-19℃左右,第二次放入低温三相分离器内进行分离,将分离出的气体与脱乙烷顶部的气体相结合,作为干气输管网外输,分离出来的轻烃存放在料罐内,运用脱乙烷进行处理,产生液化石油气,如果将塔底轻质油继续进入下一步程序就会产生丁烷及戊烷等多种产品。
轻烃制冷回收工艺摘要:自20世纪80年代以来,国内外以节能降耗、提高轻烃收率及减少投资为目的,对NGL 回收装置的工艺方法进行了一系列的改进,出现了许多新的工艺技术从天然气中回收的轻烃是优质的燃料,也是宝贵的化工原料,具有较高的经济价值。
制冷工艺主要采用冷剂循环制冷、膨胀机制冷、冷剂制冷与膨胀机制冷相结合的混合制冷,单级膨胀机制冷工艺应用广泛,深冷装置较少,装置能耗高,自控水平较低。
在深冷回收装置中,以冷剂制冷作为辅助冷源,膨胀机制冷作为主冷源的混合制冷方法,因制冷温度低,液烃回收率高,对气源条件变化适应性强,将得到推广和应用。
从天然气中回收的轻烃是优质的燃料,也是宝贵的化工原料,具有较高的经济价值。
本文通过采用轻烃回收工艺方法和工艺过程结合在一起进行研究在工艺设计中,针对不同的原料状况,应积极采用和开发新工艺、新技术以达到节能降耗、提高轻烃收率、有效的利用能量、降低消耗起着关键性的作用。
关键词:轻烃回收膨胀机制冷天然气1 烃回收工艺在气体处理厂内,通过改变气体条件,破坏各组分间的平衡,在达到新的平衡状态时会有一些组分凝析、另一些组分蒸发,从而实现从天然气内回收液态烃。
改变的条件可能是压力或温度,也可能是将不同的物质引入气流,更可能是上述三种方法的结合。
早期从天然气内回收液态烃的方法是采用压缩和冷却。
工程师们发现,压缩天然气至较高压力并冷却至接近环境温度,会从气流中形成并分离出一定数量的烃液,还知道采用平衡蒸发常数和天然气(组分)分析能预测烃液的回收量。
压缩和冷却工艺一直是最简单的方法。
然而,这种方法却不如后来开发的一些方法有效。
压缩和冷却法常受周围空气或使用冷却水的制约。
用制冷进一步降低气流温度并回收更多的液体产品,是传统压缩和冷却方法合乎逻辑的发展。
用氨或烷为制冷剂的机械制冷系统是最早使用的制冷类型。
当然,在早期的尝试中曾遇到许多与生成水合物有关的问题。
在气体深冷(蒸发)器以及深冷器下游的分离器内发生过冰冻。
橇装轻烃回收装置一、技术原理小型轻烃回收装置是用油、气田伴生或放空气(大罐挥发气、原油稳定气、分离缓冲罐气或油井套管气等)生产市场紧俏的液化石油气、稳定轻烃及干气的工艺技术装置。
装置采用的工艺技术有中压氨或丙烷制冷、冷冻油吸收、DHX工艺、JT阀节流或膨胀制冷、混合冷剂+膨胀制冷或变压吸附等单一或组合技术。
二、技术特点LPTY采用三维可视化PDSOFT软件,将轻烃回收工艺装置成撬设计并制造成一个或几个7X2.3m大小的撬体。
采用该装置轻烃回收项目,可以大大节省工艺装置占地并节省现场施工周期,同时装置的制造及工程质量也相比场地化施工提高很多。
装置设计采用了先进的DCS或PLC进行控制,确保装置平稳运行及产品质量指标。
三、主要技术经济指标LPTY撬装轻烃回收装置处理的伴生气规模为0.3~10X104m3/d,投资回收期2~3年。
根据伴生气中C3+的含量差异,采用中压浅冷工艺装置的C3产品收率约为45~80%,采用冷冻油吸收工艺的装置C3收率约为80~92%,而采用变压吸附工艺的C3收率可达到85~93%。
LPTY撬装轻烃回收装置的制造技术及质量比传统场站化施工的固定装置有很大提升,施工周期比传统工艺节省40天以上,可为用户节约15%的投资成本。
四、应用范围和效果小型撬装轻烃回收工艺技术及装置可广泛应合于油田联合站、接转站及放空火炬气回收等场合。
该装置能提高伴生气综合利用能力,提高资源利用率;有效地减少甲烷和二氧化碳等温室气体造成的大气污染。
在取得良好经济效益的同时,还极大地改善了油气生产区域作业环境,减少安全隐患的发生。
五、技术特点该设备集中压氨或丙烷制冷、冷冻油吸收、DHX工艺、JT阀节流或膨胀制冷、混合冷剂+膨胀制冷或变压吸附等单一或组合轻烃回收工艺技术。
该设备采用三维可视化PDSOFT软件,将轻烃回收工艺装置成橇设计并制造成一个或几个7×2.3m大小的橇体。
该设备采用DCS或PLC进行控制,确保装置平稳运行及产品质量指标。
80万方每天轻烃回收装置工艺设计引言轻烃是石油加工过程中产生的一种有机化合物,包括丙烷、丁烷等。
随着全球能源需求的增长,轻烃的回收和利用变得越来越重要。
本文将介绍一种每天可处理80万方轻烃的回收装置的工艺设计。
装置概述80万方每天轻烃回收装置的主要组成部分包括进料系统、分离系统、回收系统和产品储存系统。
进料系统进料系统主要用于将原料输送到分离系统。
在本装置中,主要的原料是轻烃气体混合物,需要通过管道输送到分离塔。
分离系统分离系统是整个工艺的核心部分。
在分离塔中,轻烃混合物将被分离成不同的组分,以实现轻烃的回收。
分离塔的设计需要考虑到不同组分的沸点差异,并采用合适的精馏工艺。
回收系统回收系统用于将轻烃组分从分离塔中回收,并将其转化为可用产品。
在本装置中,回收系统包括凝析塔、可用产品的分离和处理等。
产品储存系统产品储存系统用于将回收的产品储存在合适的容器中,以备后续使用或出售。
工艺设计80万方每天轻烃回收装置的工艺设计需要考虑以下几个方面:轻烃混合物的成分、分离塔的设计、回收系统的选择以及产品储存系统的设计。
轻烃混合物的成分在进行工艺设计之前,需要对轻烃混合物的成分进行分析。
根据不同的成分含量,可以确定分离塔的操作参数和回收系统的工艺选择。
分离塔的设计分离塔的设计需要根据轻烃混合物的成分和分离要求来确定。
首先,需要选择合适的塔板类型和塔板间距。
其次,还需要考虑塔的高度和直径,以保证分离效果和操作效率。
回收系统的选择回收系统的选择取决于回收产品的要求和工艺经济性。
常见的回收系统包括凝析回收、吸附回收和膜分离回收等。
在选择适当的回收系统时,需要考虑到其回收效率、操作成本和装置复杂程度等因素。
产品储存系统的设计产品储存系统的设计需要考虑到产品的性质和需要。
常见的储存方式包括液态储存和气态储存。
在设计过程中,需要考虑到储存容器的安全性和可用性。
结论80万方每天轻烃回收装置的工艺设计需要综合考虑轻烃混合物的成分、分离塔的设计、回收系统的选择和产品储存系统的设计。
探析天然气轻烃回收装置工艺优化探析天然气轻烃回收装置工艺优化摘要:随着科技的发展和社会的进步,节能减排措施越来越受到社会和企业的关注。
本文针对某企业应用的轻烃浅冷回收装置进行分析和研究,充分考虑到天然气轻重程度对工艺参数的影响,有效地使用了HYSIM烃类工艺的模拟软件进行了参数优化。
结果表明,调节最优的增压机出口压力以及蒸发器出口温度,能够有效地提升轻烃的回收率。
关键词:天然气轻烃回收工艺优化一、引言由于我国在天然气轻烃回收方面的起步比较晚,所以当前所应用的回收装置大多数都存在着轻烃回收率低,生产成本高的问题。
在20世纪的90年代中期,轻烃回收工作中优化技术的应用引起了人们的广泛关注,并且有效地降低了装置加工过程中的能耗,提高了工作的效率和操作的可行性。
在当前我国所进行的天然气浅冷回收装置优化工艺中,主要就是建立在物料流程模拟的基础上,采用分馏塔等分离设备,重点加强轻烃的回收率以及相关组分的优化回收。
本文笔者主要针对组分中的甲烷回收率进行研究,重点进行膨胀增压机出口压力以及冷箱出口温度的有效调节,实现最低能耗下甲烷的最大回收率。
二、装置现状在进行优化研究中,设置相关条件为,原料气温度:26℃,伴生气处理量为2.59×104m3/d;原料气压力为0.12 MPa(绝);并且天然气组分以及相关组成如表所示。
在进行油井的油田伴生气预分离工艺时,在分离器中可以得到水和原油,并且它们会形成分别进入一级压缩机和二级压缩机的两股气流。
气体在经过压缩机出口时会被稳压汇合在一起,并且经过空冷器后进入油气分离阶段,然后在经过干燥脱水后进入增压机进行增压作用,最后通过膨胀机冷却进入蒸发器进行换热,在经过一级油气分离器、二级油气分离器的换热分离,确保其温度与压力大幅降低后再一次进行二级油气分离,最终分离出轻烃。
具体流程如图所示:三、优化模型的建立1.确定优化目标在常用的轻烃回收工艺中,往往根据某一特定的关键组分的液化率来衡量冷凝分离法的液化率的高低。
轻烃回收工艺流程轻烃回收工艺流程是指对工业生产过程中产生的废气中所含的轻烃进行回收利用的一种处理方法。
轻烃是指碳数较低的烷烃类化合物,如甲烷、乙烷、丙烷等。
这些轻烃通常是石油、天然气等燃料的组成成分,具有较高的能量价值。
因此,对于将这些轻烃回收利用,不仅可以减少能源浪费,还可以减少对环境的污染。
轻烃回收工艺流程主要包括以下几个步骤:废气收集、净化、液化、分离和利用。
首先,废气收集是指将产生轻烃废气的工业生产设备的排放口通过管道连接到废气处理设备上。
废气处理设备可以是一个集中的废气处理装置,也可以是直接连接到产生废气的生产设备上的小型处理装置。
然后,废气净化是指将废气中的杂质、颗粒物等进行过滤和清除,以保证后续处理过程的正常进行。
废气净化可以采用物理方法,如过滤、吸附等,也可以采用化学方法,如催化氧化等。
接下来,废气液化是将经过净化的废气进行冷却和压缩,使其转变为液态,方便后续步骤中的分离和利用。
废气液化通常采用冷凝器和压缩机进行,通过降低废气的温度和增加废气的压力,使其转变为液态的轻烃。
然后,分离过程是将液态的轻烃通过蒸馏等方法,将其中碳数不同的烷烃分开。
这是因为不同碳数的烷烃在沸点上存在差异,通过控制温度和压力,可以将其分离开来,并分别进行后续的利用。
最后,利用过程是将分离出的各种轻烃利用起来。
这可能包括将其作为燃料进行燃烧,或作为原料进行化学反应,制备其他有用的化学品。
轻烃的利用方式多种多样,根据不同的需求和实际情况进行选择。
综上所述,轻烃回收工艺流程是一种将工业生产过程中产生的废气中的轻烃进行回收利用的处理方法。
通过废气收集、净化、液化、分离和利用等步骤,可以将废气中的轻烃转化为有用的能源或化学品,达到减少能源浪费和环境污染的目的。
这一工艺流程在现代工业生产中具有重要的意义,可以提高资源利用效率,促进可持续发展。
万方每天轻烃回收装置工艺设计随着石油化工行业的不断发展,对于轻烃的回收利用也越来越受到重视。
轻烃是石油加工过程中产生的一种有机化合物,主要包括乙烯、丙烷、丁烷等。
这些轻烃在生产过程中往往会被释放到大气中,造成资源的浪费和环境的污染。
因此,设计一套高效的轻烃回收装置工艺,对于节约资源、保护环境具有重要意义。
万方每天轻烃回收装置工艺设计的关键在于提高轻烃回收率、降低能耗、减少废气排放。
在设计工艺时,需要考虑原料的种类和含量、回收装置的结构和工作原理、操作参数的选择等因素。
下面将从这几个方面对万方每天轻烃回收装置工艺设计进行详细介绍。
首先,轻烃回收装置的设计需要根据原料的种类和含量来确定。
不同种类的轻烃在回收过程中可能需要采用不同的工艺方法,因此需要根据实际情况来选择合适的装置结构。
同时,不同原料的含量也会影响到回收装置的工艺参数,比如温度、压力等,因此在设计工艺时需要进行充分的实验和分析。
其次,回收装置的结构和工作原理也是设计的重点之一。
一般来说,轻烃回收装置包括进料系统、分离系统、冷却系统、脱附系统等部分。
其中,分离系统的设计是关键,需要根据原料的性质和要求来选择合适的分离方法,比如吸附分离、膜分离、蒸馏分离等。
此外,冷却系统的设计也十分重要,需要考虑到轻烃的沸点和凝固点,选择合适的冷却介质和工艺参数,以提高回收率和降低能耗。
最后,操作参数的选择也是万方每天轻烃回收装置工艺设计的关键。
操作参数包括温度、压力、流速、进料浓度等,这些参数的选择直接影响到回收装置的性能和效果。
因此,在设计工艺时需要进行充分的实验和分析,确定合适的操作参数,以实现最佳的回收效果。
总的来说,万方每天轻烃回收装置工艺设计需要综合考虑原料的种类和含量、装置的结构和工作原理、操作参数的选择等因素。
通过合理的设计,可以实现高效的轻烃回收,降低能耗,减少废气排放,从而实现资源的节约和环境的保护。
希望未来能有更多的工程技术人员投入到轻烃回收装置工艺设计中,为我国石油化工行业的可持续发展做出贡献。
轻烃回收装置工艺
轻烃是气态或液态的烃类化合物,包括甲烷、乙烷、丙烷、丁烷等。
轻烃在石油加工、化工、能源等行业中广泛应用,但在生产和运输过程中,会产生大量的废气和废水,造成资源浪费和环境污染。
为了更好地利用和保护资源,轻烃回收装置应运而生。
轻烃回收装置工艺主要包括以下几个步骤:
1. 废气收集:将产生的废气通过管道引入收集系统,减少在空气中释放的轻烃含量。
2. 压缩:将收集到的废气通过压缩装置压缩成液态,方便后续处理和运输。
3. 分离:将压缩后的液态轻烃通过分离装置进行分离。
通常的分离方法包括冷凝分离、吸附分离、膜分离等。
不同的分离方法适用于不同的轻烃种类和工艺要求。
4. 精馏:将分离后的轻烃进一步精馏分离,得到高纯度的轻烃产品。
5. 废水处理:在回收轻烃的过程中,会产生一定量的废水。
为了减少环境污染,需要对废水进行处理。
一般采用生物处理和物理化学处理相结合的方式进行废水处理。
以上是轻烃回收装置工艺的主要步骤。
随着科技的不断发展和环保意识的提高,轻烃回收装置将会越来越广泛地应用于各个行业中,发挥越来越重要的作用。
- 1 -。