单项式多项式和分式
- 格式:docx
- 大小:36.17 KB
- 文档页数:1
数学七年级上册【整式】考点汇总一、代数式与有理式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、整式和分式统称为有理式。
3、含有加、减、乘、除、乘方运算的代数式叫做有理式。
二、整式和分式1、没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
2、有除法运算并且除式中含有字母的有理式叫做分式。
三、单项式与多项式1、没有加减运算的整式叫做单项式。
(数字与字母的积---包括单独的一个数或字母)2、几个单项式的和,叫做多项式。
其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
初中数学复习第四讲——整式与分式一、知识结构说明:在本局部,代数式分为整式和分式讨论。
在实数X围内,代数式分为有理式和无理式,有理式分为整式和分式,整式分为单项式和多项式。
二、知识点梳理1.代数式:用运算符号和括号把数或表示数的字母连接而成的式子叫做代数式。
用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。
2.单项式:由数与字母的积或字母与字母的积所组成的代数式叫做单项式〔单独一个数也是单项式〕;单项式中的数字因数叫做这个单项式的系数〔包括符号〕;一个单项式中,所有字母的指数的和叫做这个单项式的次数。
3.多项式:由几个单项式的和组成的代数式叫做多项式;在多项式中的每个单项式叫做多项式的项,不含字母的项叫做常数项;次数最高项的次数就是这个多项式的次数。
4.整式:单项式、多项式统称为整式。
5.分式:两个整式A、B相除,即A÷B时,可以表示为AB.如果B中含有字母,那么AB叫做分式,A叫做分式的分子,B叫做分式的分母。
6.同类项:所含的字母一样,且一样的字母的指数也一样的单项式叫做同类项。
把多项式中的同类项合并成一项,叫做合并同类项;一个多项式合并后含有几项,这个多项式就叫做几项式。
合并同类项的法如此:把同类项的系数相加的结果作为合并后的系数,字母和字母的指数不变〔合并同类项,法如此不能忘,只求系数代数和,字母指数不变样〕。
7.整式的加减:整式的加减就是单项式、多项式的加减,可利用去括号法如此和合并同类项来完成整式的加减运算。
去括号法如此:括号前面是“+〞号,去掉“+〞号和括号,括号里的各项不变号;括号前面是“—〞 号,去掉“—〞号和括号,括号里的各项都变号。
〔括号前面是“+〞 号,去掉括号不变号;括号前面是“—〞号,去掉括号都变号。
〕8.同底数幂的乘法:同底数的幂相乘,底数不变,指数相加。
m n m+n a a =a •.〔m 、n 都是正整数〕9.幂的乘方:幂的乘方,底数不变,指数相乘,即()n m mn a =a .〔m 、n 都是正整数〕10.积的乘方:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘, 即()nn n ab =a b .〔n 为正整数〕11.整式的乘法:〔1〕单项式与单项式相乘:单项式与单项式相乘,把它们的系 数、同底数幂分别相乘的积作为积的因式,其余字母连同它 的指数不变,也作为积的因式。
整式知识点分类归纳总结整式的种类有多种,主要包括单项式、多项式、分式,以及它们的运算。
下面对整式相关的知识点进行分类归纳总结:一、整式的基本概念1. 代数式的定义代数式是由数字、字母和运算符号组成的符合语法规则的表达式。
代数式可以表示数与数之间的关系,可以用来表示具有普遍性的数学规律。
2. 整式的定义整式是由字母和数以及加减乘除等运算符号组成的代数式。
整式中不包含分式以及根式等算术式。
整式通常由常数项、一次项、二次项、三次项等各种次数的项组成。
3. 单项式和多项式单项式是只包含一个变量的代数式,例如3x、-2y等。
多项式是由单项式经过加法与减法运算得到的代数式,例如3x+2y、5x^2+3x-6等。
4. 整式的次数整式中的最高变量次数称为整式的次数。
例如5x^2+3x-6的次数为2,3x^4-2x^3+5x^2-3x+4的次数为4。
5. 整式的分类整式按照其结构特点和性质可以分为单项式、多项式和分式。
单项式是只包含一个变量的代数式,多项式是由单项式经过加法与减法运算得到的代数式,分式是一个整式除以另一个整式所得到的代数式。
6. 整式的运算整式的运算包括加法、减法、乘法和除法。
整式的加法与减法是基于单项式和多项式的加减法运算规则,整式的乘法是基于分配律和乘法法则的运算,整式的除法则是利用多项式的因式分解和除法规则进行运算。
二、单项式与多项式的运算1. 单项式的加法与减法单项式的加法和减法是遵循着同类项相加减的原则,即变量的指数相等的项可以相加减,常数项也可以相加减。
2. 多项式的加法与减法多项式的加法和减法是将同类项进行合并,即对应位置的项进行加减操作,最终得到合并后的多项式。
3. 单项式与多项式的乘法单项式与多项式的乘法是利用分配律,即将单项式的每一项分别与多项式进行乘法运算,最后将结果合并得到最终的乘积。
4. 多项式的乘法多项式的乘法是将每个多项式中的项依次与另一个多项式中的项进行乘法运算,最后将结果合并得到最终的乘积。
单项式和多项式☆☆☆知识讲解1、代数式:用基本的运算符号(包括加、减、乘、除、乘方、开方)把数、表示数的字母连结而成的式子叫做代数式,单独一个数或一个字母也是代数式。
2、单项式:只含有数字或字母的乘积的式子叫做单项式.①定义中的“积”是对数与字母而言的,只能是乘法或乘方运算,而不能是加、减、除等其他运算. 如ab 2+2,32y x -,mn2等都不是单项式. ②单独的一个数或一个字母也是单项式.(1)单项式的系数:单项式中的数字因数叫做这个单项式的系数.(2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项数的次数.3、多项式:几个单项式的和叫做多项式.(1)多项式的项:是指在多项式中,每个单项式叫做多项式的项.多项式的项包括它前面的性质符号。
(2)多项式的项数:一个多项式中有几个单项式就有几项,这个多项式就叫几项式。
(3)常数项:在多项式中,不含有字母的项叫做多项式的常数项。
(4)多项式的次数:一个多项式中,次数最高的项的次数,叫做这个多项式的次数.(5)降(升)幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降(升)幂排列.4、整式:单项式与多项式统称为整式. 注意:分母中含有字母的代数式是分式1. 对单项式、多项式、整式进行判断例1 判断下列各代数式,哪些是单项式,哪些是多项式,哪些不是整式.(1)-3xy 2;(2)2x 3+1;(3)21(x +y +1); (4)-a 2; (5)0;(6)yx 2; (7)32xy; (8)x21;(9)x 2+x 1-1; (10)11+x ;2、单项式、多项式的次数和项例2 指出下列各单项式的系数与次数:(1);832ab (2)-mn 3; (3)3432y x π (4)-3;例3 填空:(1)多项式2x 4-3x 5-2π4是次项式,最高次项的系数是,四次项的系数是,常数项是,补足缺项后按字母x 升幂排列得;(2)多项式a 3-3ab 2 +3a 2b-b 3是次项式,它的各项的次数都是,按字母b 降幂排列得.例1、 用代数式表示:一个两位数,个位数字是a ,十位数字是b ,则这个两位数可表示为___________。
第二部分 式与式的运算一、代数式、整式的运算、因式分解、分式 1.代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式.单独一个字母或一个数也是代数式,用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.2.单项式:只含有数或字母的乘法(含乘方)运算的代数式叫做单项式,单独一个字母或一个数也是单项式,所有字母的指数和叫做单项式的次数.3.多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式中次数最高项的次数叫做多项式的次数.升幂排列: 降幂排列:4.整式:单项式与多项式统称为整式.5.整式的加法:合并同类项. 添括号:()a b c a b c -+=-- 去括号:()a b c a b c +-=+-6.整式的乘法: (1)单项式×单项式:()()()212312325a b c abab c ab c +--+⋅==.(2)单项式×多项式:()2a b a ab a -=-. (3)多项式×多项式:()()a b c d +⋅+()()a c d b c d =⋅++⋅+ac ad bc bd =+++(4)乘法公式()()22a b a b a b +-=- ① ()2222a b a ab b ±=±+ ②a 2+b 2=(a +b )2-2ab (a -b )2=(a +b )2-4ab . (a -b )(a 2+ab +b 2)=a 3-b 3 7.整式的除法()232226422624242a b a b a b a b a b a b --÷=÷== 8.因式分解:把一个多项式表示成几个整式的乘积的形式,叫做把这个多项式因式分解.多项式=( )·…·( ) 常用方法有: (1)提公因式法:如()ab ac ad a b c d ++=++;(2)公式法(利用乘法公式):如()()()22224222x y x y x y x y -=-=+-;(3)十字相乘法: 因式分解:243x x ++x 1 x 3所以:()()24313x x x x ++=++ 因式分解:223x x --x 1 x 3-所以:()()22313x x x x --=+- 9、分式:(1)概念:如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式. (2)分式运算的符号规律:a a a ab b b b --=-=-=--; a a a b b b--==-. (3)分式通分“根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
什么是整式什么是分式
整式为单项式和多项式的统称,是有理式的一部分。
形如A/B(A、B是整式,B中含有字母)的式子叫做分式。
其中A叫做分式的分子,B 叫做分式的分母。
整式的定义
整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。
由数与字母的积或字母与字母的积所组成的代数式叫做单项式,单独一个数或一个字母也是单项式。
由有限个单项式的代数和组成的代数式叫做多项式。
分式的定义
一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A/B就叫做分式,其中A称为分子,B称为分母。
分式是不同于整式的一类代数式,分式的值随分式中字母取值的变化而变化。
当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。
分式的条件
(1)分式有意义条件:分母不为0。
(2)分式值为0条件:分子为0且分母不为0。
(3)分式值为正(负)数条件:分子分母同号得正,异号得负。
(4)分式值为1的条件:分子=分母≠0。
(5)分式值为-1的条件:分子分母互为相反数,且都不为0。
初三总复习:(二)整式与分式一、知识点回顾:1、 定义:(1)代数式:用运算符号和括号把数或者表示数的字母连接而成的式子。
(2)单项式:由数与字母的积或字母与字母的积所组成的代数式。
(3)同类项:如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项 (4)多项式:几个单项式的和组成的代数式叫多项式 (5)整式:单项式、多项式统称为整式。
(6)分式:若A 、B 是整式,B 中含字母,则BA叫分式。
2、整式的运算有加法、减法、乘法、除法、乘方。
3、乘法公式平方差公式:()()b a b a -+= 完全平方公式()2b a ±= 4、幂的运算n m a a ∙= ;()nma = ;()nab = ;n m a a ÷= ;o a = ()0≠a ;p a -= ()0≠a ;5、因式分解是指把多项式和的形式转化成几个整式积的形式; 方法有:提取公因式法;公式法;分组分解法;十字相乘法。
6、分式的基本性质: . =BA= 其中 7、约分和通分约分:把一个分式的分子与分母中相同的因式约去的过程叫约分。
通分:把几个异分母的分式分别化为与原来分式的值相等的同分母分式的过程叫通分。
二、要点回顾:1、将下列代数式分别填入相应的大括号内:aa y x x x mn n m xb a 21,3,21,132,1,3,4122223-+-+--+- 单项式{ }, 多项式{ }, 分 式{ }. 2、用代数式表示“a 与b 的差的平方”是 . 3、若单项式()nyx n --122是关于 x 、y 的三次单项式,则n= .4、先去括号,再合并同类项:()()c b b a ---2= .5、若02=+a a ,则2009222++a a = .6、填空:=⋅32a a ; =23)(a ;=÷a a 3; =+222a a ;45x x x ⋅÷= ;()()3222a b b a -⋅-= .7、计算:()⎪⎭⎫⎝⎛⋅-22313xyy x = ,()()53103102⨯⋅⨯-= . 8、多项式b ax x ++2可以分解为()()14+-x x ,则a= ,b= .9、化简:⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛+y x y x 2121= ,()221-x = . 10、当21,2==b a 时,()()b a b b a -+-2= . 11、因式分解:42-a = ,x x x 9623+-= ,322-+a a =,c b ac ab -+-= .12、已知36442++mx x 是完全平方式,则m 的值为 .13、已知2,3==n m a a ,则nm a 32-= .14、当2,3=-=y x 时,计算73+-x y 的值为 . 15、当x 时,分式1312++x x 有意义,当x 时,它的值为零.16、化简:y x x 22025-= ,=++--56222x x x x .17、化简:xx x -+-333= , xx x +÷⎪⎭⎫⎝⎛-211 = , ⎪⎭⎫ ⎝⎛-÷b a a 1= , ()22--b a = . 18、在实数范围内因式分解:22-x = ,三、双基练习:1、下列各对单项式中不是..同类项的是( ). A 、43-与34-; B 、b a 22与221ba ; C 、24y x 与()22y x -; D 、y x 223与2xy . 2、已知a 、b 、c 在数轴上的对应点的位置如图所示, 则a b c b c a --+--= .3、整式1232+-x x 减去x x +-2的差为.4、如果代数式832++-b a 的值为18,则代数式269+-a b 的值为 .5、用幂的结果表示:()2333⨯-= ,()()32a b b a -⋅-= .6、计算:t t t t ÷-⋅632= ,()()5224y y -⋅-= .7、若3412121b a b a a n m n m =⎪⎭⎫⎝⎛⋅++,则m= ,n= . 8、填空:=10636b a ( )2,33254⨯=( )3=10().9、计算:()()13+-x x = ,()22y x +-= ,()()2222y x x y +-= ,31303229⨯= . 10、观察并解答问题:(1)填空 :()()11+-x x = ; ()()112++-x x x = ;()()1123+++-x x x x = ;()()11234++++-x x x x x = .(2)猜想 ()()1121++⋅⋅⋅+++---x x xx x n n n的结果应是 .b a c11、多项式62x x +提取公因式2x 后的另一个因式是 .12、因式分解:23ab a -= ,181222+-x x = ,a b ab a +++2= ,1222---y y x = , ()()128222++-+a a a a = , 36524--x x = . 13、在实数范围内因式分解:742-x = ,14、若22425y kxy x ++可以分解为()225y x -,则k 的值是 .15、当x 时,式子65922+--x x x 值为零.16、若分式x353-的值为负数,则x 的取值范围是 . 17、下列运算中,错误的是( ). A 、()0≠=c bc acb a ; B 、1-=+--ba b a ; C 、b a ba b a b a 321053.02.05.0-+=-+; D 、xy x y y x y x +-=+-.18、已知两个分式:xx B x A -++=-=2121,442,其中2±≠x ,则A 与B 的关系 为( ).A 、相等;B 、互为倒数;C 、互为相反数;D 、A 大于B .19、约分:2322515c a b a -= ,()()2222c b a c b a +--+= . 20、计算:x y y x 11⋅÷⋅= ,a ba ab b a +÷⎪⎭⎫ ⎝⎛-= , ⎪⎪⎭⎫⎝⎛-+-⋅+a a a a a a 2422222= . 解答题:1、请从下列三个代数式中任选两个构成一个分式,并化简该分式:12-a , b ab -, ab b +.2、请从下列各式中任选两式作差,并将得到的式子进行因式分解:24a , ()2y x +, 1, 29b .3、先化简,再求值: 1112421222-÷+--⋅+-a a a a a a 其中a 满足02=-a a . 4、长方体中有一个公共顶点的三个面的面积分别是22cm 、23cm 、26cm ,求长方体的体积.5、按下列程序计算,把答案写在表格内:(1)填写表格:(2)请将题中计算程序用代数式表达出来,并给予化简.6、有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b )、宽为(a+b)的矩形,则需要A 类卡片 张,B 类卡片 张,C 类卡片 . 张。
中考数学知识考点:整式与分式运算中考数学知识考点:整式与分式运算整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。