高中数学-均匀随机数的产生测试题
- 格式:doc
- 大小:441.86 KB
- 文档页数:5
高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。
(整数值)随机数(random numbers)的产生一、选择题1.袋子中有四个小球分别写有“幸”“福”“快”“乐”四个字有放回地从中任取一个小球取到“快”就停止用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数且用1234表示取出小球上分别写有“幸”“福”“快”“乐”四个字以每两个随机数为一组代表两次的结果经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计直到第二次就停止的概率为( )A 15B .14C 13D .12【解析】 由随机模拟产生的随机数可知直到第二次停止的有1343231313共5个基本事件故所求的概率为P =520=14【答案】 B2.某班准备到郊外野营为此向商店订了帐蓬如果下雨与不下雨是等可能的能否准时收到帐篷也是等可能的只要帐篷如期运到他们就不会淋雨则下列说法正确的是( )A .一定不会淋雨B .淋雨机会为34C .淋雨机会为12D .淋雨机会为14【解析】 用A 、B 分别表示下雨和不下雨用a 、b 表示帐篷运到和运不到则所有可能情形为(Aa )(Ab )(Ba )(Bb )则当(Ab )发生时就会被雨淋到∴淋雨的概率为P =14【答案】 D3.已知某运动员每次投篮命中的概率为40%现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数指定1234表示命中567890表示没有命中;再以每三个随机数为一组代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计该运动员三次投篮恰有两次命中的概率为( )【28750061】A .035B .025C .020D .015【解析】 恰有两次命中的有191271932812393共有5组则该运动员三次投篮恰有两次命中的概率近似为520=025【答案】 B二、填空题6.抛掷两枚相同的骰子用随机模拟方法估计向上面的点数和是6的倍数的概率时用123456分别表示向上的面的点数用计算器或计算机分别产生1到6的两组整数随机数各60个每组第i 个数组成一组共组成60组数其中有一组是16这组数表示的结果是否满足向上面的点数和是6的倍数:________.(填“是”或“否”)【解析】 16表示第一枚骰子向上的点数是1第二枚骰子向上的点数是6则向上的面的点数和是1+6=7不表示和是6的倍数.【答案】 否7.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车某天袁先生准备在该汽车站乘车前往省城办事但他不知道客车的车况也不知道发车顺序.为了尽可能乘上上等车他采取如下策略:先放过一辆如果第二辆比第一辆好则上第二辆否则上第三辆.则他乘上上等车的概率为________.【解析】 共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车)所以他乘坐上等车的概率为36=12【答案】 128.甲、乙两支篮球队进行一局比赛甲获胜的概率为06若采用三局两胜制举行一次比赛现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数用012345表示甲获胜;6789表示乙获胜这样能体现甲获胜的概率为06因为采用三局两胜制所以每3个随机数作为一组.例如产生30组随机数.034743738636964736614698637162332 616804560111410959774246762428114572 042533237322707360751据此估计乙获胜的概率为________.【解析】就相当于做了30次试验.如果6789中恰有2个或3个数出现就表示乙获胜它们分别是738636964736698637616959774762707共11个.所以采用三局两胜制乙获胜的概率约为1130≈0367【答案】0367三、解答题9.一个袋中有7个大小、形状相同的小球6个白球1个红球.现任取1个若为红球就停止若为白球就放回搅拌均匀后再接着取.试设计一个模拟试验计算恰好第三次摸到红球的概率.【解】用123456表示白球7表示红球利用计算器或计算机产生1到7之间取整数值的随机数因为要求恰好第三次摸到红球的概率所以每三个随机数作为一组.例如产生20组随机数.666743671464571561156567732375716116614445117573552274114622就相当于做了20次试验在这组数中前两个数字不是7第三个数字恰好是7就表示第一次、第二次摸的是白球第三次恰好是红球它们分别是567和117共两组因此恰好第三次摸到红球的概率约为220=01 10.一个学生在一次竞赛中要回答8道题是这样产生的:从15道物理题中随机抽取3道;从20道化学题中随机抽取3道;从12道生物题中随机抽取2道.使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15化学题的编号为16~35生物题的编号为36~47【解】利用计算器的随机函数RANDI(115)产生3个不同的1~15之间的整数随机数(如果有一个重复则重新产生一个);再利用计算器的随机函数RANDI(1635)产生3个不同的16~35之间的整数随机数(如果有一个重复则重新产生一个);再用计算器的随机函数RANDI(3647)产生2个不同的36~47之间的整数随机数(如果有一个重复则重新产生一个)这样就得到8道题的序号.[能力提升]1.已知某射击运动员每次击中目标的概率都是08现采用随机模拟的方法估计该运动员射击4次至多击中1次的概率:先由计算器产生0到9之间取整数值的随机数指定01表示没有击中目标23456789表示击中目标;因为射击4次故以每4个随机数为一组代表射击4次的结果.经随机模拟产生了20组随机数:5 7270 2937 1409 8570 3474 373 8 636 9 647 1 417 4 6980 371 6 233 2 616 8 045 6 0113 661 9 597 7 424 6 710 4 281据此估计该射击运动员射击4次至多击中1次的概率为( )A .095B .01 C015 D .005【解析】 该射击运动员射击4次至多击中1次故看这20组数据中含有0和1的个数多少含有3个或3个以上的有:6011故所求概率为120=005【答案】 D2.在一个袋子中装有分别标注数字12345的五个小球这些小球除标注的数字外完全相同.现从中随机取出两个小球则取出的小球标注的数字之和为3或6的概率是( )A 310B .15C 110D .112 【解析】 随机取出两个小球有(12)(13)(14)(15)(23)(24)(25)(34)(35)(45)共10种情况和为3只有1种情况(12)和为6可以是(15)(24)共2种情况.所以P =310【答案】 A3.在利用整数随机数进行随机模拟试验中整数a 到整数b 之间的每个整数出现的可能性是________.【解析】[ab]中共有b-a+1个整数每个整数出现的可能性相等所以每个整数出现的可能性是1b-a+1【答案】1b-a+14.一份测试题包括6道选择题每题只有一个选项是正确的.如果一个学生对每一道题都随机猜一个答案用随机模拟方法估计该学生至少答对3道题的概率.【解】我们通过设计模拟试验的方法来解决问题.利用计算机或计算器可以产生0到3之间取整数值的随机数.我们用0表示猜的选项正确123表示猜的选项错误这样可以体现猜对的概率是25%因为共猜6道题所以每6个随机数作为一组.例如产生25组随机数:330130302220133020022011313121222330231022001003213322030032100211022210231330321202031210232111210010212020230331112000102330200313303321012033321230就相当于做了25次试验在每组数中如果恰有3个或3个以上的数是0则表示至少答对3道题它们分别是001003030032210010112000即共有4组数我们得到该同学6道选择题至少答对3道题的概率近似为425=016。
3.2.2 (整数值)随机数的产生[A 基础达标]1.某银行储蓄卡上的密码是一个6位数号码,每位上的数字可以在0~9这10个数字中选取.某人未记住密码的最后一位数字,如果随意按密码的最后一位数字,则正好按对密码的概率是( )A.1106 B.1105 C.1102 D.110解析:选D.只考虑最后一位数字即可,从0到9这10个数字中随机选一个的概率为110. 2.袋子中有四个小球,分别写有“幸”“福”“快”“乐”四个字,有放回地从中任取一个小球,取到“快”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“幸”“福”“快”“乐”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计,直到第二次就停止的概率为( )A.15B.14C.13D.12解析:选B.由随机模拟产生的随机数可知,直到第二次停止的有13,43,23,13,13共5个基本事件,故所求的概率为P =520=14. 3.通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 78842604 3346 0952 6807 9706 5774 57256576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,问四次射击中恰有三次击中目标的概率约为( )A .25%B .30%C .35%D .40%解析:选A.表示三次击中目标分别是3013,2604,5725,6576,6754,共5组数,而随机数总共20组,所以所求的概率近似为520=25%. 4.假定某运动员每次投掷飞镖正中靶心的概率为40%,现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:93 28 12 45 85 69 68 34 31 2573 93 02 75 56 48 87 30 11 35据此估计,该运动员两次掷镖恰有一次正中靶心的概率为( )A .0.50B .0.45C .0.40D .0.35解析:选A.两次掷镖恰有一次正中靶心表示随机数中有且只有一个数为1,2,3,4中的之一.它们分别是93,28,45,25,73,93,02,48,30,35共10个,因此所求的概率为1020=0.50.5.某种心脏病手术,成功率为0.6,现准备进行3例此种手术,利用计算机取整数值随机数模拟,用0,1,2,3代表手术不成功,用4,5,6,7,8,9代表手术成功,产生20组随机数:966,907,191,924,270,832,912,468,578,582,134,370,113,573,998,397,027,488,703,725,则恰好成功1例的概率为( )A .0.6B .0.4C .0.63D .0.43解析:选B.设恰好成功1例的事件为A ,A 所包含的基本事件为191,270,832,912,134,370,027,703共8个.则恰好成功1例的概率为P (A )=820=0.4,故选B. 6.抛掷两枚相同的骰子,用随机模拟方法估计向上的面的点数和是6的倍数的概率时,用1,2,3,4,5,6分别表示向上的面的点数,用计算器或计算机分别产生1到6的两组整数随机数各60个,每组第i 个数组成一组,共组成60组数,其中有一组是16,这组数表示的结果是否满足向上面的点数和是6的倍数:________.(填“是”或“否”)解析:16表示第一枚骰子向上的点数是1,第二枚骰子向上的点数是6,则向上的面的点数和是1+6=7,不表示和是6的倍数.答案:否7.从集合{a ,b ,c ,d }的子集中任取一个,这个集合是集合{a ,b ,c }的子集的概率是________.解析:集合{a ,b ,c ,d }的子集有∅,{a },{b },{c },{d },{a ,b },{a ,c },{a ,d },{b ,c },{b ,d },{c ,d },{a ,b ,c },{a ,b ,d },{b ,c ,d },{a ,c ,d },{a ,b ,c ,d },共16个,{a ,b ,c }的子集有∅,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c },共8个,故所求概率为12. 答案:128.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆,则他乘上上等车的概率为________.解析:共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车),所以他乘坐上等车的概率为36=12. 答案:129.天气预报说,在接下来的一个星期里,每天涨潮的概率为20%,则下个星期恰有2天涨潮的概率是多少?解:利用计算机产生0~9之间取整数值的随机数,用1,2表示涨潮,用其他数字表示不涨潮,这样体现了涨潮的概率是20%,因为时间是一周,所以每7个随机数作为一组,例如产生20组随机数:7032563 2564586 3142486 56778517782684 6122569 5241478 89715683215687 6424458 6325874 68943315789614 5689432 1547863 35698412589634 1258697 6547823 2274168相当于做了20次试验,在这组数中,如果恰有两个是1或2,就表示恰有两天涨潮,它们分别是3142486,5241478,3215687,1258697,共有4组数,于是一周内恰有两天涨潮的概率近似值为420=20%. 10.一个学生在一次竞赛中要回答8道题是这样产生的:从15道物理题中随机抽取3道;从20道化学题中随机抽取3道;从12道生物题中随机抽取2道.使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为36~47).解:利用计算器的随机函数RANDI(1,15)产生3个不同的1~15之间的整数随机数(如果有一个重复,则重新产生一个);再利用计算器的随机函数RANDI(16,35)产生3个不同的16~35之间的整数随机数(如果有一个重复,则重新产生一个);再用计算器的随机函数RANDI(36,47)产生2个不同的36~47之间的整数随机数(如果有一个重复,则重新产生一个),这样就得到8道题的序号.[B 能力提升]11.某班准备到郊外野营,为此向商店订了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则下列说法正确的是( )A .一定不会淋雨B .淋雨的机会为34C .淋雨的机会为12D .淋雨的机会为14解析:选D.根据题意,用1代表下雨,2代表不下雨,用A 代表中帐篷如期运到,B 代表没有如期运到,采用模拟法得到基本事件有(1,A ),(1,B ),(2,A ),(2,B )这4种情况.若淋雨必须满足天下雨且帐篷没有如期运到,这一基本事件发生即只有(1,B )1种情况发生,故淋雨的机会为14. 12.在用随机(整数)模拟求“有4个男生和5个女生,从中取4个,求选出2个男生2个女生”的概率时,可让计算机产生1~9的随机整数,并用1~4代表男生,用5~9代表女生.因为是选出4个,所以每4个随机数作为一组.若得到的一组随机数为“4678”,则它代表的含义是________.答案:选出的4人中,只有1个男生13.某人有5把钥匙,其中2把能打开门,现随机地取1把钥匙试着开门,不能开门就扔掉,问第三次才打开门的概率是多少?如果试过的钥匙不扔掉,这个概率又是多少?设计一个试验,随机模拟估计上述概率.解:用计算器或计算机产生1到5之间的整数随机数,1,2表示能打开门,3,4,5表示打不开门.(1)三个一组(每组数字不重复),统计总组数N 及前两个大于2,第三个是1或2的组数N 1,则N 1N即为不能打开门就扔掉,第三次才打开门的概率的近似值. (2)三个一组(每组数字可重复),统计总组数M 及前两个大于2,第三个为1或2的组数M 1,则M 1M即为试过的钥匙不扔掉,第三次才打开门的概率的近似值. 14.(选做题)某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算),现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.(1)若甲停车1小时以上且不超过2小时的概率为13,停车付费多于14元的概率为512,求甲停车付费恰为6元的概率;(2)若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.解:(1)设“甲临时停车付费恰为6元”为事件A ,则P (A )=1-⎝ ⎛⎭⎪⎫13+512=14. 所以甲临时停车付费恰为6元的概率是14. (2)设甲停车付费a 元,乙停车付费b 元,其中a ,b =6,14,22,30.则甲、乙二人的停车费用共16种等可能的结果:(6,6),(6,14),(6,22),(6,30),(14,6),(14,14),(14,22),(14,30),(22,6),(22,14),(22,22),(22,30),(30,6),(30,14),(30,22),(30,30),其中(6,30),(14,22),(22,14),(30,6)4种情形符合题意.所以“甲、乙二人停车付费之和为36元”的概率为P =416=14.。
高中数学随机数表法例题篇一:标题:高中数学随机数表法例题正文:在高中数学中,随机数表法是一种常见的方法用于解决随机事件发生的概率问题。
这种方法可以帮助我们计算出随机事件发生的概率,尤其是在涉及到多个随机事件的情况下。
下面是一个简单的例题:问题:在一场足球比赛中,两支球队分别有 11 名球员,其中有 5 名球员是前锋,4 名球员是中场,3 名球员是后卫,那么在这场比赛中,两支球队一共会有多少种不同的传球方式?解决方法:我们可以使用随机数表法来解决这道题。
我们可以将 11 名球员按照位置进行分类,其中前锋有 5 人,中场有 4 人,后卫有 3 人。
那么,前锋和中场的组合有 5×4=20 种不同的传球方式,前锋和后卫的组合有 5×3=15 种不同的传球方式,中场和后卫的组合有 4×3=12 种不同的传球方式。
因此,两支球队一共会有多少种不同的传球方式为:20+15+12=47因此,在这场比赛中,两支球队一共会有多少种不同的传球方式。
拓展:在实际的生活中,随机数表法可以用于解决许多不同的概率问题。
例如,在赌博中,可以使用随机数表法来计算押注某一种赌注的概率。
在医学中,可以使用随机数表法来进行随机分组实验,以比较两种药物的疗效。
在金融领域,可以使用随机数表法来计算股票价格的走势,以进行投资决策。
随机数表法是一种非常实用的概率计算方法,可以帮助我们更好地理解和应对生活中的随机事件。
篇二:标题:高中数学随机数表法例题正文:在高中数学中,随机数表法是一种常见的方法用于解决随机事件发生的概率问题。
这种方法涉及到使用随机数表来计算随机事件发生的概率。
下面是一个例题:问题:在 10 次投掷一枚硬币的过程中,正面朝上的投掷次数为 5 次,求正面朝上的概率。
解决方法:首先,我们需要找到随机数表。
在硬币正反面的概率是相等的,因此我们可以找到一个包含 10 个数字的随机数表,其中 1 表示正面朝上,0 表示反面朝上。
2021年高中数学 3.3.2均匀随机数的产生练习新人教A版必修31.用随机模拟的方法求得某几何概型的概率为m,其实际概率大小为n,则A.m>n B.m<n C. m=n D.m是n的近似值2.将[0,1]内的均匀随机数转化为[-3,4]内的均匀随机数,需要实施的变换为A.a=a1*7 B.a=a1*7+3 C. a =a1*7-3 D.a=a1*43.如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为A.43B.83C.23D.无法计算4.在区间[-1,2]上随机取一个数x,则|x|≤1的概率为________.5.曲线y=x2与y轴、直线y=1围成一个区域A(图中的阴影部分),用模拟的方法求图中阴影部分的面积。
答案:1.D 2.C. 3. B. 4.2 35.解: 法一我们可以向正方形区域内随机地撒一把豆子,数出落在区域A内的豆子数与落在正方形内的豆子数,根据落在区域A内的豆子数落在正方形内的豆子数≈区域A的面积正方形的面积,即可求区域A面积的近似值.例如,假设撒1 000粒豆子,落在区域A内的豆子数为700,则区域A的面积S≈7001 000=0.7.法二对于上述问题,我们可以用计算机模拟上述过程,步骤如下:第一步,产生两组0~1内的均匀随机数,它们表示随机点(x,y)的坐标.如果一个点的坐标满足y≥x2,就表示这个点落在区域A内.第二步,统计出落在区域A内的随机点的个数M与落在正方形内的随机点的个数N,可求得区域A的面积S≈MN.Y)sn29819 747B 瑻29373 72BD 犽d427502 6B6E 歮33669 8385 莅kU25185 6261 扡@。
课时检测区·基础达标1.某银行储蓄卡上的密码是一个6位数号码,每位上的数字可以在0~9这10个数字中选取.某人未记住密码的最后一位数字,如果随意按密码的最后一位数字,则正好按对密码的概率是( )A. B. C. D.【解析】选D.只考虑最后一位数字即可,从0到9这10个数字中随机选一个作为密码的最后一位数字有10种可能,选对只有1种可能,故按对密码的概率是.2.把[0,1]内的均匀随机数实施变换y=8x2可以得到区间的均匀随机数( )A.[6,8]B.[2,6]C.[0,2]D.[6,10] 【解析】选B.由题意,x=0,y=2,x=1,y=6,所以所求区间为[2,6],故选B.3.抛掷一枚均匀的正方体骰子两次,用随机模拟方法估计朝上面的点数和为7的概率,共进行了两次试验,第一次产生了60组随机数,第二次产生了200组随机数,那么这两次估计的结果相比较,第次准确.【解析】用随机模拟方法估计概率时,产生的随机数越多,估计的结果越准确,所以第二次比第一次准确.答案:二4.在用随机(整数)模拟求“有4个男生和5个女生,从中取4个,求选出2个男生2个女生”的概率时,可让计算机产生1~9的“4678”,则它代表的含义是.【解析】1~4代表男生,5~9代表女生,4678表示一男三女.答案:选出的4个人中,只有1个男生5.某篮球爱好者做投篮练习,假设其每次投篮命中的概率是60%,那么在连续三次投篮中,三次都投中的概率是多少?【解析】通过设计模拟试验的方法来解决问题,利用计算机或计算器可以产生0到9之间的取整数值的随机数.我们用1,2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%.因为是投篮三次,所以每三个随机数作为一组.例如:产生20组随机数:812 932 569 683 271989 730 537 925 834907 113 966 191 432256 393 027 556 755这就相当于做了20次试验,在这组数中,如果3个数均在1,2,3,4,5,6中,则表示三次都投中,它们分别是113,432,256,556,即共有4组数,我们得到了三次投篮都投中的概率近似为=20%.。
3.2.2(整数值)随机数(random numbers)的产生【知识提炼】1.随机数的产生(1)标号:把n个___________相同的小球分别标上1,2,3,…,n.(2)搅拌:放入一个袋中,把它们_________.(3)摸取:从中摸出_____.这个球上的数就称为从1~n之间的随机整数,简称随机数.大小、形状充分搅拌一个2.伪随机数的产生(1)规则:依照确定算法.(2)特点:具有周期性(周期很长).(3)性质:它们具有类似_______的性质.计算机或计算器产生的随机数并不是真正的随机数,我们称为_________.3.产生随机数的常用方法(1)_____________.(2)_____________.(3)_______.随机数伪随机数用计算器产生用计算机产生抽签法4.随机模拟方法(蒙特卡罗方法)利用计算器或计算机产生的随机数来做模拟试验,通过模拟试验得到频率概率的_____来估计_____,这种用计算器或计算机模拟试验的方法称为随机模拟方法或蒙特卡罗方法.【即时小测】1.思考下列问题:(1)计算机或计算器产生的随机数是伪随机数,依此取得的概率不可信对吗?提示:错误.模拟试验结果是随机产生的,可代替真实试验,事件发生的概率与模拟结果的频率近似相等.(2)随机数的抽取就是简单的抽样吗?提示:正确.2.打开Excel软件,选定A1格,键入“=RANDBETWEEN ”,按Enter键,则在此格中的数是从整数a到整数b的取整数值的随机数.【解析】根据键入的英文单词的含义及要求,是确定在哪个范围取随机数,所以应填(a,b).答案:(a,b)3.抛掷一枚均匀的正方体骰子两次,用随机模拟方法估计朝上面的点数和为7的概率,共进行了两次试验,第一次产生了60组随机数,第二次产生了200组随机数,那么这两次估计的结果相比较,第_____次准确.【解析】用随机模拟方法估计概率时,产生的随机数越多,估计的结果越准确,所以第二次比第一次准确.答案:二【知识探究】知识点 随机数的产生观察图形,回答下列问题:问题1:上述图表中表示的是哪种随机数产生的方法,表述的是哪个区间范围?问题2:随机数主要通过什么办法产生,随机数有哪些特点?【总结提升】1.用试验方法产生整数随机数的步骤随机数是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会一样大.用试验方法产生整数随机数的步骤是:(仅介绍用简单随机抽样中的抽签法产生的随机数)(1)明确产生的整数随机数的范围和个数.(2)制作号签,号签上的整数所在范围是产生的整数随机数的范围,号签的个数等于产生的整数随机数的范围内所含整数的个数.(3)将制作的全部号签放入一个不透明的容器内,搅拌均匀.(4)从容器中逐个有放回地抽取号签,并记下号签上的整数的大小,直到抽取的号签个数等于要产生的整数随机数的个数.则抽取出的号签上的整数就是所要产生的整数随机数.2.利用计算机产生随机数的操作程序每个具有统计功能的软件都有随机函数,以Excel软件为例,打开Excel软件,执行下面的步骤:(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0或1.(2)选定A1格,按Ctrl+C快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl+V快捷键,则在A2到A100的数均为随机产生的0或1,这样我们很快就得到了100个随机产生的0,1,相当于做了100次随机试验.(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)”,按Enter键,则此格中的数是统计A1到A100中,比0.5小的数的个数,即0出现的频数.(4)选定D1格,键入“=1-C1/100”,按Enter键,在此格中的数是这100次试验中出现1的频率.【题型探究】类型一 随机数产生的方法【典例】1.用随机模拟方法估计概率时,其准确度决定于 ( )A.产生的随机数的大小B.产生的随机数的个数C.随机数对应的结果D.产生随机数的方法2.产生10个1~100之间的取整数值的随机数.【解题探究】1.典例1中,随机模拟方法的缺点是什么?提示:计算机或计算器产生随机数是依照确定的算法产生的数,具有周期性,是伪随机数,与实际试验得到的试验结果有一定的差异. 2.典例2中产生取整数值的随机数有哪些方法?提示:要产生10个1~100之间的整数值随机数,方法有两个,一是应用抽签法,动手做试验;二是利用计算器或计算机模拟试验产生随机数,但抽签法花费时间较多,较麻烦.【解析】1.选B.用随机估计概率时,产生的随机数越多,准确程度越大.2.方法一:抽签法.(1)把100个大小、形状相同的小球分别标上号码1,2,3, (100)(2)把这些已经标上号码的小球放到一个袋子中搅拌均匀.(3)从袋子中任意摸出一个小球,这个球上的数就是第一个随机数.(4)把步骤(3)中的操作重复10次,即可得到10个1~100之间的取整数值的随机数.方法二:用计算器产生按键过程如下:以后反复按 键9次,就可得到10个1~100之间的取整数值的随机数.【方法技巧】随机数产生的方法比较方法抽签法用计算器或计算机产生优点保证机会均等操作简单,省时、省力缺点耗费大量人力、物力、时间,或不具有实际操作性由于是伪随机数,故不能保证完全等可能【变式训练】某校高一全年级有20个班,共1200人,期末考试时如何把学生分配到40个考场中去?【解析】(1)按班级、学号依次把学生档案输入计算机.(2)用随机函数RANDBETWEEN(1,1 200)按顺序给每个学生一个随机数(每人的都不同).(3)使用计算机排序功能按随机数从小到大排列,即可得到考试号从1到1200的考试序号.(注:1号应为0001,2号应为0002,用0补足位数,前面再加上有关信息号码即可)类型二 用随机模拟估计概率【典例】1.袋子中有四个小球,分别写有“神”“十”“飞”“天”四个字,有放回地从中任取一个小球,取到“飞”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“神”“十”“飞”“天”四个字,以每两个随机数为一组(每组数字不重复),代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计,直到第二次就停止概率为 ( )2.盒中有大小、形状相同的5个白球、2个黑球,用随机模拟法求下列事件的概率:(1)任取一球,得到白球.(2)任取三球,都是白球.【解题探究】1.典例1中,利用随机模拟方法估计概率的关键是什么?提示:利用随机模拟方法估计概率的关键是在于随机数的设计.2.典例2中,如何用随机模拟法求相关事件的概率?提示:将这7个球编号,产生1到7之间的取整数值的随机数若干个:(1)一个随机数看成一组即代表一次试验,(2)每三个随机数看成一组即代表一次试验.统计组数和事件发生的次数即可.【解析】1.选B.由随机模拟产生的随机数可知,直到第二次停止的有13,43,23,13,13共5个基本事件,故所求的概率为2.用1,2,3,4,5表示白球,6,7表示黑球.(1)步骤:①利用计算器或计算机可以产生1到7的整数随机数,每一个数一组,统计组数n;②统计这n组数中小于6的组数m;③任取一球,得到白球的概率估计值是(2)步骤:①利用计算器或计算机可以产生1到7的整数随机数,每三个数一组(每组数字不重复),统计组数a;②统计这a组数中,每个数字均小于6的组数b;③任取三球,都是白球的概率估计值是【误区警示】这种用模拟试验来求概率的方法所得结果是不精确的,且每次模拟最终得到的概率值不一定是相同的.【方法技巧】应用随机数估计古典概型的概率的步骤(1)明确随机数的范围及数字与试验结果的对应关系.(2)产生随机数.(3)统计试验次数N及所求事件包含的次数n.(4)计算 便可.【变式训练】某人有5把钥匙,其中2把能打开门,现随机地取2把钥匙试着开门.(1)不能开门就扔掉,问第三次才打开门的概率是多大?(2)如果试过的钥匙不扔掉,这个概率又是多大?设计一个试验,用随机模拟方法估计上述概率.【解析】用计算器或计算机可以产生1到5之间的取整数值的随机数,1,2表示能打开门,3,4,5表示打不开门.(1)三个一组(每组数字不重复),统计总组数N,并统计前两个大于2,第三个是1或2的组数N1,则 即为事件“不能打开门即扔掉,第三次才打开门”的概率的近似值.(2)三个一组(每组数字可重复),统计总组数M,并统计前两个大于2,第三个为1或2的组数M1,则 即为事件“试过的钥匙不扔掉,第三次才打开门”的概率的近似值.【补偿训练】在一次抽奖活动中,抽奖者必须从一个箱子中取出一个数字来决定他获得什么奖品.5种奖品的编号如下:①一次欧洲旅行;②一辆摩托车;③一台高保真音响;④一台数字电视;⑤一个微波炉.用模拟方法估计:(1)他获得去欧洲旅行的概率是多少?(2)他获得高保真音响或数字电视的概率是多少?(3)他不获得微波炉的概率是多少?【解题提示】5种奖品被抽到的可能性相同,这是古典概型问题,我们可以用抽签法、随机数表法或用计算机(器)产生整数随机数模拟.【解析】设事件A为“他获得去欧洲旅行”,事件B为“他获得高保真音响或数字电视”,事件C为“他不获得微波炉”.(1)用计算器的随机函数RANDI(1,5)或计算机的随机函数RANDBETWEEN(1,5)产生1到5之间的整数随机数表示他获得的奖品号码.(2)统计试验总次数N及其中出现1的总次数N1,出现3或4的总次数N2,出现5的总次数N3;(3)计算频率 即分别为事件A,B,C的概率的近似值.类型三 用随机模拟估计比较复杂的事件【典例】1.某学校为丰富学生的课外活动,组织了“水浒杯”投篮赛,假设某同学每次投篮命中的概率是60%,现采用随机模拟的方法估计该同学在连续三次投篮中,三次都投中的概率.首先利用计算机或计算器产生0到9之间的取整数值的随机数,指定1,2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%.因为投篮三次,所以每三个随机数作为一组.经模拟产生20组随机数:812 932 569 683 271 989 730 537 925 834 907 113 966 191 432 256 393 027 556 755据此估计,该同学在连续三次投篮中,三次都投中的概率为 ( )A.0.80B.0.75C.0.25D.0.202.种植某种树苗,成活率为0.9,请采用随机模拟的方法估计该树苗种植5棵恰好4棵成活的概率.写出模拟试验的过程,并求出所求概率.【解题探究】1.典例1中,连续三次投篮中,三次都投中的数字特征是什么?提示:3个数均在1,2,3,4,5,6中,则表示三次都投中.2.典例2中,设计随机数时,每组数应设计几个数字?提示:因为种5棵树苗,所以每组数应设计5个数字.【解析】1.选D.由题意知,经随机模拟试验中产生的20组随机数中,如果3个数均在1,2,3,4,5,6中,则表示三次都投中,它们分别是:113,432,256,556,即共有4个数,得到了三次投篮都投中的概率近似为: =0.20.2.先由计算机随机函数RANDBETWEEN(0,9),或计算器的随机函数RANDI(0,9)产生0到9之间取整数值的随机数,指定1至9的数字代表成活,0代表不成活,再以每5个随机数为一组代表5次种植的结果.经随机模拟产生随机数,例如,如下30组随机数:69801 66097 77124 22961 74235 3151629747 24945 57558 65258 74130 2322437445 44344 33315 27120 21782 5855561017 45241 44134 92201 70362 8300594976 56173 34783 16624 30344 01117这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活,共有9组这样的数,于是我们得到种植5棵这样的树苗恰有4棵成活的概率近似为 =0.3.【延伸探究】在典例2中若树苗成活率为0.8,则5棵树苗至少有4棵成活的概率是多少?【解析】利用计算器或计算机可以产生0到9之间取整数值的随机数,我们用0和1代表不成活,2到9的数字代表成活,这样可以体现成活率是0.8.因为是种植5棵,所以每5个随机数作为一组.例如,产生20组随机数:23065 37052 89021 34435 77321 3367401456 12346 22789 02458 99274 2265418435 90378 39202 17437 63021 6731020165 12328这就相当于做了20次试验,在这些数组中,如果至多有一个是0或1的数组表示至少有4棵成活,共有15组,于是我们得到种植5棵树苗至少有4棵成活的概率近似为15÷20=0.75.【方法技巧】较复杂模拟试验的设计及产生随机数的方法(1)解决此类问题的第一个关键是设计试验.首先需要全面理解题意,在理解题意的基础上,根据题目本身的特点来设计试验,应把设计试验的重点放在确定哪个或哪些数字代表哪些试验结果上,并确保符合题意与题目要求.(2)在试验方案正确的前提下,要使模拟试验所得的估计概率值与实际概率值更接近,则需使试验次数尽可能的多,随机数的产生更切合实际.(3)用计算器或计算机产生随机数的方法有两种:①利用带有PRB功能的计算器产生随机数;②利用计算机软件产生随机数,例如用Excel软件产生随机数.对上述两种方法,我们需严格按照其操作步骤与顺序来进行.【变式训练】一个袋中有7个大小、形状相同的小球,6个白球,1个红球,现任取1个,若为红球就停止,若为白球就放回,搅拌均匀后再接着取,试设计一个模拟试验计算恰好第三次摸到红球的概率.【解题指南】根据题意可知所求概率的事件不是古典概型,所以要设计模拟试验来估计其概率,关键是弄清楚用哪些数字来表示题目中红球或白球,然后利用计算机或计算器产生若干组随机数进行估算.【解析】用1,2,3,4,5,6表示白球,7表示红球,利用计算器或计算机可以产生1到7之间取整数值的随机数,因为要求恰好第三次摸到红球的概率,所以每三个随机数作为一组.例如,产生20组随机数. 666 743 671 464 571561 156 567 732 375716 116 614 445 117573 552 274 114 622就相当于做了20次试验,在这组数中,前两个数字不是7,第三个数字恰好是7,就表示第一次,第二次摸的是白球,第三次恰好是红球,它们分别是567和117共两组,因此恰好第三次摸到红球的概率约为 =0.1.易错案例 用随机模拟估计概率【典例】通过模拟试验产生了20组随机数:6830 3013 7055 7430 7740 4422 7884 2604 3346 0952 6807 9706 5774 5725 6576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,问四次射击中恰有三次击中目标的概率约为______.【失误案例】。
3.3.2均匀随机数的产生[A.基础达标]1.用随机模拟方法求得某几何概型的概率为m ,其实际概率的大小为n ,则( ) A .m >n B .m <nC .m =nD .m 是n 的近似值解析:选D.随机模拟法求其概率,只是对概率的估计.2.要产生[-3,3]上的均匀随机数y ,现有[0,1]上的均匀随机数x ,则y 可取为( ) A .-3x B .3x C .6x -3D .-6x -3解析:选C.法一:利用伸缩和平移变换进行判断; 法二:由0≤x ≤1,得-3≤6x -3≤3,故y 可取6x -3.3.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为1.5 cm 的圆,中间有边长为0.5 cm 的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为( )A.49πB.94πC.4π9D.9π4解析:选A.由题意知所求的概率为P =0.5×0.5π×(1.52)2=49π.4.(2015·青岛高一检测)某人下午欲外出办事,我们将12:00~18:00这个时间段称为下午时间段,则此人在14:00~15:00之间出发的概率为( )A.13B.14C.16D.18解析:选C.所有可能结果对应时间段为18-12=6,事件发生的时间段为15-14=1,∴P =16.5.如图所示,四个可以自由转动的转盘被平均分成若干个扇形.转动转盘,转盘停止转动后,有两个转盘的指针指向白色区域的概率相同,则这两个转盘是( )A .转盘1和转盘2B .转盘2和转盘3C .转盘2和转盘4D .转盘3和转盘4解析:选C.根据每个转盘中白色区域面积与转盘总面积的比值分别计算出指向白色区域的概率,P 1=38,P 2=26=13,P 3=212=16,P 4=13,故P 2=P 4.6.如图,矩形的长为6,宽为3,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆为125颗,则我们可以估计出阴影部分的面积约为________.解析:∵矩形的长为6,宽为3,则S 矩形=18, ∴S 阴S 矩=S 阴18=125300,∴S 阴=152.答案:1527.(2013·高考福建卷)利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1<0”发生的概率为________.解析:由3a -1<0,0≤a ≤1,得0<a <13,而0~1的“长度”为1,故所求概率为13.答案:138.如图,在一个两边长分别为a ,b (a >b >0)的矩形内画一个梯形,梯形的上、下底分别为14a 与12a ,高为b ,向该矩形内随机投一点,那么所投点落在梯形内部的概率为________.解析:∵图中梯形的面积为s =12×(14a +12a )×b =38ab ,矩形的面积为S =ab ,∴落在梯形内部的概率为:P =s S =38ab ab =38.答案:389.如图所示,在一个长为4,宽为2的矩形中有一个半圆,试用随机模拟的方法近似计算半圆面积,并估计π的值.解:记事件A 为“点落在半圆内”.(1)利用计算机产生两组[0,1]上的均匀随机数a 1=RAND ,b 1=RAND ; (2)进行平移和伸缩变换,a =(a 1-0.5)*4,b =b 1*2;(3)统计试验总次数N 和落在阴影内的点数N 1(满足a 2+b 2<4的点(a ,b )个数); (4)计算频率N 1N,即为点落在阴影部分的概率近似值;(5)用几何概型的概率公式求概率,P (A )=S 半圆8,所以S 半圆8≈N 1N ,即S半圆≈8N 1N,为半圆面积的近似值.又2π≈8N 1N ,所以π≈4N 1N.10.在长为14 cm 的线段AB 上任取一点M ,以A 为圆心,以线段AM 为半径作圆.用随机模拟法估算该圆的面积介于9π cm 2到16π cm 2之间的概率.解:设事件A 表示“圆的面积介于9π cm 2到16π cm 2之间”. (1)利用计算器或计算机产生一组[0,1]上的均匀随机数a 1=RAND ; (2)经过伸缩变换a =14a 1得到一组[0,14]上的均匀随机数;(3)统计出试验总次数N 和[3,4]内的随机数个数N 1(即满足3≤a ≤4的个数); (4)计算频率f n (A )=N 1N,即为概率P (A )的近似值.[B.能力提升]1.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为( )A .1-π16B.π16C.π4D.3π4解析:选B.由题意知,区域D 表示边长为4的正方形的内部(含边界),区域E 表示单位圆及其内部,如图所示,因此P =π×124×4=π16.2.如图所示,在墙上挂着一块边长为16 cm 的正方形木块,上面画了小、中、大三个同心圆,半径分别为2 cm ,4 cm ,6 cm ,某人站在3 m 之外向此板投镖,设镖击中线上或没有投中木板时不算,可重投,记事件A ={投中大圆内},事件B ={投中小圆与中圆形成的圆环内}, 事件C ={投中大圆之外}.(1)用计算机产生两组[0,1]内的均匀随机数,a 1=RAND ,b 1=RAND.(2)经过伸缩和平移变换,a =16a 1-8,b =16b 1-8,得到两组[-8,8]内的均匀随机数. (3)统计投在大圆内的次数N 1(即满足a 2+b 2<36的点(a ,b )的个数),投中小圆与中圆形成的圆环次数N 2(即满足4<a 2+b 2<16的点(a ,b )的个数),投中木板的总次数N (即满足上述-8<a <8,-8<b <8的点(a ,b )的个数).则概率P (A )、P (B )、P (C )的近似值分别是( ) A.N 1N ,N 2N ,N -N 1N B.N 2N ,N 1N ,N -N 2N C.N 1N ,N 2-N 1N ,N 2N D.N 2N ,N 1N ,N 1-N 2N解析:选A.P (A )的近似值为N 1N ,P (B )的近似值为N 2N ,P (C )的近似值为N -N 1N. 3.已知正方体ABCD -A 1B 1C 1D 1内有一个内切球O ,则在正方体ABCD -A 1B 1C 1D 1内任取一点M ,点M 在球O 内的概率是________.解析:设正方体的棱长为2.正方体ABCD -A 1B 1C 1D 1的内切球O 的半径是其棱长的一半,其体积为V 1=43π×13=4π3.则点M 在球O 内的概率是4π323=π6.答案:π64.图形ABC 如图所示,为了求其面积,小明在封闭的图中找出了一个半径为1 m 的圆,在不远处向圈内掷石子,且记录如下:总的投掷次数50 150 300 石子落在⊙O 内(含⊙O 上)的次数m14 43 93 石子落在阴影内次数n2985186则估计封闭图形ABC 的面积为________ m 2. 解析:由记录mn≈1∶2,可见P (落在⊙O 内)=m n +m =13,又P (落在⊙O 内)=⊙O 的面积阴影面积+⊙O 的面积,所以S ⊙O S ABC =13,S ABC =3π(m 2).答案:3π5.已知圆C :x 2+y 2=12,直线l :4x +3y =25,设点A 是圆C 上任意一点,求点A 到直线l 的距离小于2的概率.解:由x 2+y 2=12,知圆心O (0,0), ∴圆心到直线l 的距离 d =|0+0-25|32+42=5,如图所示,设与直线l :4x +3y =25平行且到该直线的距离为2的直线为l ′,且l ′与圆C 交于P 、Q 两点.因此点O (0,0)到l ′的距离为3,又圆C的半径r =23,∴在△POQ 中,可求|PQ |=23,则∠POQ =π3.记“点A 到直线l 的距离小于2”为事件M ,则事件M 发生即点A 在弧PQ ︵上, ∴P (M )=PQ ︵2πr =π3r 2πr =16.6.(选做题)平面上有一个边长为43的等边△ABC 网格,现将直径等于2的均匀硬币抛掷在此网格上(假定都落在此网格上),求硬币落下后与网格线没有公共点的概率.解:设事件M ={硬币落下后与等边△ABC 的网格线没有公共点}. 要使硬币落在网格上的条件是硬币的重心需落在此△ABC 内部, 故所有的随机基本事件所构成的区域为△ABC .当硬币与边恰有一个公共点的重心位置就是临界点的位置.如图,所有临界点形成三条临界线,三条临界线构成一个小△EFG 区域,因此事件M 所构成的区域为△EFG 区域.经计算得△EFG 的边长为2 3. ∴P (M )=S △EFG S △ABC=34×23×2334×43×43=14.。
高中数学-均匀随机数的产生测试题
(30分钟60分)
一、选择题(每小题5分,共40分)
1.在线段AB上任取三个点x1,x2,x3,则x2位于x1与x3之间的概率是( )
A. B. C. D.1
【解析】选B.因为x1,x2,x3,是线段AB上任意的三个点,任何一个数在中间的概率相等且都是.
2.用随机模拟方法求得某几何概型的概率为m,其实际概率的大小为n,则
( ) A.m>n B.m<n
C.m=n
D.m是n的近似值
【解析】选D.随机模拟法求概率,只是对概率的估计.
【补偿训练】关于随机模拟方法,下列说法正确的是( )
A.比扔豆子试验更精确
B.所获得的结果比较精确
C.可以用来求平面图形面积的精确值
D.是用计算器或计算机模拟实际的试验操作
【解析】选D.扔豆子试验本身就是一种模拟试验,利用随机模拟方法所求出的面积或概率都是估计值,不是精确值.
3.(·广州高一检测)在1万平方公里的海域中有40平方公里的大陆架贮藏着石油,假若在海域中任意一点钻探,那么钻到油层面的概率是( )
A. B. C. D.
【解析】选C.在1万平方公里的海域中有40平方公里的大陆架贮藏着石油,假若在海域中任意一点钻探,那么钻到油层面的概率是=.
4.要产生[-3,3]上的均匀随机数y,现有[0,1]上的均匀随机数x,则y不可取为
( ) A.-3x B.3x C.6x-3 D.-6x-3
【解析】选D.由0≤x≤1,得-9≤-6x-3≤-3,故y不能取-6x-3.
5.将[0,1]内的均匀随机数转化为[-2,6]内的均匀随机数,需要实施的变换为
( ) A.a=8a1 B.a=8a1+2
C.a=8a1-2
D.a=6a1
【解析】选C.设变换式为a=ka1+b,
则有
解得
故实施的变换为a=8a1-2.
【一题多解】本题还可以有如下解法:
选C.采用逐个验证法,对C选项,把0代入等于-2,把1代入等于6符合要求,其他选项均不符合.
6.设x,y是两个[0,1]上的均匀随机数,则0≤x+y≤1的概率为( )
A. B. C. D.
【解析】选A.如图所示,所求的概率为P==.
7.在区间[0,10]内任取两个数,则这两个数的平方和也在[0,10]内的概率为
( ) A. B. C. D.
【解析】选B.将取出的两个数分别用x,y表示,
则0≤x≤10,0≤y≤10,
要求这两个数的平方和也在区间[0,10]内,
即要求0≤x2+y2≤10,
故此题可以转化为求0≤x2+y2≤10在区域0≤x≤10,0≤y≤10内的面积问题,如图所示:
由几何概型知识可得到概率为=.
【补偿训练】节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯在4秒内为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )
A. B. C. D.
【解题指南】本题考查的是几何概型问题,首先明确两串彩灯开始亮是通电后4秒内任一时刻等可能发生,第一次闪亮相互独立,而满足要求的是两串彩灯第一次闪亮的时刻相差不超过2秒.
【解析】选C.由于两串彩灯第一次闪亮相互独立且在通电后4秒内任一时刻等可能发生,所以总的基本事件为如图所示的正方形的面积,而要求的是第一次闪亮的时刻相差不超过2秒的基本事件为如图所示的阴影部分的面积,
根据几何概型的计算公式可知它们第一次闪亮的时刻相差不超过2秒的概率是=.
8.如图所示,墙上挂着一块边长为16cm的正方形木块,上面画了小、中、大三个
同心圆,半径分别为2cm,4cm,6cm,某人站在3m之外向此板投镖,设镖击中线上
或没有投中木板时不算,可重投,
记事件A表示投中大圆内,事件B表示投中小圆与中圆形成的圆环内,事件C表
示投中大圆之外.
(1)用计算机产生两组[0,1]内的均匀随机数,a1=RAND,b1=RNAD.
(2)经过伸缩和平移变换,a=16a1-8,b=16b1-8,得到两组[-8,8]内的均匀随机数.
(3)统计投在大圆内的次数N1(即满足a2+b2<36的点(a,b)的个数),投中小圆与中圆形成的圆环次数N2(即满足4<a2+b2<16的点(a,b)的个数),投中木板的总次数N(即满足上述-8≤a≤8,-8≤b≤8的点(a,b)的个数).则概率P(A),P(B),P(C)的近似值分别是( ) A.,, B.,,
C.,,
D.,,
【解析】选A.P(A)的近似值为,P(B)的近似值为,P(C)的近似值为.
二、填空题(每小题5分,共10分)
9.已知b1是[0,1]上的均匀随机数,b=6(b1-0.5),则b是区间上的均匀随机数.
【解题指南】根据所给的b1是[0,1]上的均匀随机数,依次写出b1-是上的均匀随机数和b=6(b1-0.5)是[-3,3]上的均匀随机数,得到结果.
【解析】因为b1是[0,1]上的均匀随机数,
所以b1-是上的均匀随机数,
所以b=6(b1-0.5)是[-3,3]上的均匀随机数.
答案:[-3,3]
10.如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.
【解析】由几何概型可知=,所以S=0.18.
答案:0.18
三、解答题
11.(10分)如图所示,曲线y=x2与y轴、直线y=1围成一个区域A(图中的阴影部分),用模拟的方法求图中阴影部分的面积(用两种方法).
【解题指南】随机模拟方法可以采用转盘或扔豆子等试验进行,也可以利用计算器或计算机产生随机数进行.
【解析】方法一:我们可以向正方形区域内随机地撒一把豆子,数出落在区域A内的豆子数与落在正方形内的豆子数,根据≈,即可求区域A面积的近似值.例如,假设撒1 000粒豆子,落在区域A内的豆子数为700,则区域A的面积S≈=0.7.
方法二:对于上述问题,我们可以用计算机模拟上述过程,步骤如下:
第一步,产生两组[0,1]内的均匀随机数,它们表示随机点(x,y)的坐标.如果一个点的坐标满足y≥x2,就表示这个点落在区域A内.
第二步,统计出落在区域A内的随机点的个数M与落在正方形内的随机点的个数N,可求得区域A的面积S≈.。