西工大信号与系统上机实验2
- 格式:doc
- 大小:80.50 KB
- 文档页数:3
信号与系统上机实验2连续LTI 系统的时域分析一、实验目的1、 熟悉连续LTI 系统在典型信号激励下的响应及其特性2、 熟悉连续LTI 系统单位冲激响应的求解方法3、 重点掌握卷积计算连续时间系统的零状态响应4、 熟悉MATLAB 相关函数的调用格式极其作用5、 会用MATLAB 对系统进行时域分析二、实验原理连续时间线性非时变系统(LTI )可以用如下的线性常系数微分方程来描述:()(1)()(1)110110()()...a y'(t)a y(t)()()...b f'(t)b f(t)n n m m n n m m a y t a y t b f t b f t ----++++=++++其中m n ≥,系统的初始条件为:n 1y(0),y'(0),y"(0),...y (0)-。
系统的响应一般分为两个部分,即由当前输入所产生的响应(零状态响应)和由历史输入(初始状态)所产生的响应(零输入响应)。
可以用MATLAB 确定系统的各种响应,如冲激响应、阶跃响应、零状态响应、全响应等。
涉及到的函数有:impulse (冲激响应)、step (阶跃响应)、roots (零状态响应)、lsim (零输入响应)等。
根据系统的单位冲激响应,利用卷积计算的方法,也可以计算任意输入状态下系统的零状态响应。
设一个线性零状态系统,已知系统的单位冲击响应为h(t),当系统的激励信号为f(t)时,系统的零状态响应为:()()()()()zs y t f h t d f t h d ττττττ∞∞-∞-∞=-=-⎰⎰,也可以简单记为:()()*()zs y t f t h t =由于计算机采用的是数值计算,因此系统的零状态响应也可以用离散序列卷积和近似为:(k)()()()*()zs n y f n h k n T f k h k ∞=-∞=-=∑,式中(k)zs y 、()f k 、()h k 分别对应以T 为时间间隔对连续时间信号(t)zs y 、(t)f 、(t)h 进行采样得到的离散序列。
[⼯学]信号与系统答案西北⼯业⼤学段哲民信号与系统1-3章答案[⼯学]信号与系统答案西北⼯业⼤学段哲民信号与系统1-3章答案第⼀章习题-t1-1 画出下列各信号的波形:(1) f(t)=(2-e)U(t); (2) 1-tf(t)=ecos10πt×[U(t-1)-U(t-2)]。
2答案f(t)1 (1)的波形如图1.1(a)所⽰.,2T,,0.2sf(t)cos10,t,102(2) 因的周期,故的波形如图题1.1(b)所⽰.1-2 已知各信号的波形如图题1-2所⽰,试写出它们各⾃的函数式。
答案f(t),t[u(t),u(t,1)],u(t,1)1f(t),,(t,1)[u(t),u(t,1)]2f(t),(t,2)[u(t,2),u(t,3)]31-3 写出图题1-3所⽰各信号的函数表达式。
答案11,(t,2),t,1,2,t,0,22f(t),,1110,t,2,(,t,2),,t,122,f(t),u(t),u(t,1)u(t,2)2,f(t),,sint[u(t,2),u(t,2)]32f(t),u(t,2),2u(t,1),3u(t,1),4u(t,2),2u(t,3)421-4 画出下列各信号的波形:(1) f(t)=U(t-1); (2) f(t)=(t-1)U(t-1); 1222(3) f(t)=U(t-5t+6); (4)f(t)=U(sinπt)。
34答案f(t),u(t,1),u(,t,1)1 (1) ,其波形如图题1.4(a)所⽰.f(t),(t,1)[u(t,1),u(,t,1)],(t,1)u(t,1),(t,1)u(,t,1)2(2)其波形如图题1.4(b)所⽰.f(t),u(,t,2),u(t,3)3(3) ,其波形如图1.4(c)所⽰.f(t),u(sin,t)4(4) 的波形如图题1.4(d)所⽰.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T。
西北工业大学《信号与系统》实验报告西北工业大学2016 年10 月B: 程序代码:n=0:100;x1=exp(j*pi*n/4); x2=sin(pi*n/8+pi/16); x3=(9/10).^n; x4=n+1;a=[1 ];b=[1 ]; y1=filter(a,b,x1); subplot(5,2,1);stem([0:100],real(x1)); title('real(x1£?'); subplot(5,2,2);stem([0:100],real(y1)); title('real£¨y1£?');title('x4');subplot(5,2,10);stem([0:100],y4);title('y4');图像:结论:信号X1和X3是这个LTI系统的特征函数。
结论:x1的特征值为: x3的特征值为:用离散时间傅里叶级数综合信号A.代码:clear;clc;x=sym('exp(-2*abs(t))')y=fourier(x)运行结果:x =exp(-2*abs(t)) y =4/(4+w^2) B.代码:clear;clc;x1=sym('exp(-2*(t-5))*Heaviside(t-5)')x2=sym('exp(2*(t-5))*Heaviside(-t+5)')y1=fourier(x1)y2=fourier(x2)y=simple(y1+y2)运行结果: x1 =exp(-2*(t-5))*Heaviside(t-5) x2 =exp(2*(t-5))*Heaviside(-t+5)y1 =1/(2+i*w)*exp(-5*i*w)y2 =1/(2-i*w)*exp(-5*i*w)y =4*exp(-5*i*w)/(4+w^2)C.代码:clear;clc;tau=;T=10;t=[0:tau:T-tau];N=length(t)y=exp(-2*abs(t-5));y1=fft(y)y2=fftshift(tau*fft(y)分析:由于N的长度为1000,故计算出的样本Y(jw)值有1000个,若已知)(2t x 的图, )(3t x 的傅立叶系数是)(2t x 傅立叶系数的共扼;体现在频域中幅频特性相同,相位不同。
西北工业大学
《信号与系统》实验报告
西北工业大学
.
上图分别是0<n<2N-1,M=4,5,7,10时,Xm[n]的图像。
由上图可看出,当M=4时,基波周期T=3;M=5时,基波周期T=12 M=10时,基波周期T=6;所以当M=4时,得到的最小整数周期为
Xm(n)=sin(2πMn/N)的频率w=2πM/N,由公式得周期T=2k k=1,2,...)。
当N/M为正整数时,最小周期T=N/M;当N/M为有理数时,都有最小周期T=N;当N/M为无理数时,该序列不是周期序列
b.
以上是代码,下图是运行结果
可得出结论:如果2*pi/w0不是有理数,则该信号不是周期的 1.3离散时间信号时间变量的变换
b. 代码如下:x=zeros(1,11); x(4)=2;
x(6)=1;
x(7)=-1;
x(8)=3;
n=-3:7;
n1=n-2;
n2=n+1;
n3=-n;
n4=-n+1;
y1=x;
X超前2得到y1,;x延时1得到y2;x倒置再延时1得到y3;x倒置再延时2得到y4.
发现了课本中的一个错误
和书上的图1.2是一致的。
b:正余弦函数分别定义如下:
T=4
a:。
上机实验3 连续LTI 系统的频域分析 一、实验目的 (1)掌握连续时间信号傅立叶变换和傅立叶逆变换的实现方法,以及傅立叶变换的时移特性,傅立叶变换的频移特性的实现方法; (2)了解傅立叶变换的特点及其应用; (3)掌握函数fourier 和函数ifourier 的调用格式及作用; (4)掌握傅立叶变换的数值计算方法,以及绘制信号频谱图的方法。
二、实验内容与方法1.验证性实验(1)傅立叶变换。
已知连续时间信号()2t f t e -=,通过程序完成()f t 的傅立叶变换。
MATLAB 程序:syms t;f=fourier(exp(-2*abs(t)));ezplot(f);运行结果如下:试画出()()323t f t e U t -=的波形及其幅频特性曲线。
MATLAB 程序:Syms t v w ff=2/3*exp(-3*t)*sym(‘Heaviside(t)’);F=fourier(f);subplot(2,1,1);ezplot(f);subplot(2,1,2);ezplot(abs(F));信号()()323t f t e U t -=的波形及其幅频特性曲线如图所示:(2)傅立叶逆变换。
已知()211f t ω=+,求信号()F j ω的逆傅立叶变换。
MATLAB 程序:syms t wifourier(1/(1+w^2),t)结果如下:()()()()11*exp **exp *22ans t U t t U t =-+ (3)傅立叶变换数值计算。
已知门函数()()()()211f t g t U t U t ==+--,试采用数值计算方法确定信号的傅立叶变换()F j ω。
MATLAB 程序:R=0.02;t=-2:R:2;f=stepfun(t,-1)-stepfun(t,1);W1=2*pi*5;N=500;k=0:N;W=k*W1/N;F=f*exp(-j*t'*W)*R;F=real(F);W=[-fliplr(W),W(2:501)];F=[fliplr(F),F(2:501)];subplot(2,1,1);plot(t,f); axis([-2,2,-0.5,2]);xlabel('t');ylabel('f(t)'); title('f(t)=U(t+1)-U(t-1)');subplot(2,1,2);plot(W,F); axis([-40,40,-1,2]);title('f(t)的傅立叶变换');ylabel('F(w)');xlabel('w');信号的傅立叶变换如图:(4)连续函数的傅立叶变换。
西北工业大学信号与线性系统实验报告学号姓名:主持人:参与人:主持人: 参与人: 实验八 一阶网络特性测量1.实验内容在电路系统中,一阶系统是构成复杂系统的基本单元。
学习一阶系统的特点有助于对一般系统特性的了解。
一阶系统的传输函数一般可以写成:γ+⋅=s H s H 1)(0 因果系统是稳定的要求:0>γ,不失一般性可设τγ10==H 。
该系统的频响特性为: 11)(+Ω=Ωτj H从其频响函数中可以看出系统响应呈低通方式,其3dB 带宽点τ1。
系统的波特图如下图:θ一阶低通系统的单位冲击响应与单位阶跃响应如下图:2.实验过程1、一阶网络波特图的测量:(1)首先用低频信号源产生一正弦信号,输出信号幅度为2Vpp。
加入到“一阶网络”模块的X输入端。
(2)用示波器测量一阶网络的输出信号Y(t)。
(3)然后从低频开始不断增加信号源的输出频率(1KHz一个步进),并保持其输出幅度不变,测量相应频点一阶网络的输出信号,并记录下输出信号的幅度、输入信号与输出信号的相位差。
以频率与输出幅度(可换算成相对0点的相对电平值,其单位为dB)为变量画出一曲线,同时以频率与输入输出信号相位差为变量画出一曲线。
这两条曲线即为一阶网络的波特图。
2、一阶网络单位阶跃响应测量:(1)按1.3节使JH5004信号产生模块处于模式2,在该模式下,脉冲信号输出端产生一周期为45ms的方波信号。
(2)将脉冲信号加入到“一阶网络”模块的X1输入端。
用示波器测量一阶网络的单位阶跃响应。
3、用二次开发模块的元件,改变一阶网络的元件参数,重复上述实验。
3.实验数据(1)一阶网络波特图的测量主持人:参与人:①频率为1KHZ时的输出信号以及输入输出信号的对比图②频率为2KHZ时的输出信号以及输入输出信号的对比图主持人:参与人:③频率为3KHZ时的输出信号以及输入输出信号的对比图④频率为4KHZ时的输出信号以及输入输出信号的对比图主持人:参与人:⑤频率为5KHZ时的输出信号以及输入输出信号的对比图主持人:参与人:(2)一阶网络单位阶跃响应测量(未改变一阶网络的原件参数)(3)一阶网络波特图的测量(并联一个4.3K)①用示波器测量一阶网络1khz输出及输入输出对比图主持人:参与人:②用示波器测量一阶网络2khz输出及输入输出对比图③用示波器测量一阶网络3khz输出及输入输出对比图主持人:参与人:④用示波器测量一阶网络4khz输出及输入输出对比图主持人:参与人:⑤用示波器测量一阶网络5khz输出及输入输出对比图(4)一阶网络单位阶跃响应测量(并联一个4.3KΩ的电阻)主持人:参与人:4.实验结果分析及思考1、一阶网络波特图实测曲线与理论曲线的对比分析。
西北工业大学信号与线性系统实验报告学号姓名:实验一常用信号的分类与观察1.实验内容(1)观察常用信号的波形特点及其产生方法;(2)学会使用示波器对常用波形参数的测量;(3)掌握JH5004信号产生模块的操作;2.实验过程在下面实验中,按1.3节设置信号产生器的工作模式为11。
(1)指数信号观察:通过信号选择键1,按1.3节设置A组输出为指数信号(此时信号输出指示灯为000000)。
用示波器测量“信号A组”的输出信号。
观察指数信号的波形,并测量分析其对应的a、K参数。
(2)正弦信号观察:通过信号选择键1,按1.3节设置A组输出为正弦信号(此时A组信号输出指示灯为000101)。
用示波器测量“信号A组”的输出信号。
在示波器上观察正弦信号的波形,并测量分析其对应的振幅K、角频率 w。
(3)指数衰减正弦信号观察(正频率信号):通过信号选择键1、按1.3节设置A组输出为指数衰减余弦信号(此时信号输出指示灯为000001),用示波器测量“信号A组”的输出信号。
通过信号选择键2、按1.3节设置B组输出为指数衰减正弦信号(此时信号输出指示灯为000010),用示波器测量“信号B组”的输出信号。
*分别用示波器的X、Y通道测量上述信号,并以X-Y方式进行观察,记录此时信号的波形,并注意此时李沙育图形的旋转方向。
(该实验可选做)分析对信号参数的测量结果。
(4)*指数衰减正弦信号观察(负频率信号):(该实验可选做)通过信号选择键1、按1.3节设置A组输出为指数衰减余弦信号(此时信号输出指示灯为000011),用示波器测量“信号A组”的输出信号。
通过信号选择键2、按1.3节设置B组输出为指数衰减正弦信号(此时信号输出指示灯为000100),用示波器测量“信号B组”的输出信号。
分别用示波器的X、Y通道测量上述信号,并以X-Y方式进行观察,记录此时信号的波形,并注意此时李沙育图形的旋转方向。
将测量结果与实验3所测结果进行比较。
姓名:学号:学院:0<=n<=31x1(n)=sin(pi*n/4)*cos(pi*n/4);x2(n)=cos(pi*n/4)*cos(pi*n/4)x3(n)=sin(pi*n/4)*cos(pi*n/8)分别画出图形,求出其周期。
代码:n=0:31;x1=sin(pi*n/4).*cos(pi*n/4); x2=cos(pi*n/4).*cos(pi*n/4); x3=sin(pi*n/4).*cos(pi*n/8); stem(n,x1)stem(n,x2)stem(n,x3)结果:由图形可知周期T1=4由图形可知周期T2=4由图形可知周期T3=16Q2:当0<=n<=5时,h(n)=n;其他h(n)=0;x(n)=h(n);求y(n)=x(n)*h(n);用stem函数画出y(n).代码:n=0:5;x=h;y=conv(x,h);stem(y)结果:Q3:(a).定义用向量a1和b1描述差分方程y(n)-0.8y(n-1)=2x(n)-x(n-2)表征的因果LTI系统,(b).用在(a)中的系数向量,利用freqz定义H1是在0和pi之间4个等份频率上频率响应的值,omega1是这些频率值。
(c).用在(a)中的系数向量,利用freqz定义H2是在0和2*pi之间4个等份频率上频率响应的值,omega2是这些频率值。
代码:n=4;a1=[5,0,-4]b1=[10,0,-5][H1,W1] = freqz(b1,a1,n)[H2,W2] = freqz(b1,a1,n,'whole')结果:a1 =5 0 -4b1 =10 0 -5H1 =5.00001.7073 - 0.3659i1.66671.7073 + 0.3659iW1 =0.78541.57082.3562H2 =5.00001.66675.00001.6667W2 =1.57083.14164.7124Q4: X1(n)=u(n)-u(n-8); 其周期N1=8,X2(n)=u(n)-u(n-8); 其周期N2=16,X3(n)=u(n)-u(n-8); 其周期N3=32,(1) 画出这些周期信号在0<=n<=63的图形(2) 求其对应的付氏级数,(分别为a1,a2,a3)并画图。
信号与系统上机实验题全解The Standardization Office was revised on the afternoon of December 13, 2020信号与系统实验报告班级:姓名:学号:成绩:指导教师:目录实验一:一、实验目的二、实验原理三、抄写实验内容,写出程序清单四、记录信号波形实验二:一、实验目的、二、实验原理三、抄写实验内容,写出程序清单四、记录信号波形实验三:一、实验目的二、实验原理三、抄写实验内容,写出程序清单四、记录信号波形实验四:一、实验目的二、实验原理三、抄写实验内容,写出程序清单四、记录信号波形总结心得参考文献(实验要求:每个实验都按照目录的格式填写完整,总结最后一起写。
参考文献最好要写,二级标题为宋体三号字体宋体四号标题的格式按照现有文件格式文件名为学号加姓名)实验一常见信号的MATLAB表示及运算一、实验目的1、熟悉常见信号的意义、特性及波形;2、学会使用MATLAB表示信号的方法并绘制信号波形;3、掌握使用MATLAB进行信号基础运算的指令;4、熟悉MATLAB实现卷积积分的方法。
二、实验原理信号一般是随时间而变化的某些物理量。
按照自变量的取值是否连续,信号分为连续时间信号和离散时间信号,一般用()f kf t和()来表示。
若对信号进行时域分析,就需要绘制其波形,如果信号比较复杂,则手工绘制波形就变得很困难,且难以精确。
MATLAB强大的图形处理功能及符号运算功能,为实现信号的可视化及其时域分析提供了强有力的工具。
根据MATLAB的数值计算功能和符号运算功能,在MATLAB中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。
在采用适当的MATLAB语句表示出信号后,就可以利用MATLAB中的绘图命令绘制出直观的信号波形了。
下面分别介绍连续时间信号和离散时间信号的MATLAB表示及其波形绘制方法。
1.连续时间信号所谓连续时间信号,是指其自变量的取值是连续的,并且除了若干不连续的点外,对于一切自变量的取值,信号都有确定的值与之对应。
西工大高频实验二预习报告实验二:调幅接收系统实验08051101 辛航博:2011302058阳昆:2011302059 一、实验目的:图2为实验中的调幅接收系统结构图,虚框部分为实验重点~低噪放电路下次实验实现~本振信号由信号源产生。
,。
通过实验了解与掌握调幅接收系统~了解与掌握三极管混频器电路、中频放大/AGC电路、检波电路。
图2 调幅接收系统结构图二、预习内容:1、给出完整的调幅接收系统结构图。
2、晶体管混频器电路图T6-1为晶体管混频电路图~熟悉电路~并论述其原理。
思考并回答下列问题:A、何为混频增益~如何测量混频增益~给出需要的仪器~测试方法和测试结构图。
混频增益是指混频器的输出中频信号电压Vi(或功率Pi)对输入信号电压Vs(或功率Ps)的比值,即:错误~未找到引用源。
B、混频管的静态工作电流对混频增益有何影响,由于三极管非线性产生的自给偏置,Ac随Ic的增加先增大由缓慢减小3、中频放大/AGC和检波电路图8-4为中频放大/AGC和检波电路图。
熟悉电路~并论述其原理。
思考并回答下列问题:A、AGC是什么,AGC电路在通信系统中的作用是什么,AGC的主要指标有哪些,AGC为自动控制增益,当高频头接收到弱信号时,它会自动控制放大管增加放大倍数,反之减小放大倍数。
使放大电路的增益自动地随信号强度而调整的自动控制方法。
功率增益、噪声系数吗、功率增益衰减量、漏电流、镜像干扰抑制比等B、二极管检波原理是什么,利用二极管的正向导通性,二极管导通调幅信号Vs向电容充电,截止时电容通过电阻放电,反复充放电平衡后输出电压稳定在平均值V上、下按角频率Wc作锯齿状波AV动,从而不失真地反映输入信号的包络变化。
C、检波电路中含有R、C器件~不正确选择R、C会造成何种失真,会产生惰性失真和负峰切割失真。
三、给出调幅发射系统调试步骤;指出需要哪些仪器、给出仪器与实验电路连接的测试结构图。
一、晶体管混频电路,实验步骤:第一步:调节2BJ1的静态工作点。