2019年七年级下册数学期末考试模拟试题WL
- 格式:pdf
- 大小:632.15 KB
- 文档页数:16
2019年七年级数学第二学期期末模拟试卷及答案(四)一、填空题(每小题3分,共18分)1.4的平方根等于.2.在平面直角坐标系中,点P的坐标是(﹣3,2),则点P在第象限.3.不等式10﹣2x≥2的正整数解为.4.如图,直线AB和CD相交于点O,OE平分∠BOD,∠BOE=30°,那么∠AOD=度.5.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题,”今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”若设鸡有x只,兔有y只,则列出的方程组为(列出方程组即可,不求解).6.按一定规律排列的一列数:2、5、8、11、14,…若按此规律排列下取,则第7个数位,第n个数位(n为正整数).二、填空题(每小题4分,共32分)7.下列A、B、C、D四个图中,能通过图M平移得到的是()A.B.C.D.8.下列5个实数:、π、、0.2351010010001…,,其中无理数的个数为()A.1 B.2 C.3 D.49.下列运算正确的是()A.﹣22=4 B.(﹣2)3=8 C.=4 D.10.如图,若AB∥DC,那么()A.∠1=∠2 B.∠3=∠4 C.∠B=∠D D.∠B=∠311.已知x=1,y=2是方程kx﹣2y﹣1=0的解,则k的值为()A.5 B.﹣5 C.3 D.﹣312.若a<b,则下列各式错误的是()A.a﹣3<b﹣3 B.﹣2a<﹣2b C.0.7a<0.7b D.﹣13.为了解某批食品的色素含量是否符合国家标准,从这批食品中随机抽取30袋进行统计分析,下列说法正确的是()A.这批食品是总体B.每袋食品是个体C.30袋食品是样本容量D.30袋食品的色素量是总体的一个样本14.在平面直角坐标系中,点P在x轴上方,且点P到x轴的距离为2,到y轴的距离为3,则点P的坐标为()A.(2,3) B.(3,2) C.(﹣3,2)或(3,2)D.(﹣2,3)或(2,3)三、解答题(本大题共9小题,共70分)15.计算:(﹣2)2﹣++(﹣1)2017.16.如图,已知AB∥CD,∠B=∠C,求证:∠1=∠2.证明:∵AB∥CD(已知)∴∠B=().∵∠B=∠C(已知)∴∠BFD=∠C()∴∥()∴∠2=(两直线平行,同位角相等)∵∠1=()∴∠1=∠2(等量代换).17.解二元一次方程组:.18.解不等式组,并把不等式①和②的解集在同一数轴上表示出来.19.如图,已知∠1=68°,∠3=∠4,求∠2的度数.20.在平面直角坐标系中,△ABC的位置如图所示,A、B、C三点的坐标分别为A(﹣1,3)、B(﹣4,1)、C(﹣2,1),把△ABC向右平移4个单位长度后得到对应的△A1B1C1,再将△A1B1C1向下平移5个单位长度后得到对应的△A2B2C2.(1)分别作出△A1B1C1和△A2B2C2;(2)求△A2B2C2的面积.21.如图,已知CD平分∠ACB,∠1=∠2,试判断AC与DE的位置关系,并说明理由.22.某中学为了解七年级学生最喜爱的球类运动情况,从中随机抽取部分学生进行调查统计,调查项目为篮球、乒乓球、足球和排球(每个被抽查的学生必须选择且只能选择其中一个调查项目),对调查结果绘制成如下不完整的统计图:根据以上统计图提供的信息,回答下列问题:(1)求本次抽样调查的样本容量;(2)请补全条形统计图.23.某超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表统计了近两周的销售情况:(1)求A、B两种型号的电风扇每台的销售价分别是多少元?(2)若超市准备用不超过5250元的金额再采购这两种型号的电风扇共30台,①求A种型号的电风扇最多能采购多少台?②超市销售完这30台电风扇是否能实现利润不低于1240元的目标?若能实现,请写出相应的采购方案,若不能实现,请说明理由.(进价、售价均保持不变,利润=销售收入﹣进货成本)参考答案与试题解析一、填空题(每小题3分,共18分)1.4的平方根等于±2.【考点】21:平方根.【分析】直接根据平方根的定义进行解答即可.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.2.在平面直角坐标系中,点P的坐标是(﹣3,2),则点P在第二象限.【考点】D1:点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点P的坐标是(﹣3,2),则点P在第二象限.故答案为:二.3.不等式10﹣2x≥2的正整数解为1、2、3、4.【考点】C7:一元一次不等式的整数解.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣2x≥2﹣10,合并同类项,得:﹣2x≥﹣8,系数化为1,得:x≤4,则该不等式的正整数解为1、2、3、4,故答案为:1,2,3,4.4.如图,直线AB和CD相交于点O,OE平分∠BOD,∠BOE=30°,那么∠AOD= 120度.【考点】J2:对顶角、邻补角.【分析】根据角平分线的定义可求∠BOD,再根据平角等于180°求解即可.【解答】解:∵OE平分∠BOD,∠BOD=30°,∴∠BOD=60°,∴∠AOD=180°﹣60°=120°.故答案为:120.5.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题,”今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”若设鸡有x只,兔有y只,则列出的方程组为(列出方程组即可,不求解).【考点】99:由实际问题抽象出二元一次方程组.【分析】根据等量关系:上有三十五头,下有九十四足,即可列出方程组.【解答】解:设鸡有x只,兔有y只,由题意得:.故答案为.6.按一定规律排列的一列数:2、5、8、11、14,…若按此规律排列下取,则第7个数位20,第n个数位3n﹣1(n为正整数).【考点】37:规律型:数字的变化类.【分析】由后面的数均比前一个数大3可得.【解答】解:∵第1个数2=2+3×(1﹣1),第2个数5=2+3×(2﹣1),第3个数8=2+3×(3﹣1),第4个数11=2+3×(4﹣1),…∴第7个数为2+3×(7﹣1)=20,第n个数为2+3(n﹣1)=3n﹣1,故答案为:20,3n﹣1.二、填空题(每小题4分,共32分)7.下列A、B、C、D四个图中,能通过图M平移得到的是()A.B.C.D.【考点】Q2:平移的性质.【分析】根据平移不改变图形的形状和大小解答即可.【解答】解:能通过图M平移得到的是,故选:D8.下列5个实数:、π、、0.2351010010001…,,其中无理数的个数为()A.1 B.2 C.3 D.4【考点】26:无理数.【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:π、0.2351010010001…,是无理数,故选:C.9.下列运算正确的是()A.﹣22=4 B.(﹣2)3=8 C.=4 D.【考点】24:立方根;1E:有理数的乘方;22:算术平方根.【分析】根据有理数的乘方、立方根、算术平方根求出每个式子的值,再判断即可.【解答】解:A、结果是﹣4,故本选项不符合题意;B、结果是﹣8,故本选项不符合题意;C、结果是4,故本选项符合题意;D、结果是2,故本选项不符合题意;故选C.10.如图,若AB∥DC,那么()A.∠1=∠2 B.∠3=∠4 C.∠B=∠D D.∠B=∠3【考点】JA:平行线的性质.【分析】根据平行线的性质结合图形得出即可.【解答】解:∵AB∥DC,∴∠B=∠5,∠3=∠4,根据AB∥DC不能退出∠1=∠2,∠B=∠D,∠B=∠3,故选B.11.已知x=1,y=2是方程kx﹣2y﹣1=0的解,则k的值为()A.5 B.﹣5 C.3 D.﹣3【考点】92:二元一次方程的解.【分析】根据方程的解满足方程,可得关于k的方程,根据解一元一次方程,可得答案.【解答】解:由题意,得k﹣4﹣1=0,解得k=5,故选:A.12.若a<b,则下列各式错误的是()A.a﹣3<b﹣3 B.﹣2a<﹣2b C.0.7a<0.7b D.﹣【考点】C2:不等式的性质.【分析】依据不等式的性质进行解答即可.【解答】解:A、不等式a<b的两边同时减去3,不等号方向不变,故A正确,与要求不符;B、不等式a<b的两边同时乘以﹣2,不等号方向改变,故B错误,与要求相符;C、不等式a<b的两边同时乘以0.7,不等号方向不变,故C正确,与要求不符;D、不等式a<b的两边同时乘以﹣,不等号方向改变,故D正确,与要求不符.故选:B.13.为了解某批食品的色素含量是否符合国家标准,从这批食品中随机抽取30袋进行统计分析,下列说法正确的是()A.这批食品是总体B.每袋食品是个体C.30袋食品是样本容量D.30袋食品的色素量是总体的一个样本【考点】V3:总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、某批食品的色素含量是总体,故A不符合题意;B、每袋食品的色素含量是个体,故B不符合题意;C、30是样本容量,故C不符合题意;D、30袋食品的色素量是总体的一个样本,故D符合题意;故选:D.14.在平面直角坐标系中,点P在x轴上方,且点P到x轴的距离为2,到y轴的距离为3,则点P的坐标为()A.(2,3) B.(3,2) C.(﹣3,2)或(3,2)D.(﹣2,3)或(2,3)【考点】D1:点的坐标.【分析】先判断出点P在第一或第二象限,再根据点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值求解.【解答】解:∵点P在x轴上方,∴点P在第一或第二象限,∵点P到x轴的距离为2,到y轴的距离为3,∴点P的横坐标为3或﹣3,纵坐标为2,∴点P的坐标为(﹣3,2)或(3,2).故选C.三、解答题(本大题共9小题,共70分)15.计算:(﹣2)2﹣++(﹣1)2017.【考点】2C:实数的运算.【分析】首先计算开方、乘方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣2)2﹣++(﹣1)2017=4﹣3+4﹣1=416.如图,已知AB∥CD,∠B=∠C,求证:∠1=∠2.证明:∵AB∥CD(已知)∴∠B=∠BFD(两直线平行,内错角相等).∵∠B=∠C(已知)∴∠BFD=∠C(等量代换)∴BC∥BF(同位角相等,两直线平行)∴∠2=∠CHG(两直线平行,同位角相等)∵∠1=∠CHG(对顶角相等)∴∠1=∠2(等量代换).【考点】JB:平行线的判定与性质.【分析】欲证明∠1=∠2,只需推知BC∥BF即可.【解答】证明:∵AB∥CD(已知)∴∠B=∠BFD(两直线平行,内错角相等).∵∠B=∠C(已知)∴∠BFD=∠C(等量代换)∴BC∥BF(同位角相等,两直线平行)∴∠2=∠CHG(两直线平行,同位角相等)∵∠1=∠CHG(对顶角相等)∴∠1=∠2(等量代换).故答案是:∠BFD;两直线平行,内错角相等;等量代换;BC;BF;∠CHG;∠CHG;对顶角相等.17.解二元一次方程组:.【考点】98:解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×2+②得:7x=14,即x=2,把x=2代入①得:y=﹣3,则方程组的解为.18.解不等式组,并把不等式①和②的解集在同一数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】根据解不等式组的方法可以求得原不等式组的解集,并在同一数轴上表示出来.【解答】解:,由不等式①,得x>﹣1,由不等式②,得x≤4,∴原不等式组的解集是﹣1<x≤4,在数轴上表示如下图所示,.19.如图,已知∠1=68°,∠3=∠4,求∠2的度数.【考点】JB:平行线的判定与性质.【分析】根据平行线的判定得出AB∥CD,根据平行线的性质求出∠AME,即可求出答案.【解答】解:∵∠3=∠4,∴AB∥CD,∵∠1=68°,∴∠1=∠AME=68°,∴∠2=180°﹣∠AME=112°.20.在平面直角坐标系中,△ABC的位置如图所示,A、B、C三点的坐标分别为A(﹣1,3)、B(﹣4,1)、C(﹣2,1),把△ABC向右平移4个单位长度后得到对应的△A1B1C1,再将△A1B1C1向下平移5个单位长度后得到对应的△A2B2C2.(1)分别作出△A1B1C1和△A2B2C2;(2)求△A2B2C2的面积.【考点】Q4:作图﹣平移变换.【分析】(1)直接利用平移的性质分别得出对应点位置进而得出答案;(2)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示:△A1B1C1和△A2B2C2,即为所求;(2)△A2B2C2的面积为:×2×2=2.21.如图,已知CD平分∠ACB,∠1=∠2,试判断AC与DE的位置关系,并说明理由.【考点】J9:平行线的判定.【分析】直接利用角平分线的定义结合已知得出∠ACD=∠2,即可得出答案.【解答】解:AC∥DE,理由:∵CD平分∠ACB,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴AC∥DE.22.某中学为了解七年级学生最喜爱的球类运动情况,从中随机抽取部分学生进行调查统计,调查项目为篮球、乒乓球、足球和排球(每个被抽查的学生必须选择且只能选择其中一个调查项目),对调查结果绘制成如下不完整的统计图:根据以上统计图提供的信息,回答下列问题:(1)求本次抽样调查的样本容量;(2)请补全条形统计图.【考点】VC:条形统计图;V3:总体、个体、样本、样本容量;VB:扇形统计图.【分析】(1)用乒乓球的人数除以乒乓球所占的百分比,即可解答;(2)用总人数减去已知其它3个项目的人数求得答案即可.【解答】解:(1)16÷32%=50(人)答:本次抽样调查的样本容量是50;(2)50﹣16﹣10﹣4=10(人),如图所示:.23.某超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表统计了近两周的销售情况:(1)求A、B两种型号的电风扇每台的销售价分别是多少元?(2)若超市准备用不超过5250元的金额再采购这两种型号的电风扇共30台,①求A种型号的电风扇最多能采购多少台?②超市销售完这30台电风扇是否能实现利润不低于1240元的目标?若能实现,请写出相应的采购方案,若不能实现,请说明理由.(进价、售价均保持不变,利润=销售收入﹣进货成本)【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设A种型号的电风扇每台的销售价为x元,B种型号的电风扇每台的销售价为y元,由题意得等量关系:①3台A的销售价+5台B的销售价=1800元,②6台A的销售价+8台B的销售价=3180元,根据等量关系列出方程组,再解即可;(2)①设A种型号的电风扇采购a台,由题意得不等关系:A型的总进价+B型的总进价≤5250元,根据不等关系,列出不等式,再解即可;②根据题意可得不等关系:A型每台的利润×数量+B型每台的利润×数量≥1240元,根据不等关系列出不等式,解出不等式,再结合①中a的范围,确定采购方案即可.【解答】解:(1)设A种型号的电风扇每台的销售价为x元,B种型号的电风扇每台的销售价为y元,由题意得:,解得:,答:A种型号的电风扇每台的销售价为250元,B种型号的电风扇每台的销售价为210元;(2)①设A种型号的电风扇采购a台,由题意得:200a+170(30﹣a)≤5250,解得:a≤5,∴a最大值为5,答:A种型号的电风扇最多能采购5台;②由题意得:50a+40(30﹣a)≥1240,解得:a≥4,由①得:a≤5,∴4≤a≤5,∵a为非负整数,∴a=4,5,∴采购方案1:购进A型4台,购进B型26台;方案2,购进A型5台,购进B 型25台.答:能实现,采购方案1:购进A型4台,购进B型26台;方案2,购进A型5台,购进B型25台.。
2019年七年级数学下期末模拟试卷(含答案) 一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有A.1个B.2个C.3个D.4个2.如图,已知∠1=∠2,∠3=30°,则∠B的度数是( )A.20o B.30o C.40o D.60o 3.计算2535-+-的值是()A.-1B.1C.525-D.255-4.已知方程组276359632713x yx y+=⎧⎨+=-⎩的解满足1x y m-=-,则m的值为()A.-1B.-2C.1D.25.如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是( )A.(﹣26,50)B.(﹣25,50)C.(26,50)D.(25,50)6.已知关于x的方程2x+a-9=0的解是x=2,则a的值为A.2 B.3 C.4 D.57.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE8.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩9.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,810.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角11.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度 12.在平面直角坐标系中,点P(1,-2)在( )A .第一象限B .第二象限C .第三象限D .第四象限 二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.14.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为______________.15.某小区地下停车场入口门栏杆的平面示意图如图所示,垂直地面 于点 , 平行于地面 ,若 ,则 ________.16.若a ,b 均为正整数,且a >7,b <32,则a +b 的最小值是_______________.17.化简(2-1)0+(12)-2-9+327-=________________________. 18.《孙子算经》是中国古代重要的数学著作,现在的传本共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法,其中记载:“今有木、不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”译文:“用一根绳子量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还到余1尺,问木长多少尺?”设绳长x 尺,木长y 尺.可列方程组为__________.19.如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA=6cm ,PB=5cm ,PC=7cm ,则点P 到直线l 的距离是_____cm.20.已知点(0,)A a 和点(5,0)B ,且直线AB 与坐标轴围成的三角形的面积为10,则a 的值为________.三、解答题21.如图,直线AB 与CD 相交于点O ,∠BOE=∠DOF=90°.(1)写出图中与∠COE 互补的所有的角(不用说明理由).(2)问:∠COE 与∠AOF 相等吗?请说明理由;(3)如果∠AOC=15∠EOF ,求∠AOC 的度数. 22.如图,在平面直角坐标系xOy 中,点A (a ,0),B (c ,c ),C (0,c ),且满足2(8)c 40a ++=,P 点从A 点出发沿x 轴正方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点B 的坐标,AO 和BC 位置关系是;(2)当P 、Q 分别是线段AO ,OC 上时,连接PB ,QB ,使2PAB QBC S S ∆∆=,求出点P 的坐标;(3)在P 、Q 的运动过程中,当∠CBQ =30°时,请探究∠OPQ 和∠PQB 的数量关系,并说明理由.23.已知△ABC 是等边三角形,将一块含有30°角的直角三角尺DEF 按如图所示放置,让三角尺在BC 所在的直线上向右平移.如图①,当点E 与点B 重合时,点A 恰好落在三角尺的斜边DF 上.(1)利用图①证明:EF =2BC .(2)在三角尺的平移过程中,在图②中线段AH =BE 是否始终成立(假定AB ,AC 与三角尺的斜边的交点分别为G ,H)?如果成立,请证明;如果不成立,请说明理由.24.如图,已知AB CD ∥,B D ∠=∠,请用三种不同的方法说明AD BC ∥.25.补充完成下列解题过程:如图,已知直线a 、b 被直线l 所截,且//a b ,12100∠+∠=°,求3∠的度数.解:1∠Q 与2∠是对顶角(已知),12∠∠∴=( )12100∠+∠=︒Q (已知),得21100∠=︒(等量代换).1∴∠=_________( ).//a b Q (已知),得13∠=∠( ).3∴∠=________(等量代换).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】无理数有3π,0.2112111211112……(每两个2之多一个13,共三个, 故选C .【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.B解析:B【解析】【分析】根据内错角相等,两直线平行,得AB ∥CE ,再根据性质得∠B=∠3.【详解】因为∠1=∠2,所以AB ∥CE所以∠B=∠3=30o故选B【点睛】熟练运用平行线的判定和性质.3.B解析:B【解析】【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案.【详解】 解:2535+-(253525351-+=-+=,故选B .【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键. 4.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m 的值即可.【详解】解:276359632713x y x y +=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A .【点睛】考查了解二元一次方程组,解关于x ,y 二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.5.C解析:C【解析】【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数). 故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50.故选:C .【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.6.D解析:D【解析】∵方程2x +a ﹣9=0的解是x =2,∴2×2+a ﹣9=0,解得a =5.故选D .7.D解析:D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠C =∠ABE 不能判断出EB ∥AC ,故A 选项不符合题意;B 、∠A =∠EBD 不能判断出EB ∥AC ,故B 选项不符合题意;C 、∠C =∠ABC 只能判断出AB =AC ,不能判断出EB ∥AC ,故C 选项不符合题意;D 、∠A =∠ABE ,根据内错角相等,两直线平行,可以得出EB ∥AC ,故D 选项符合题意.故选:D .【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.8.D解析:D【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=,∴321020x y x y --⎧⎨+-⎩== 将方程组变形为32=1=2x y x y -⎧⎨+⎩①②, ①+②×2得,5x=5,解得x=1, 把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩. 故选:D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.9.C解析:C【解析】【分析】根据点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D 的对应点的坐标.【详解】点A (-2,3)的对应点为C (2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B (-4,-1)的对应点D 的横坐标为-4+4=0,点D 的纵坐标为-1+2=1,故D (0,1).故选C .【点睛】此题考查了坐标与图形的变化----平移,根据A (-2,3)变为C (2,5)的规律,将点的变化转化为坐标的变化是解题的关键.10.A解析:A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 11.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.12.D解析:D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.二、填空题13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BAE+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C (32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大解析:(1,3)或(5,1)【解析】【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:①如图1,当A平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点A的横坐标增大了1,纵坐标增大了2,平移后的B坐标为(1,3),②如图2,当B平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点B的横坐标增大了3,纵坐标增大2,∴平移后的A坐标为(5,1),故答案为:(1,3)或(5,1)【点睛】本题考查坐标系中点、线段的平移规律,关键要理解在平面直角坐标系中,图形的平移与图形上某点的平移相同,从而通过某点的变化情况来解决问题.15.150°【解析】【分析】先过点B作BF∥CD由CD∥AE可得C D∥BF∥AE继而证得∠1+∠BCD=180°∠2+∠BAE=180°又由BA垂直于地面AE于A∠BCD=120°求得答案【详解】如图过解析:【解析】【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=120°,求得答案.【详解】如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=120°,∠BAE=90°,∴∠1=60°,∠2=90°,∴∠ABC=∠1+∠2=150°.故答案是:150o.【点睛】考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.16.4【解析】【分析】先估算的范围然后确定ab的最小值即可计算a+b的最小值【详解】∵<<∴2<<3∵a>a为正整数∴a的最小值为3∵<<∴1<<2∵b<b为正整数∴b的最小值为1∴a+b的最小值为3+解析:4【解析】【分析】的范围,然后确定a、b的最小值,即可计算a+b的最小值.【详解】∴2<3,∵a,a为正整数,∴a的最小值为3,∴1<2,∵b,b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故答案为:4.【点睛】此题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.17.-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质算术平方根的性质分别化简得出答案详解:原式=1+4-3-3=-1故答案为:-1点睛:此题主要考查了实数运算正确化简各数是解题关键解析:-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.详解:原式=1+4-3-3=-1.故答案为:-1.点睛:此题主要考查了实数运算,正确化简各数是解题关键.18.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x尺长木为y尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程解析:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩【解析】【分析】本题的等量关系是:绳长-木长=4.5;木长-12绳长=1,据此可列方程组求解. 【详解】设绳长x 尺,长木为y 尺, 依题意得 4.5112x y x y -=⎧⎪⎨=-⎪⎩, 故答案为: 4.5112x y x y -=⎧⎪⎨=-⎪⎩. 【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程.19.【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度可得答案【详解】解:∵PB ⊥lPB=5cm ∴P 到l 的距离是垂线段PB 的长度5c m 故答案为:5【点睛】本题考查了点到直线的距离的定解析:【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【详解】解:∵PB ⊥l ,PB=5cm ,∴P 到l 的距离是垂线段PB 的长度5cm ,故答案为:5.【点睛】本题考查了点到直线的距离的定义,熟练掌握是解题的关键.20.±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可【详解】解:假设直角坐标系的原点为O 则直线与坐标轴围成的三角形是以OAOB 为直角边的直角三角形∵和点∴∴∴∴故答案为:±4【点睛解析:±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可.【详解】解:假设直角坐标系的原点为O ,则直线AB 与坐标轴围成的三角形是以OA 、OB 为直角边的直角三角形,∵(0,)A a 和点(5,0)B ,∴||OA a =,5OB =,∴11||51022OAB S OA OB a ∆=⨯⨯=⨯⨯=, ∴||4=a ,∴4a =±,故答案为:±4. 【点睛】本题主要考查了三角形的面积和直角坐标系的相关知识,需注意坐标轴上到一个点的距离为定值的点有2个.三、解答题21.(1) ∠DOE ,∠BOF ;(2) 相等;(3) ∠AOC=30°.【解析】试题分析:(1)由题意易得∠COE+∠DOE=180°,由∠BOE=∠DOF=90°可得∠DOE=∠BOF ,从而可得∠COE 的补角是∠DOE 和∠BOF ;(2)由∠BOE=∠DOF=90°易得∠AOE=∠COF=90°,从而可得∠COE=∠AOF ;(3)设∠AOC=x ,则可得∠EOF=5x ,结合∠COE=∠AOF 可得∠COE=2x ,由∠AOC+∠COE=∠AOE=90°列出关于x 的方程,解方程求得x 的值即可.试题解析;(1)∵直线AB 与CD 相交于点O ,∴∠COE+∠DOE=180°,即∠DOE 是∠COE 的补角,∵∠BOE=∠DOF=90°,∴∠BOE+∠BOD=∠DOF+∠BOD ,即:∠DOE=∠BOF ,∴与∠COE 互补的角有:∠DOE ,∠BOF ;(2)∠COE 与∠AOF 相等,理由:∵直线AB 、CD 相交于点O ,∴∠AOE+∠BOE=180°,∠COF+∠DOF=180°,又∵∠BOE=∠DOF=90°,∴∠AOE=∠COF=90°,∴∠AOE ﹣∠AOC=∠COF ﹣∠AOC ,∴∠COE=∠AOF ;(3)设∠AOC=x ,则∠EOF=5x ,∴∠COE+∠AOF=∠EOF-∠AOC=5x-x=4x ,∵∠COE=∠AOF ,∴∠COE=∠AOF=2x ,∵∠AOE=90°,∴x+2x=90°,∴x=30°,∴∠AOC=30°.点睛:(1)有公共顶点,且部分重合的两个直角,其公共部分两侧的两个角相等(如本题中的∠COE=∠AOF );(2)解第3小题的关键是:当设∠AOC=x 时,利用已知条件把∠COE 用含“x ”的式子表达出来,这样即可由∠AOC+∠COE=∠AOE=90°,列出关于“x ”的方程,解方程即可得到所求答案了.22.(1)(-4,-4) ,BC ∥AO ;(2)P (−4,0);(3)∠PQB =∠OPQ +30°或∠BQP +∠OPQ =150°【解析】【分析】(1)由2(8)40a c +++=解出c ,得到B 点,易知BC ∥AO ;(2)过B 点作BE ⊥AO 于E ,设时间经过t 秒,AP =2t ,OQ =t ,CQ =4-t ;用t 表示出PAB S ∆与QBC S ∆,根据2PAB QBC S S ∆∆=列出方程解出t 即可;(3)要分情况进行讨论,①当点Q 在点C 的上方时;过Q 点作QH ∥AO 如图1所示,利用平行线的性质可得到∠PQB =∠OPQ +30°;②当点Q 在点C 的下方时;过Q 点作HJ ∥AO 如图2所示,同样利用平行线的性质可得到,∠BQP +∠OPQ =150°【详解】(1)由2(8)40a c +++=得到c+4=0,得到c=-4(-4,-4) ,BC ∥AO(2)过B 点作BE ⊥AO 于E设时间经过t 秒,则AP =2t ,OQ =t ,CQ =4-t∵BE =4,BC =4,∴APB 1AP 2S V =·1BE 2442t t =⨯⨯= ()BCQ 11 S CQ?BC 448222t t ==⨯-⨯=-V ∵APB BCQ 2S S =V V∴()4282t t =-解得t =2∴AP =2t =4∴P(−4,0)(3) ①当点Q在点C的上方时;过Q点作QH∥AO如图一所示,∴∠OPQ=∠PQH.又∵BC∥AO,QH∥AO∴QH∥BC∴∠HQB=∠BCQ=30°.∴∠OPQ+∠BCQ=∠PQH+∠BQH.∴即∠PQB =∠OPQ+∠CBQ.即∠PQB =∠OPQ+30°②当点Q在点C的下方时;过Q点作HJ∥AO如图二所示,∴∠OPQ=∠PQJ.又∵BC∥AO,QH∥AO∴QH∥BC∴∠HQB=∠BCQ=30°.∴∠HQB+∠BQP+∠PQJ=180°,∴30°+∠BQP+∠OPQ=180°即∠BQP+∠OPQ=150°综上所述∠PQB =∠OPQ+30°或∠BQP+∠OPQ=150°【点睛】本题重点考察非负项的性质、三角形面积的计算、平行线的性质等知识点,综合程度比较高,第三问对Q点进行分情况讨论,作出辅助线是解题关键23.(1)详见解析;(2)成立,证明见解析.【解析】【分析】(1)根据等边三角形的性质,得∠ACB =60°,AC =BC .结合三角形外角的性质,得∠CAF =30°,则CF =AC ,从而证明结论;(2)根据(1)中的证明方法,得到CH =CF .根据(1)中的结论,知BE +CF =AC ,从而证明结论.【详解】(1)∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC .∵∠F =30°,∴∠CAF =60°-30°=30°,∴∠CAF =∠F ,∴CF =AC ,∴CF =AC =BC ,∴EF =2BC .(2)成立.证明如下:∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC .∵∠F =30°,∴∠CHF =60°-30°=30°,∴∠CHF =∠F ,∴CH =CF .∵EF =2BC ,∴BE +CF =BC .又∵AH +CH =AC ,AC =BC ,∴AH =BE .【点睛】本题考查了等边三角形的性质、三角形的外角性质以及等腰三角形的判定及性质.证明EF =2BC 是解题的关键.24.见解析【解析】【分析】有多种方法可证明:方法一:通过∠C 转化得到180D C ∠+∠=︒,从而证明;方法二:连接BD ,根据平行得ABD CDB ∠=∠,角度转化得到DBC BDA ∠=∠,从而证平行;方法三:延长BC 至E ,根据平行得B DCE ∠=∠,角度转化得DCE D ∠=∠,从而证平行.【详解】方法一:∵AB ∥CD ∴180B C ∠+∠=︒∵B D ∠=∠∴180D C ∠+∠=︒∴AD ∥BC方法二:连接BD∵AB ∥CD ∴ABD CDB ∠=∠又∵ABC CDA ∠=∠∴ABC ABD CDA CDB ∠-∠=∠-∠∴DBC BDA ∠=∠∴AD ∥BC方法三:延长BC 至E∵AB ∥CD ∴B DCE ∠=∠又∵B D ∠=∠∴DCE D ∠=∠∴AD ∥BC【点睛】本题考查平行线的性质和证明,注意,仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.25.对顶角相等;50︒;等式性质;两直线平行,内错角相等;50︒【解析】【分析】直接利用平行线的性质结合等式的性质分别填空得出答案.【详解】∵∠1与∠2是对顶角(已知),∴∠1=∠2(对顶角相等).∵∠1+∠2=100°(已知),∴2∠1=100°(等量代换),∴∠1=50°,∵a ∥b (已知),∴∠1=∠3(两直线平行,内错角相等)∴∠3=50°(等量代换).故答案为:对顶角相等;50°;两直线平行,内错角相等;50°.【点睛】此题主要考查了平行线的性质以及等式的性质,正确掌握相关性质是解题关键.。
2019年初一数学下期末模拟试卷(及答案) 一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有A.1个B.2个C.3个D.4个2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==3.计算2535-+-的值是()A.-1B.1C.525-D.255-4.如图已知直线//AB CD,134∠=︒,272∠=︒,则3∠的度数为()A.103︒B.106︒C.74︒D.100︒5.已知方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,则k的值是()A.k=-5 B.k=5 C.k=-10 D.k=106.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折7.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩8.已知是关于x ,y 的二元一次方程x-ay=3的一个解,则a 的值为( ) A .1 B .-1 C .2 D .-29.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个10.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5 B .-5<x <3 C .-3<x <5 D .-5<x <-311.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .3B .5C .7D .9 12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( ) A .③④②① B .③④①② C .①②③④ D .④③①②二、填空题13.不等式71x ->的正整数解为:______________.14.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____.15.已知13x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则2m +n 的值为_____. 16.若二元一次方程组3354x y x y +=⎧⎨-=⎩的解为x a y b =⎧⎨=⎩,则a ﹣b=______. 17.线段CD 是由线段AB 平移得到的,其中点A (﹣1,4)平移到点C (﹣3,2),点B (5,﹣8)平移到点D ,则D 点的坐标是________.18.关于x 的不等式(3a-2)x<2的解为x >,则a 的取值范围是________ 19.若方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解为_______.20.如图,将△ABC 沿BC 方向平移1个单位得到△DEF ,若△ABC 的周长等于8,则四边形ABFD 的周长等于_______.三、解答题21.目前“微信”、“支付宝”、“共享单车”和“网购”给我们带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行了调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=___________,n=_____________;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生种,大约有多少人最认可“微信”这一新生事物?22.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.23.如图①,已知AB∥CD,点E、F分别是AB、CD上的点,点P是两平行线之间的一点,设∠AEP=α,∠PFC=β,在图①中,过点E作射线EH交CD于点N,作射线FI,延长PF到G,使得PE、FG分别平分∠AEH、∠DFl,得到图②.(1)在图①中,过点P作PM∥AB,当α=20°,β=50°时,∠EPM=度,∠EPF=度;(2)在(1)的条件下,求图②中∠END与∠CFI的度数;(3)在图②中,当FI∥EH时,请直接写出α与β的数量关系.24.为了扶贫户学生好读书,读好书,某实验学校校友会在今年开学初,到新华书店采购文学名著和自然科学两类图书.经了解,购买30本文学名著和50本自然科学书共需2350元,20本文学名著比20本自然科学书贵500元.(注:所采购的文学名著价格都一样,所采购的自然科学书价格都一样)(1)求每本文学名著和自然科学书的单价.(2)若该校校友会要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,请求出所有符合条件的购书方案.25.某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.(1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.(2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】无理数有3π,0.2112111211112……(每两个2之多一个1,共三个,故选C.【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.B解析:B【解析】【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案.【详解】解:23+-(23231-+=-+=,故选B .【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键. 4.B解析:B【解析】【分析】先算BAC ∠的度数,再根据//AB CD ,由直线平行的性质即可得到答案.【详解】解:∵134∠=︒,272∠=︒,∴18012180347274BAC ∠=-∠-∠=︒-︒-︒=︒∵//AB CD ,∴3180BAC ∠+∠=︒(两直线平行,同旁内角互补),∴318018074106BAC ∠=︒-∠=︒-︒=︒,故选B .【点睛】本题主要考查了直线平行的性质(两直线平行,同旁内角互补),掌握直线平行的性质是解题的关键.5.A解析:A【解析】【分析】根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值.【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,∴5320x y x y -=⎧⎨-=⎩, 解得,1015x y =-⎧⎨=-⎩; 把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得, -40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键. 6.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 7.A解析:A【解析】【分析】【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩, 故选D .考点:由实际问题抽象出二元一次方程组. 8.B解析:B【解析】把代入x-ay=3,解一元一次方程求出a值即可.【详解】∵是关于x,y的二元一次方程x-ay=3的一个解,∴1-2a=3解得:a=-1故选B.【点睛】本题考查二元一次方程的解,使方程左右两边相等的未知数的值,叫做方程的解;一组数是方程的解,那么它一定满足这个方程.9.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.10.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.11.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.12.B解析:B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.二、填空题13.12345【解析】【分析】【详解】解:由7-x>1-x>-6x<6∴x的正整数解为123456故答案为12345解析:1,2,3,4,5.【解析】【分析】【详解】解:由7-x>1∴x 的正整数解为1,2,3,4,5,6故答案为1,2,3,4,5.14.a=-1或a=-7【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|求出a的值即可【详解】解:∵点P到两坐标轴的距离相等∴|2-a|=|2a+5|∴2-a=2a+52-a=-(解析:a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.15.3【解析】解:由题意可得:①-②得:4m+2n=6故2m+n=3故答案为3 解析:3【解析】解:由题意可得:3731m nn m+=⎧⎨-=⎩①②,①-②得:4m+2n=6,故2m+n =3.故答案为3.16.【解析】【分析】把xy的值代入方程组再将两式相加即可求出a﹣b的值【详解】将代入方程组得:①+②得:4a﹣4b=7则a﹣b=故答案为【点睛】本题考查二元一次方程组的解解题的关键是观察两方程的系数从而解析:7 4【解析】【分析】把x、y的值代入方程组,再将两式相加即可求出a﹣b的值.【详解】将x ay b=⎧⎨=⎩代入方程组3354x yx y+=⎧⎨-=⎩,得:3354a ba b+=⎧⎨-=⎩①②,①+②,得:4a﹣4b=7,则a﹣b=74,故答案为74.【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a﹣b的值.17.(3﹣10)【解析】【分析】由于线段CD是由线段AB平移得到的而点A (-14)的对应点为C(-32)比较它们的坐标发现横坐标减小2纵坐标减小2利用此规律即可求出点B(5-8)的对应点D的坐标【详解】解析:(3,﹣10)【解析】【分析】由于线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(-3,2),比较它们的坐标发现横坐标减小2,纵坐标减小2,利用此规律即可求出点B(5,-8)的对应点D的坐标.【详解】∵线段CD是由线段AB平移得到的,而点A(-1,4)的对应点为C(-3,2),∴由A平移到C点的横坐标减小2,纵坐标减小2,则点B(5,-8)的对应点D的坐标为(3,-10),故答案为:(3,-10).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.18.x<23【解析】【分析】根据已知不等式的解集确定出a的范围即可【详解】∵关于x的不等式(3a-2)x<2的解为x>23a-2∴3a-2<0解得:a<23故答案为:a<23【点睛】此题考查了解一元一次解析:x<【解析】【分析】根据已知不等式的解集确定出a的范围即可.【详解】∵关于x的不等式(3a-2)x<2的解为x>,∴3a-2<0,解得:a<,故答案为:a <【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.19.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab 的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时解析: 6.32.2x y =⎧⎨=⎩【解析】【分析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩; 又∵8.31.2a b =⎧⎨=⎩, ∴ 28.31 1.2x y +=⎧⎨-=⎩, 解得 6.32.2x y =⎧⎨=⎩. 故答案为 6.32.2x y =⎧⎨=⎩【点睛】本题主要应用了换元法解二元一次方程组,换元法是将复杂问题简单化时常用的方法,应用较为广泛.20.10【解析】【分析】根据平移的性质可得AD=CF=1AC=DF 然后根据四边形的周长的定义列式计算即可得解【详解】∵△ABC 沿BC 方向平移2个单位得到△DEF∴AD=CF=1AC=DF∴四边形ABFD解析:10【解析】【分析】根据平移的性质可得AD=CF=1,AC=DF ,然后根据四边形的周长的定义列式计算即可得解.【详解】∵△ABC沿BC方向平移2个单位得到△DEF,∴AD=CF=1,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=8,∴AB+BC+AC=8,∴四边形ABFD的周长=8+1+1=10.故答案为10.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.三、解答题21.(1)100,35;(2)详见解析;(3)800人.【解析】【分析】(1)由共享单车的人数以及其所占百分比可求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购的百分比可求得网购人数,用微信人数除以总人数求得其百分比,由此即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比即可求得答案.【详解】(1)抽查的总人数m=10÷10%=100,支付宝的人数所占百分比n%=35100100%⨯=35%,所以n=35,故答案为:100,35;(2)网购人数为:100×15%=15人,微信对应的百分比为:40100%40% 100⨯=,补全图形如图所示:(3)估算全校2000名学生种,最认可“微信”这一新生事物的人数为:2000×40%=800人.【点睛】本题考查了条形统计图与扇形统计图信息相关问题,读懂统计图,从中找到必要的信息是解题的关键.22.(1)A型车、B型车都装满货物一次可以分别运货3吨、4吨;(2)最省钱的租车方案是方案一:A型车8辆,B型车2辆,最少租车费为2080元.【解析】【分析】(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,根据题目中的等量关系:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,列方程组求解即可;(2)由题意得出3a+4b=35,然后由a、b为整数解,得到三中租车方案;(3)根据(2)中的所求方案,利用A型车每辆需租金200元/次,B型车每辆需租金240元/次,分别求出租车费用即可.【详解】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组为:3217 2318 x yx y+=⎧⎨+=⎩解得34 xy=⎧⎨=⎩答:1辆A型车辆装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意,和(1)可得3a+4b=35∴a=3543b-∵a、b都是整数∴92ab=⎧⎨=⎩或55ab=⎧⎨=⎩或18ab=⎧⎨=⎩答:有3种租车方案:方案一:A型车9辆,B型车2辆;方案二:A型车5辆,B型车5辆;方案三:A型车1辆,B型车8辆.(3)∵A型车每辆需租金200元/次,B型车每辆需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省钱的租车方案是方案一:A型车1辆,B型车8辆,最少租车费为2120元.【点睛】此题主要考查了二元一次方程组以及二元一次方程的解法,关键是明确二元一次方程有无数解,但在解与实际问题有关的二元一次方程组时,要结合未知数的实际意义求解. 23.(1)20,70;(2)80°;(3)90°;【解析】【分析】(1)由PM∥AB根据两直线平行,内错角相等可得∠EPM=∠AEP=20°,根据平行公理的推论可得PM∥CD,继而可得∠MPF=∠CFP=50°,从而即可求得∠EPF;(2)由角平分线的定义可得∠AEH=2α=40°,再根据AD∥BC,由两直线平行,内错角相等可得∠END=∠AEH=40°,由对顶角相等以及角平分线定义可得∠IFG=∠DFG=β=50°,再根据平角定义即可求得∠CFI的度数;(3)由(2)可得,∠CFI=180°-2β,由AB∥CD,可得∠END=2α,当FI∥EH时,∠END=∠CFI,据此即可得α+β=90°.【详解】(1)∵PM∥AB,α=20°,∴∠EPM=∠AEP=20°,∵AB∥CD,PM∥AB,∴PM∥CD,∴∠MPF=∠CFP=50°,∴∠EPF=20°+50°=70°,故答案为20,70;(2)∵PE平分∠AEH,∴∠AEH=2α=40°,∵AD∥BC,∴∠END=∠AEH=40°,又∵FG平分∠DFI,∴∠IFG=∠DFG=β=50°,∴∠CFI=180°-2β=80°;(3)由(2)可得,∠CFI=180°-2β,∵AB∥CD,∴∠END=∠AEN=2α,∴当FI∥EH时,∠END=∠CFI,即2α=180°-2β,∴α+β=90°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理是解题的关键. 24.(1)每本文学名著45元,每本自然科学书20元;(2)方案一:文学名著25本,自然科学书55本;方案二:文学名著26本,自然科学书56本;方案三:文学名著27本,自然科学书57本.【解析】【分析】(1)设每本文学名著x 元,每本自然科学书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,列出不等式组,解答即可.【详解】解:(1)设每本文学名著x 元,每本自然科学书y 元,可得:305023502020500x y x y +=⎧⎨-=⎩, 解得:4520x y =⎧⎨=⎩. 答:每本文学名著45元,每本自然科学书20元;(2)设学校要求购买文学名著z 本,自然科学书为(z+30)本,根据题意可得:30804520(30)2400z z z z ++⎧⎨++⎩…„, 解得:36025z 13≤≤, 因为x 取整数,所以x 取25,26,27;方案一:文学名著25本,自然科学书55本;方案二:文学名著26本,自然科学书56本;方案三:文学名著27本,自然科学书57本.【点睛】此题主要考查了二元一次方程组的应用,一元一次不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.25.(1)有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润大,最多为7550元.【解析】【分析】(1)设购进甲种型号的电视机x 台,则乙种型号的电视机y 台.数量关系为:两种不同型号的电视机50台,金额不超过76000元;(2)根据利润=数量×(售价-进价),列出式子进行计算,即可得到答案.【详解】解:(1)设购进甲种型号的电视机x 台,则乙种型号的电视机(50-x )台.则 1500x+2100(50-x )≤76000,解得:x≥4813.则50≥x≥4813.∵x是整数,∴x=49或x=50.故有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润为:49×(1650-1500)+(2300-2100)=7550(元)方案二的利润为:50×(1650-1500)=7500(元).∵7550>7500∴方案一的利润大,最多为7550元.【点睛】本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,依题意列出不等式进行求解.。
2019年七年级数学下期末模拟试题带答案一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有A .1个B .2个C .3个D .4个 2.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm3.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=- B .5{1+52x y x y =+= C .5{2-5x y x y =+= D .-5{2+5x y x y == 4.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩ 5.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2 B .3 C .4 D .56.若不等式组20{210x a x b +---><的解集为0<x <1,则a ,b 的值分别为( ) A .a =2,b =1 B .a =2,b =3 C .a =-2,b =3 D .a =-2,b =17.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( ) A .491b a -= B .321a b += C .491b a -=- D .941a b +=8.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180°9.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm 10.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角11.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)12.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( ) A .8 B .6 C .4 D .2二、填空题13.已21x y =⎧⎨=-⎩是关于x 、y 的二次元方程39ax y +=的解,则a 的值为___________ 14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.15.64立方根是__________.16.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.17.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是_________.18.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .19.若方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解为_______.20.在平面直角坐标系xOy 中,若(4,9)P m m --在y 轴上,则线段OP 长度为________. 三、解答题21.(1)(感知)如图①,//AB CD ,点E 在直线AB 与CD 之间,连接AE 、CE ,试说明AEC A DCE ∠=∠+∠.下面给出了这道题的解题过程,请完成下面的解题过程(填恰当的理由).证明:如图①过点E 作//EF AB .1A ∴∠=∠( ),//AB CD Q (已知),EF //AB (辅助线作法),//EF CD ∴( ),2DCE ∴∠=∠( ),12AEC ∠=∠+∠Q ,AEC A DCE ∴∠=∠+∠ ( ).(2)(探究)当点E 在如图②的位置时,其他条件不变,试说明360A AEC C ∠+∠+∠=︒.(3)(应用)如图③,延长线段AE 交直线CD 于点M ,已知130A ∠=︒,120DCE ∠=︒,则MEC ∠的度数为 .(请直接写出答案)22.问题情境在综合与实践课上,老师让同学们以“两条平行线AB ,CD 和一块含60°角的直角三角尺EFG(∠EFG =90°,∠EGF =60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G 放在CD 上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明∠AEF 与∠FGC 之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上.若∠AEG =α,则∠CFG 等于______(用含α的式子表示).23.某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.(1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.(2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?24.如图,在平面直角坐标系中,点A ,B 的坐标分别为(a ,0),(b ,0),且满足()()22130a b ++-=现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .(1)求点C ,D 的坐标及四边形ABDC 的面积;(2)在y 轴上是否存在一点M ,连接MA ,MB ,使S △MAB =S 四边形ABDC ?若存在这样一点,求出点M 的坐标;若不存在,试说明理由;(3)点P 是射线BD 上的一个动点(不与B ,D 重合),连接PC ,PA ,求∠CPA 与∠DCP 、∠BAP 之间的关系.25.解不等式组:5(1)21111(3)32x x x x +>-⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】无理数有3π,0.2112111211112……(每两个2之多一个13,共三个,故选C.【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD的周长为:AB+BF+FD+DA=AB+BE+EF+DF+AD=AB+BC+CA+2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.3.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.4.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.5.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.6.A解析:A【解析】试题分析:先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.解:20210x ax b+->⎧⎨--<⎩①②,由①得,x>2﹣a,由②得,x<12b+,故不等式组的解集为;2﹣a<x<12b +,∵原不等式组的解集为0<x<1,∴2﹣a=0,12b+=1,解得a=2,b=1.故选A.7.D解析:D 【解析】【分析】把3{2xy=-=-,代入1{2ax cycx by+=-=,即可得到关于,,a b c的方程组,从而得到结果.【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,故选:D.8.D解析:D【解析】【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180°一定正确.【详解】1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12l l //时,故A 、B 、C 选项不一定成立,∵1∠与4∠是邻补角,∴∠1+∠4=180°,故D 正确.故选D .【点睛】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.9.C解析:C【解析】试题分析:已知,△ABE 向右平移2cm 得到△DCF ,根据平移的性质得到EF=AD=2cm ,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C .考点:平移的性质.10.A解析:A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角, 同旁内角,解题关键在于掌握各性质定义.11.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D .【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.12.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题13.6【解析】【分析】把x 与y 的值代入方程组求出a 的值代入原式计算即可求出值【详解】解:把代入得解得:故答案为:6【点睛】此题考查了解二元一次方程掌握方程的解是解答本题的关键解析:6【解析】【分析】把x 与y 的值代入方程组求出a 的值,代入原式计算即可求出值.【详解】解:把21x y =⎧⎨=-⎩,代入得239a -=, 解得:6a =故答案为:6【点睛】此题考查了解二元一次方程,掌握方程的解是解答本题的关键.14.(-2-2)【解析】【分析】先根据相和兵的坐标确定原点位置然后建立坐标系进而可得卒的坐标【详解】卒的坐标为(﹣2﹣2)故答案是:(﹣2﹣2)【点睛】考查了坐标确定位置关键是正确确定原点位置解析:(-2,-2)【解析】【分析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.15.2;【解析】【分析】先计算=8再计算8的立方根即可【详解】∵=8∴的立方根是2故答案为:2【点睛】本题考查了立方根及算术平方根的知识属于基础题掌握基本的定义是关键解析:2;【解析】【分析】64,再计算8的立方根即可.【详解】6438=2,64 2.故答案为:2.【点睛】本题考查了立方根及算术平方根的知识,属于基础题,掌握基本的定义是关键.16.100【解析】【分析】根据对顶角相等求出∠AOC再根据角平分线和邻补角的定义解答【详解】解:∵∠BOD=40°∴∠AOC=∠BOD=40°∵OA平分∠COE∴∠AOE=∠AOC=40°∴∠COE=8解析:100【解析】【分析】根据对顶角相等求出∠AOC,再根据角平分线和邻补角的定义解答.【详解】解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°,∴∠COE=80°.∴∠DOE=180°-80°=100°故答案为:100.【点睛】本题考查了对顶角相等的性质,角平分线、邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.17.a<﹣1【解析】不等式(a+1)x>a+1两边都除以a+1得其解集为x<1∴a+1<0解得:a<−1故答案为a<−1点睛:本题主要考查解一元一次不等式解答此题的关键是掌握不等式的性质再不等式两边同加解析:a<﹣1【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.18.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B解析:【解析】【分析】过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.∵S△ACB=12AC×BC=12AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12(cm).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.19.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab 的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时解析: 6.32.2x y =⎧⎨=⎩【解析】【分析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】 设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩; 又∵8.31.2a b =⎧⎨=⎩, ∴ 28.31 1.2x y +=⎧⎨-=⎩, 解得 6.32.2x y =⎧⎨=⎩. 故答案为 6.32.2x y =⎧⎨=⎩【点睛】本题主要应用了换元法解二元一次方程组,换元法是将复杂问题简单化时常用的方法,应用较为广泛.20.5【解析】【分析】先根据在轴上计算出m 的值根据纵坐标的绝对值即是线段长度可得到答案【详解】∵在轴上∴横坐标为0即解得:故∴线段长度为故答案为:5【点睛】本题只要考查了再y 轴的点的特征(横坐标为零)在 解析:5【解析】【分析】先根据(4,9)P m m --在y 轴上,计算出m 的值,根据纵坐标的绝对值即是线段OP 长度可得到答案.【详解】∵(4,9)P m m --在y 轴上,∴横坐标为0,即40m -=,解得:4m =,故(0,5)P -,∴线段OP 长度为|5|5-=,故答案为:5.【点睛】本题只要考查了再y 轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数.三、解答题21.(1)见解析;(2)证明见解析;(3)70°. 【解析】【分析】(1)根据平行线的性质、平行公理的推论和等量代换依次解答即可;(2)如图④,过点E 作//EF AB ,根据平行线的性质、平行公理的推论解答即可; (3)由(2)题的结论可求出∠AEC 的度数,进而可得答案.【详解】解:(1)证明:如图①,过点E 作//EF AB ,1A ∴∠=∠(两直线平行,内错角相等),//AB CD Q (已知),EF //AB (辅助线作法),//EF CD ∴(平行于同一条直线的两直线互相平行),2DCE ∴∠=∠(两直线平行,内错角相等),12AEC ∠=∠+∠Q ,AEC A DCE ∴∠=∠+∠ (等量代换);(2)证明:如图④,过点E 作//EF AB ,180A AEF ∴∠+∠=︒(两直线平行,同旁内角互补),//AB CD Q (已知),//EF AB (辅助线作法),//EF CD ∴(平行于同一条直线的两直线互相平行),180C CEF ∴∠+∠=︒(两直线平行,同旁内角互补),180180360A AEC C A AEF CEF C ∴∠+∠+∠=∠+∠+∠+∠=︒+=︒;(3)解:由(2)题的结论知:360A AEC C ∠+∠+∠=︒,∴360360*********AEC A C ∠=︒-∠-∠=︒-︒-︒=︒,∴∠MEC =180AEC ︒-∠=70°. 故答案为:70°. 【点睛】本题主要考查了平行线的性质、平行公理的推论等知识,属于常考题型,熟练掌握平行线的性质是解题关键.22.(1)∠1=40°;(2)∠AEF+∠GFC =90°;(3)60°﹣α.【解析】【分析】(1)依据AB ∥CD ,可得∠1=∠EGD ,再根据∠2=2∠1,∠FGE =60°,即可得出∠EGD 13=(180°﹣60°)=40°,进而得到∠1=40°; (2)根据AB ∥CD ,可得∠AEG +∠CGE =180°,再根据∠FEG +∠EGF =90°,即可得到∠AEF +∠GFC =90°;(3)根据AB ∥CD ,可得∠AEF +∠CFE =180°,再根据∠GFE =90°,∠GEF =30°,∠AEG =α,即可得到∠GFC =180°﹣90°﹣30°﹣α=60°﹣α.【详解】(1)如图1.∵AB ∥CD ,∴∠1=∠EGD .又∵∠2=2∠1,∴∠2=2∠EGD .又∵∠FGE =60°,∴∠EGD 13=(180°﹣60°)=40°,∴∠1=40°; (2)如图2.∵AB ∥CD ,∴∠AEG +∠CGE =180°,即∠AEF +∠FEG +∠EGF +∠FGC =180°. 又∵∠FEG +∠EGF =90°,∴∠AEF +∠GFC =90°;(3)如图3.∵AB ∥CD ,∴∠AEF +∠CFE =180°,即∠AEG +∠FEG +∠EFG +∠GFC =180°. 又∵∠GFE =90°,∠GEF =30°,∠AEG =α,∴∠GFC =180°﹣90°﹣30°﹣α=60°﹣α.故答案为:60°﹣α.【点睛】本题考查了平行线的性质的运用,解决问题的关键是掌握:两直线平行,同旁内角互补.23.(1)有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润大,最多为7550元.【解析】【分析】(1)设购进甲种型号的电视机x台,则乙种型号的电视机y台.数量关系为:两种不同型号的电视机50台,金额不超过76000元;(2)根据利润=数量×(售价-进价),列出式子进行计算,即可得到答案.【详解】解:(1)设购进甲种型号的电视机x台,则乙种型号的电视机(50-x)台.则1500x+2100(50-x)≤76000,解得:x≥4813.则50≥x≥4813.∵x是整数,∴x=49或x=50.故有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润为:49×(1650-1500)+(2300-2100)=7550(元)方案二的利润为:50×(1650-1500)=7500(元).∵7550>7500∴方案一的利润大,最多为7550元.【点睛】本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,依题意列出不等式进行求解.24.(1)C(0,2),D(4,2),S四边形ABDC=8;(2)M(0,4)或(0,-4);(3)∠CPA=∠BAP+∠DCP或∠CPA= ∠BAP-∠DCP.【解析】【分析】(1)由题意根据非负数的性质求出A 、B 坐标,进而分析得出C 、D 坐标,继而即可求出四边形ABDC 的面积;(2)由题意可知以AB 为底边,设点M 到AB 的距离为h 即三角形MAB 的高,求得h 的值即可得出点M 的坐标;(3)根据题意分当点P 在线段BD 上时以及当点P 在BD 延长线上时,利用平行线的性质进行分析即可.【详解】解: (1)由()()22130a b ++-=得a=-1,b=3,则A(-1,0),B(3,0),∵点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,如图,∴C(0,2),D(4,2),∴S 四边形ABDC =AB×OC=4×2=8. (2)存在.设点M 到AB 的距离为h ,S △MAB =12×AB×h=2h , 由S △MAB =S 四边形ABDC ,得2h=8,解得h=4,可知这样的M 点在y 轴上有两个,∴M(0,4)或(0,-4).(3) ①当点P 在线段BD 上时:∠CPA=∠DCP+∠BAP ,理由如下:过P 点作PE ∥AB 交OC 与E 点,∵AB ∥CD , PE ∥AB ,∴AB ∥PE ∥CD ,∴∠DCP=∠CPE , ∠BAP=∠APE ,∵∠CPA=∠CPE+∠APE ,∴∠CPA=∠DCP+∠BAP ;②当点P 在BD 延长线上时:∠CPA= ∠BAP-∠DCP ,理由如下:过P 点作PE ∥AB ,∵AB ∥CD ,PE ∥AB ,∴AB ∥PE ∥CD ,∴∠DCP=∠CPE ,∠BAP=∠APE ,∵∠CPA= ∠APE-∠CPE 。
2019年七年级数学下期末模拟试卷(附答案)一、选择题1.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.已知关于x 的不等式组 的解中有3个整数解,则m 的取值范围是( )A .3<m≤4B .4≤m<5C .4<m≤5D .4≤m≤53.计算2535-+-的值是( ) A .-1B .1C .525-D .255-4.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( )A .k=-5B .k=5C .k=-10D .k=105.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折 C .8折 D .9折6.已知方程组276359632713x y x y +=⎧⎨+=-⎩的解满足1x y m -=-,则m 的值为( )A .-1B .-2C .1D .2 7.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( ) A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)8.在实数0,-π,3,-4中,最小的数是( ) A .0B .-πC .3D .-49.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A .35°B .45°C .55°D .125°10.下列说法正确的是( ) A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线. 11.若x <y ,则下列不等式中不成立的是( ) A .x 1y 1-<-B .3x 3y <C .x y 22< D .2x 2y -<-12.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( )A .8B .6C .4D .2 二、填空题13.一棵树高h (m )与生长时间n (年)之间有一定关系,请你根据下表中数据,写出h (m )与n (年)之间的关系式:_____. n/年 2 4 6 8 … h/m2.63.23.84.4…14.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°15.若不等式组x a 0{12x x 2+≥-->有解,则a 的取值范围是_____. 16.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________ 17.线段CD 是由线段AB 平移得到的,其中点A (﹣1,4)平移到点C (﹣3,2),点B (5,﹣8)平移到点D ,则D 点的坐标是________.18.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____. 参赛者 答对题数 答错题数 得分 A 19 1 112 B 18 2 104 C 17 3 96 D10104019.已知方程1(2)(3)5m n m xn y --+-=是二元一次方程,则mn =_________;20.比较大小:23________13.三、解答题21.解方程组()()3121021132x y x y ⎧++-=⎪⎨+=-⎪⎩22.某工厂现有甲种原料3600kg ,乙种原料2410kg ,计划利用这两种原料生产A ,B 两种产品共500件,产品每月均能全部售出.已知生产一件A 产品需要甲原料9kg 和乙原料3kg ;生产一件B 种产品需甲种原料4kg 和乙种原料8kg . (1)设生产x 件A 种产品,写出x 应满足的不等式组. (2)问一共有几种符合要求的生产方案?并列举出来.(3)若有两种销售定价方案,第一种定价方案可使A 产品每件获得利润1.15万元,B 产品每件获得利润1.25万元;第二种定价方案可使A 和B 产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明) 23.问题情境在综合与实践课上,老师让同学们以“两条平行线AB ,CD 和一块含60°角的直角三角尺EFG(∠EFG =90°,∠EGF =60°)”为主题开展数学活动. 操作发现(1)如图(1),小明把三角尺的60°角的顶点G 放在CD 上,若∠2=2∠1,求∠1的度数; (2)如图(2),小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明∠AEF 与∠FGC 之间的数量关系; 结论应用(3)如图(3),小亮把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上.若∠AEG =α,则∠CFG 等于______(用含α的式子表示).24.快递公司准备购买机器人来代替人工分拣已知购买- 台甲型机器人比购买-台乙型机器人多2万元;购买2台甲型机器人和3台乙型机器人共需24万元. (1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型、乙型机器人每台每小时分拣快递分别是1200件、1000件,该公司计划最多用41万元购买8台这两种型号的机器人.该公司该如何购买,才能使得每小时的分拣量最大?25.若关于x,y的方程组2431(1)3mx ny x yx y nx m y+=-=⎧⎧⎨⎨+=+-=⎩⎩与有相同的解.(1)求这个相同的解;(2)求m、n的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A3=,此选项错误错误,不符合题意;B3=,此选项错误错误,不符合题意;C3=-,此选项错误错误,不符合题意;D3=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m的范围即可.【详解】不等式组解集为1<x<m,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.3.B解析:B【解析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案. 【详解】解:23+-(23231-+=-+=, 故选B . 【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键.4.A解析:A 【解析】 【分析】 根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值. 【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,∴5320x y x y -=⎧⎨-=⎩ ,解得,1015x y =-⎧⎨=-⎩;把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得, -40+45+k=0, ∴k=-5. 故选A. 【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键.5.B解析:B 【解析】 【详解】设可打x 折,则有1200×10x-800≥800×5%,即最多打7折.故选B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.6.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.【详解】解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.7.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 8.D解析:D【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】∵正数大于0和一切负数,∴只需比较-π和-4的大小,∵|-π|<|-4|,∴最小的数是-4.故选D.【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.9.C解析:C【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】如图,∵∠1+∠2=180°,∴a∥b,∴∠4=∠5,∵∠3=∠5,∠3=55°,∴∠4=∠3=55°,故选C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.10.D解析:D【解析】解:A.应为两点之间线段最短,故本选项错误;B.应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C.应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D.在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D.解析:D 【解析】 【分析】利用不等式的基本性质判断即可. 【详解】若x <y ,则x ﹣1<y ﹣1,选项A 成立; 若x <y ,则3x <3y ,选项B 成立; 若x <y ,则x 2<y2,选项C 成立; 若x <y ,则﹣2x >﹣2y ,选项D 不成立, 故选D . 【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.12.D解析:D 【解析】 【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值. 【详解】两式相加得:3336x y a +=-; 即3()36,x y a +=-得2x y a +=- 即20,2a a -== 故选:D. 【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题13.h =03n+2【解析】【分析】本题主要考查了用待定系数法求一次函数的解析式可先设出通式然后将已知的条件代入式子中求出未知数的值进而求出函数的解析式【详解】设该函数的解析式为h =kn+b 将n =2h =2解析:h =0.3n+2 【解析】 【分析】本题主要考查了用待定系数法求一次函数的解析式,可先设出通式,然后将已知的条件代入式子中求出未知数的值,进而求出函数的解析式. 【详解】设该函数的解析式为h =kn+b ,将n =2,h =2.6以及n =4,h =3.2代入后可得2 2.64 3.2k b k b +=⎧⎨+=⎩, 解得0.32k b =⎧⎨=⎩,∴h =0.3n+2,验证:将n =6,h =3.8代入所求的函数式中,符合解析式;将n =8,h =4.4代入所求的函数式中,符合解析式;因此h (m )与n (年)之间的关系式为h =0.3n+2. 故答案为:h =0.3n+2. 【点睛】本题主要考查用待定系数法求一次函数关系式的方法.用来表示函数关系的等式叫做函数解析式,也称为函数关系式.14.57°【解析】【分析】根据平行线的性质和三角形外角的性质即可求解【详解】由平行线性质及外角定理可得∠2=∠1+30°=27°+30°=57°【点睛】本题考查平行线的性质及三角形外角的性质解析:57°. 【解析】 【分析】根据平行线的性质和三角形外角的性质即可求解. 【详解】由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°. 【点睛】本题考查平行线的性质及三角形外角的性质.15.a >﹣1【解析】分析:∵由得x≥﹣a ;由得x <1∴解集为﹣a≤x <1∴﹣a <1即a >﹣1∴a 的取值范围是a >﹣1解析:a >﹣1 【解析】分析:∵由x a 0+≥得x≥﹣a ;由12x x 2-->得x <1. ∴x a 0{12x x 2+≥-->解集为﹣a≤x <1.∴﹣a <1,即a >﹣1. ∴a 的取值范围是a >﹣1.16.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=4解析:4; 【解析】试题解析:把21x y =⎧⎨=⎩代入方程组得:25{21a b b a ++=①=②,①×2-②得:3a=9,即a=3, 把a=3代入②得:b=-1, 则a-b=3+1=4,17.(3﹣10)【解析】【分析】由于线段CD 是由线段AB 平移得到的而点A (-14)的对应点为C (-32)比较它们的坐标发现横坐标减小2纵坐标减小2利用此规律即可求出点B (5-8)的对应点D 的坐标【详解】解析:(3,﹣10) 【解析】 【分析】由于线段CD 是由线段AB 平移得到的,而点A (-1,4)的对应点为C (-3,2),比较它们的坐标发现横坐标减小2,纵坐标减小2,利用此规律即可求出点B (5,-8)的对应点D 的坐标. 【详解】∵线段CD 是由线段AB 平移得到的, 而点A (-1,4)的对应点为C (-3,2), ∴由A 平移到C 点的横坐标减小2,纵坐标减小2, 则点B (5,-8)的对应点D 的坐标为(3,-10), 故答案为:(3,-10). 【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.18.【解析】【分析】设答对1道题得x 分答错1道题得y 分根据图表列出关于x 和y 的二元一次方程组解之即可【详解】解:设答对1道题得x 分答错1道题得y 分根据题意得:解得:答对13道题打错7道题得分为:13×6解析:【解析】 【分析】设答对1道题得x 分,答错1道题得y 分,根据图表,列出关于x 和y 的二元一次方程组,解之即可. 【详解】解:设答对1道题得x 分,答错1道题得y 分, 根据题意得:19112182104x y x y +=⎧⎨+=⎩, 解得:62x y =⎧⎨=-⎩, 答对13道题,打错7道题,得分为:13×6+(﹣2)×7=78﹣14=64(分),故答案为:64.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.19.-2【解析】【分析】二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程列出方程组求出mn 的值然后代入代数式进行计算即可得解【详解】∵方程是二元一次方程∴且m-2≠0n=1∴m=-2解析:-2【解析】【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程,列出方程组求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】 ∵方程1(2)(3)5m n m x n y --+-=是二元一次方程, ∴11m -=且m-2≠0,n=1,∴m=-2,n=1,∴mn =-2.故答案为:-2.【点睛】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.20.<【解析】试题解析:∵∴∴解析:<【解析】试题解析:∵∴三、解答题21.12x y =⎧⎨=-⎩. 【解析】【分析】方程组整理后,利用加减消元法求出解即可.【详解】方程组整理得:321432x y x y +=-⎧⎨+=-⎩①②, ①×3﹣②×2得:x=1, 把x=1代入①得:y=﹣2,则方程组的解为12x y =⎧⎨=-⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(1)94(500)360038(500)2410x x x x +-≤⎧⎨+-≤⎩;(2)符合的生产方案为①生产A 产品318件,B 产品182件;②生产A 产品319件,B 产品181件;③生产A 产品320件,B 产品180件;(3)第二种定价方案的利润比较多.【解析】分析:(1)关系式为:A 种产品需要甲种原料数量+B 种产品需要甲种原料数量≤3600;A 种产品需要乙种原料数量+B 种产品需要乙种原料数量≤2410,把相关数值代入即可;(2)解(1)得到的不等式,得到关于x 的范围,根据整数解可得相应方案;(3)分别求出两种情形下的利润即可判断;详解:(1)由题意()94(500)3600385002410x x x x +-≤⎧⎨+-≤⎩. (2)解第一个不等式得:x≤320,解第二个不等式得:x≥318,∴318≤x≤320,∵x 为正整数,∴x=318、319、320,500﹣318=182,500﹣319=181,500﹣320=180,∴符合的生产方案为①生产A 产品318件,B 产品182件;②生产A 产品319件,B 产品181件;③生产A 产品320件,B 产品180件;(3)第一种定价方案下:①的利润为318×1.15+182×1.25=593.2(万元), ②的利润为:319×1.15+181×1.25=593.1(万元)③的利润为320×1.15+180×1.25=593(万元)第二种定价方案下:①②③的利润均为500×1.2=600(万元),综上所述,第二种定价方案的利润比较多.点睛:本题考查理解题意能力,生产不同产品所用的原料不同,关键是在原料范围内求得生产的产品,从而求解.找出题目中的不等量关系列出不等式组是解答本题的关键. 23.(1)∠1=40°;(2)∠AEF+∠GFC=90°;(3)60°﹣α.【解析】【分析】(1)依据AB∥CD,可得∠1=∠EGD,再根据∠2=2∠1,∠FGE=60°,即可得出∠EGD13=(180°﹣60°)=40°,进而得到∠1=40°;(2)根据AB∥CD,可得∠AEG+∠CGE=180°,再根据∠FEG+∠EGF=90°,即可得到∠AEF+∠GFC=90°;(3)根据AB∥CD,可得∠AEF+∠CFE=180°,再根据∠GFE=90°,∠GEF=30°,∠AEG=α,即可得到∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.【详解】(1)如图1.∵AB∥CD,∴∠1=∠EGD.又∵∠2=2∠1,∴∠2=2∠EGD.又∵∠FGE=60°,∴∠EGD13=(180°﹣60°)=40°,∴∠1=40°;(2)如图2.∵AB∥CD,∴∠AEG+∠CGE=180°,即∠AEF+∠FEG+∠EGF+∠FGC=180°.又∵∠FEG+∠EGF=90°,∴∠AEF+∠GFC=90°;(3)如图3.∵AB∥CD,∴∠AEF+∠CFE=180°,即∠AEG+∠FEG+∠EFG+∠GFC=180°.又∵∠GFE=90°,∠GEF=30°,∠AEG=α,∴∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.故答案为:60°﹣α.【点睛】本题考查了平行线的性质的运用,解决问题的关键是掌握:两直线平行,同旁内角互补.24.(1)6万元、4万元(2)甲、乙型机器人各4台【解析】【分析】(1)设甲型机器人每台的价格是x 万元,乙型机器人每台的价格是y 万元,根据“购买一台甲型机器人比购买一台乙型机器人多2万元;购买2台甲型机器人和3台乙型机器人共需24万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买a 台甲型机器人,则购买(8-a )台乙型机器人,根据总价=单价×数量结合总费用不超过41万元,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再结合a 为整数可得出共有几种方案,逐一计算出每一种方案的每小时的分拣量,通过比较即可找出使得每小时的分拣量最大的购买方案.【详解】解:(1) 设甲型机器人每台价格是x 万元,乙型机器人每台价格是y 万元,根据题意的: 22324x y x y =+⎧⎨+=⎩解得:64x y =⎧⎨=⎩答:甲、乙两种型号的机器人每台价格分别是6万元、4万元:(2)设该公可购买甲型机器人a 台,乙型机器人()8a -台,根据题意得:()64841a a +-≤ 解得: 4.5a ≤a Q 为正整数∴a=1或2或3或4当1a =,87a -=时.每小时分拣量为:12001100078200⨯+⨯=(件);当2a =,86a -=时.每小时分拣量为:12002100068400⨯+⨯=(件);当3a =,85a -=时.每小时分拣量为:12003100058600⨯+⨯=(件);当4a =,84a -=时.每小时分拣量为:12004100048800⨯+⨯=(件);∴该公司购买甲、乙型机器人各4台,能使得每小时的分拣量最大.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.25.(1)21x y =⎧⎨=-⎩;(2)m=6,n=4 【解析】【分析】先解关于x,y 的方程组,再代入其他方程,再解关于m,n 的方程组.【详解】解:(1)由13x y x y +=⎧⎨-=⎩得, 21x y =⎧⎨=-⎩,(2)把21x y =⎧⎨=-⎩代入含有m,n 的方程,得 224213m n n m -=⎧⎨-+=⎩ , 解得 64m n =⎧⎨=⎩ 【点睛】本题考核知识点:解方程组.解题关键点:熟练解方程组.。
2019年七年级数学下期末模拟试卷含答案一、选择题1.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =20°,则∠AOM 的度数为( )A .40°B .50°C .60°D .70°2.下列各式中计算正确的是( ) A .93=± B .2(3)3-=- C .33(3)3-=±D .3273= 3.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩ 4.已知是关于x ,y 的二元一次方程x-ay=3的一个解,则a 的值为( ) A .1 B .-1 C .2 D .-25.如图,能判定EB ∥AC 的条件是( )A .∠C =∠ABEB .∠A =∠EBDC .∠C =∠ABCD .∠A =∠ABE 6.方程组23x y a x y +=⎧⎨-=⎩的解为5x y b=⎧⎨=⎩,则a 、b 分别为( ) A .a=8,b=﹣2B .a=8,b=2C .a=12,b=2D .a=18,b=8 7.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( ) A .491b a -= B .321a b += C .491b a -=- D .941a b +=8.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180°9.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .3 B .5C .7D .9 10.若x <y ,则下列不等式中不成立的是( )A .x 1y 1-<-B .3x 3y <C .x y 22<D .2x 2y -<-11.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( ) A .8 B .6 C .4 D .212.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题13.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.14.已知13x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则2m +n 的值为_____. 15.若3的整数部分是a ,小数部分是b ,则3a b -=______.16.已知a 、b 满足(a ﹣1)2+2b +=0,则a+b=_____.17.已知1a -+5b -=0,则(a ﹣b )2的平方根是_____.18.对一个实数x 技如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到判断结果是否大于190?“为一次操作,如果操作恰好进行三次才停止,那么x 的取值范围是__________.19.已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________. 20.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =_____.三、解答题21.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角度数为 ; (2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?22.随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为 ,图①中m 的值为 ; (Ⅱ)求本次调查获取的样本数据的众数、中位数和平均数;(Ⅲ)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.23.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?24.如图,在平面直角坐标系中,点A ,B 的坐标分别为(a ,0),(b ,0),且满足()()22130a b ++-=现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD .(1)求点C ,D 的坐标及四边形ABDC 的面积;(2)在y 轴上是否存在一点M ,连接MA ,MB ,使S △MAB =S 四边形ABDC ?若存在这样一点,求出点M 的坐标;若不存在,试说明理由;(3)点P 是射线BD 上的一个动点(不与B ,D 重合),连接PC ,PA ,求∠CPA 与∠DCP 、∠BAP 之间的关系.25.如图,已知AB CD ∥,B D ∠=∠,请用三种不同的方法说明AD BC ∥.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先根据角的平分线的定义求得∠BON ,然后根据对顶角相等求得∠MOC ,然后根据∠AOM =90°﹣∠COM 即可求解.【详解】∵OE 平分∠BON ,∴∠BON =2∠EON =40°,∴∠COM =∠BON =40°,∵AO ⊥BC ,∴∠AOC =90°,∴∠AOM =90°﹣∠COM =90°﹣40°=50°.故选B .【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC的度数是关键.2.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A、93=,此选项错误错误,不符合题意;B、2(3)3-=,此选项错误错误,不符合题意;C、33(3)3-=-,此选项错误错误,不符合题意;D、3273=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.3.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.4.B解析:B【解析】【分析】把代入x-ay=3,解一元一次方程求出a值即可.【详解】∵是关于x,y的二元一次方程x-ay=3的一个解,∴1-2a=3解得:a=-1故选B.【点睛】本题考查二元一次方程的解,使方程左右两边相等的未知数的值,叫做方程的解;一组数是方程的解,那么它一定满足这个方程.5.D解析:D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.C解析:C【解析】试题解析:将x=5,y=b代入方程组得:10{53b ab+=-=,解得:a=12,b=2,故选C.考点:二元一次方程组的解.7.D解析:D【解析】【分析】把3{2xy=-=-,代入1{2ax cycx by+=-=,即可得到关于,,a b c的方程组,从而得到结果.【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,8.D解析:D【解析】【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180°一定正确.【详解】1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12l l //时,故A 、B 、C 选项不一定成立,∵1∠与4∠是邻补角,∴∠1+∠4=180°,故D 正确.故选D .【点睛】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.9.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.10.D解析:D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x <y ,则x ﹣1<y ﹣1,选项A 成立;若x <y ,则3x <3y ,选项B 成立;若x <y ,则x 2<y 2,选项C 成立; 若x <y ,则﹣2x >﹣2y ,选项D 不成立,故选D .此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.11.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.12.D解析:D【解析】解:∵直线l 1∥l 2,∴∠3=∠1=44°.∵l 3⊥l 4,∠2=90°-∠3=90°-44°=46°.故选D .二、填空题13.25【解析】【分析】【详解】设需安排x 名工人加工大齿轮安排y 名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能 解析:25【解析】【分析】【详解】设需安排x 名工人加工大齿轮,安排y 名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩. 即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.故答案为25.【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.14.3【解析】解:由题意可得:①-②得:4m+2n=6故2m +n=3故答案为3 解析:3【解析】解:由题意可得:3731m n n m +=⎧⎨-=⎩①②,①-②得:4m +2n =6,故2m +n =3. 故答案为3.15.【解析】【详解】若的整数部分为a 小数部分为b ∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】a ,小数部分为b ,∴a =1,b1,-b1)=1.故答案为1.16.﹣1【解析】【分析】利用非负数的性质可得a-1=0b+2=0解方程即可求得ab 的值进而得出答案【详解】∵(a ﹣1)2+=0∴a=1b=﹣2∴a+b=﹣1故答案为﹣1【点睛】本题考查了非负数的性质熟知解析:﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a ,b 的值,进而得出答案.【详解】∵(a ﹣1)2=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.17.±4【解析】【分析】根据非负数的性质列出方程求出ab 的值代入所求代数式计算即可【详解】根据题意得a-1=0且b-5=0解得:a=1b=5则(a-b)2=16则平方根是:±4故答案是:±4【点睛】本题解析:±4.【解析】【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】根据题意得a-1=0,且b-5=0,解得:a=1,b=5,则(a-b)2=16,则平方根是:±4.故答案是:±4.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.【解析】【分析】表示出第一次第二次第三次的输出结果再由第三次输出结果可得出不等式解出即可【详解】解:第一次的结果为:3x-2没有输出则3x-2≤190解得:x≤64;第二次的结果为:3(3x-2)-解析:822<≤x【解析】【分析】表示出第一次、第二次、第三次的输出结果,再由第三次输出结果可得出不等式,解出即可.【详解】解:第一次的结果为:3x-2,没有输出,则3x-2≤190,解得:x≤64;第二次的结果为:3(3x-2)-2=9x-8,没有输出,则9x-8≤190,解得:x≤22;第三次的结果为:3(9x-8)-2=27x-26,输出,则27x-26>190,解得:x>8;综上可得:8<x≤22.故答案为:8<x≤22.【点睛】本题考查了一元一次方程组的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.19.-3【解析】分析:解出已知方程组中xy的值代入方程x+2y=k即可详解:解方程组得代入方程x+2y=k得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3【解析】分析:解出已知方程组中x,y的值代入方程x+2y=k即可.详解:解方程组236x yx y+=⎧⎨-=⎩,得33 xy⎧⎨-⎩==,代入方程x+2y=k,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.20.40或80【解析】当这两个角是对顶角时(2x-10)=(110-x)解之得x=40;当这两个角是邻补角时(2x-10)+(110-x)=180解之得x=80;∴x的值是40或80点睛:本题考查了两条解析:40或80【解析】当这两个角是对顶角时,(2x-10) =(110-x),解之得x=40;当这两个角是邻补角时,(2x-10) +(110-x) =180,解之得x=80;∴x的值是40或80.点睛:本题考查了两条直线相交所成的四个角之间的关系及分类讨论的数学思想,两条直线相交所成的四个角或者是对顶角的关系,或者是邻补角的关系,明确这两种关系是解答本题的关键.三、解答题21.(1)120,30°;(2)答案见解析;(3)1375人.【解析】【分析】(1)根据“从来不管”的人数和百分比求出总份数,根据总份数和严加干涉的分数求出百分比,然后计算圆心角的度数;(2)根据总分数求出稍加询问的人数,然后补全统计图;(3)根据题意求出“从来不管”和“稍加询问”的百分比求出全校的人数.【详解】解:(1)30÷25%=120(人)10÷120×360°=30°故答案为:120,30°(2)如图所示:(3)1500×3080120+=1375(人)则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.22.(Ⅰ)50、32;(Ⅱ)4;3;3.2;(Ⅲ)420人.【解析】【分析】(Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.【详解】解:(Ⅰ)本次接受随机抽样调查的学生人数为:48%=50(人),∵1650×100=32%,∴图①中m的值为32.故答案为50、32;(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,有332+=3,∴这组数据的中位数是3;由条形统计图可得142103144165650x ⨯+⨯+⨯+⨯+⨯==3.2, ∴这组数据的平均数是3.2.(Ⅲ)1500×28%=420(人). 答:估计该校学生家庭中;拥有3台移动设备的学生人数约为420人.【点睛】 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.安排25人加工甲部件,则安排60人加工乙部件,共加工200套.【解析】试题分析:首先设安排甲部件x 个人,则(85-x )人生产乙部件,根据甲零件数量的3倍等于乙零件数量的2倍列出方程进行求解.试题解析:设甲部件安排x 人,乙部件安排(85-x )人才能使每天加工的甲、乙两种部件刚好配套由题意得:3×16x=2×10(85-x ) 解得:x=25 则85-x=85-25=60(人)答:甲部件安排20人,乙部件安排60人才能使每天加工的甲、乙两种部件刚好配套. 考点:一元一次方程的应用.24.(1)C(0,2),D(4,2),S 四边形ABDC =8;(2)M(0,4)或(0,-4);(3)∠CPA= ∠BAP+∠DCP 或∠CPA= ∠BAP-∠DCP .【解析】【分析】(1)由题意根据非负数的性质求出A 、B 坐标,进而分析得出C 、D 坐标,继而即可求出四边形ABDC 的面积;(2)由题意可知以AB 为底边,设点M 到AB 的距离为h 即三角形MAB 的高,求得h 的值即可得出点M 的坐标;(3)根据题意分当点P 在线段BD 上时以及当点P 在BD 延长线上时,利用平行线的性质进行分析即可.【详解】解: (1)由()()22130a b ++-=得a=-1,b=3,则A(-1,0),B(3,0),∵点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,如图,∴C(0,2),D(4,2),∴S四边形ABDC=AB×OC=4×2=8.(2)存在.设点M到AB的距离为h,S△MAB=12×AB×h=2h,由S△MAB=S四边形ABDC,得2h=8,解得h=4,可知这样的M点在y轴上有两个,∴M(0,4)或(0,-4).(3)①当点P在线段BD上时:∠CPA=∠DCP+∠BAP,理由如下:过P点作PE∥AB交OC与E点,∵AB∥CD, PE∥AB,∴AB∥PE∥CD,∴∠DCP=∠CPE,∠BAP=∠APE,∵∠CPA=∠CPE+∠APE,∴∠CPA=∠DCP+∠BAP;②当点P在BD延长线上时:∠CPA= ∠BAP-∠DCP,理由如下:过P点作PE∥AB,∵AB∥CD,PE∥AB,∴AB∥PE∥CD,∴∠DCP=∠CPE,∠BAP=∠APE,∵∠CPA= ∠APE-∠CPE。
2019年七年级数学下期末模拟试卷及答案一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有A .1个B .2个C .3个D .4个 2.已知二元一次方程组m 2n 42m n 3-=⎧⎨-=⎩,则m+n 的值是( ) A .1 B .0 C .-2 D .-13.如图,数轴上表示2、5的对应点分别为点C ,B ,点C 是AB 的中点,则点A 表示的数是( )A .5-B .25-C .45-D .52-4.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°5.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°7.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩ 8.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .329.不等式组3(1)112123x x x x -->-⎧⎪--⎨≤⎪⎩的解集在数轴上表示正确的是( ) A .B .C .D .10.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,4 11.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( ) A .B .C .D .12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( ) A .③④②① B .③④①② C .①②③④ D .④③①②二、填空题13.若方程33x x m +=-的解是正数,则m 的取值范围是______.14.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm .15.如果点p(3,2)m m +-在x 轴上,那么点P 的坐标为(____,____).16.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________ 17.在开展“课外阅读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了60名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于7小时的人数是_______.18.已知(m-2)x |m-1|+y=0是关于x ,y 的二元一次方程,则m=______.19.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.20.已知点(0,)A a 和点(5,0)B ,且直线AB 与坐标轴围成的三角形的面积为10,则a 的值为________.三、解答题21.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角度数为 ; (2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?22.已知△ABC 在平面直角坐标系中的位置如图所示.将△ABC 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A 1B 1C 1;(2)直接写出△A 1B 1C 1各顶点的坐标(3)求出△A 1B 1C 1的面积23.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?24.如图,BCE 、AFE 是直线,AB ∥CD ,∠1=∠2,∠3=∠4,求证:AD ∥BE.25.如图1,点A、B在直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l的位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】无理数有3π,0.2112111211112……(每两个2之多一个13,共三个,故选C.【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.D解析:D【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:24 23m nm n-=⎧⎨-=⎩①②②-①得m+n=-1.故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.3.C解析:C【解析】【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【详解】∵表示2C,B,,∵点C是AB的中点,则设点A的坐标是x,则∴点A表示的数是故选C.【点睛】本题主要考查了数轴上两点之间x1,x2的中点的计算方法.4.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.5.D解析:D【解析】【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.6.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.7.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.8.A解析:A【解析】分析:由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=VV(),据此求解可得.详解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB ,则2A DE ABD S A D AD S ''=V V (),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点. 9.B解析:B【解析】【分析】首先解两个不等式求出不等式组解集,然后将解集在数轴上的表示出来即可.【详解】解:3(1)112123x x x x -->-⎧⎪⎨--≤⎪⎩①②,解不等式①得:x <2,解不等式②得:x≥-1,在数轴上表示解集为:,故选:B.【点睛】本题考查了解一元一次不等式组及在数轴上表示不等式组解集,解题关键是熟练掌握确定不等式组解集的方法:同大取大、同小取小、大小小大中间找、大大小小无解了.10.C解析:C【解析】【分析】根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标.【详解】解:∵点A (0,1)的对应点C 的坐标为(4,2),即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1),即D (7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.11.D解析:D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.12.B解析:B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.二、填空题13.m>-3【解析】【分析】首先解方程利用m表示出x的值然后根据x是正数即可得到一个关于m的不等式即可求得m的范围【详解】2x=3+m根据题意得:3+m>0解得:m>-3故答案是:m>-3【点睛】本题考解析:m>-3【解析】【分析】首先解方程,利用m表示出x的值,然后根据x是正数即可得到一个关于m的不等式,即可求得m的范围.【详解】x x m+=-332x=3+m,根据题意得:3+m>0,解得:m>-3.故答案是:m>-3.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.14.55【解析】【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm得出不等式求出即可【详解】设长为8x高为11x由题意得:19x+20≤115解得:x≤5故行李箱的高的最解析:55【解析】【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.【详解】设长为8x ,高为11x ,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.15.0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0即可求得m=2由此求得点P 的坐标【详解】∵点在x 轴上∴m -2=0即m=2∴P(50)故答案为:50【点睛】本题考查了x 轴上的点的坐标的特点熟解析:0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0,即可求得m=2,由此求得点P 的坐标.【详解】∵点p(3,2)m m +-在x 轴上, ∴m-2=0,即m=2, ∴P (5,0).故答案为:5,0.【点睛】本题考查了x 轴上的点的坐标的特点,熟知x 轴上的点的纵坐标为0是解决问题的关键. 16.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=4解析:4;【解析】试题解析:把21x y =⎧⎨=⎩代入方程组得:25{21a b b a ++=①=②, ①×2-②得:3a=9,即a=3, 把a=3代入②得:b=-1,则a-b=3+1=4,17.【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×=400(人)故答案为:400【点 解析:【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可.【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×15+560=400(人),故答案为:400.【点睛】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比. 18.0【解析】【分析】根据二元一次方程的定义可以得到x 的次数等于1且系数不等于0由此可以得到m 的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程解析:0【解析】【分析】根据二元一次方程的定义,可以得到x 的次数等于1,且系数不等于0,由此可以得到m 的值.【详解】根据二元一次方程的定义,得|m-1|=1且m-2≠0,解得m=0,故答案为0.【点睛】考查了二元一次方程的定义.二元一次方程必须符合以下三个条件: (1)方程中只含有2个未知数; (2)含未知数项的最高次数为一次;(3)方程是整式方程.19.145【解析】【分析】如图:延长AB 交l2于E 根据平行线的性质可得∠AED=∠1根据可得AE//CD 根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB 交l2于E∵l解析:145【解析】【分析】如图:延长AB 交l 2于E ,根据平行线的性质可得∠AED=∠1,根据αβ∠∠=可得AE//CD ,根据平行线的性质可得∠AED+∠2=180°,即可求出∠2的度数.【详解】如图:延长AB 交l 2于E ,∴∠AED=∠1=35°,∵αβ∠∠=,∴AE//CD ,∴∠AED+∠2=180°,∴∠2=180°-∠AED=180°-35°=145°,故答案为145【点睛】本题考查了平行线的判定和性质,通过内错角相等证得AE//CD 是解题关键.20.±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可【详解】解:假设直角坐标系的原点为O 则直线与坐标轴围成的三角形是以OAOB 为直角边的直角三角形∵和点∴∴∴∴故答案为:±4【点睛解析:±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可.【详解】解:假设直角坐标系的原点为O ,则直线AB 与坐标轴围成的三角形是以OA 、OB 为直角边的直角三角形,∵(0,)A a 和点(5,0)B ,∴||OA a =,5OB =, ∴11||51022OAB S OA OB a ∆=⨯⨯=⨯⨯=, ∴||4=a ,∴4a =±,故答案为:±4. 【点睛】本题主要考查了三角形的面积和直角坐标系的相关知识,需注意坐标轴上到一个点的距离为定值的点有2个.三、解答题21.(1)120,30°;(2)答案见解析;(3)1375人.【分析】(1)根据“从来不管”的人数和百分比求出总份数,根据总份数和严加干涉的分数求出百分比,然后计算圆心角的度数;(2)根据总分数求出稍加询问的人数,然后补全统计图;(3)根据题意求出“从来不管”和“稍加询问”的百分比求出全校的人数.【详解】解:(1)30÷25%=120(人)10÷120×360°=30°故答案为:120,30°(2)如图所示:(3)1500×3080120=1375(人)则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.22.(1)详见解析;(2)A1(4,−2), B1(1,−4), C1(2,−1);(3)7 2【解析】【分析】(1)直接利用平移的性质得出A,B,C平移后对应点位置;(2)利用(1)中图形得出各对应点坐标;(3)利用△A1B1C1所在矩形面积减去周围三角形面积即可得出答案.【详解】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:A 1 (4,−2), B 1 (1,−4), C 1 (2,−1);(3) △A 1B 1C 1的面积为:3×3−12×1×3−12×1×2−12×2×3=3.5 【点睛】此题考查作图-平移变换,解题关键在于掌握作图法则23.(1)a 的取值范围是﹣2<a≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.【解析】【分析】 (1)先解方程组得342x a y a =-+⎧⎨=--⎩,再解不等式组30420a a -+≤⎧⎨--⎩p ;(2)由不等式的解推出210a +p ,再从a 的范围中确定整数值.【详解】(1)由方程组:713x y a x y a +=--⎧⎨-=+⎩,得 342x a y a =-+⎧⎨=--⎩, 因为x 为非正数,y 为负数.所以30420a a -+≤⎧⎨--⎩p , 解得23a -≤p .(2) 不等式221ax x a ++f 可化为()2121x a a ++f ,因为不等式的解为1x <,所以210a +p ,所以在23a -≤p 中,a 的整数值是-1.故正确答案为(1)2a 3-<≤;(2)a=-1.【点睛】此题是方程组与不等式组的综合运用.解题的关键在于求出方程组的解,再解不等式组;难点在于从不等式的解推出未知数系数的正负.24.证明见解析.【解析】试题分析:先根据平行线的性质得出∠4=∠BAE.再根据∠3=∠4可知∠3=∠BAE.由∠1=∠2,得出∠1+∠CAE=∠2+∠CAE即∠BAE=∠CAD,故∠3=∠CAD,由此可得出结论.试题解析:证明:∵AB∥CD,∴∠4=∠BAE.∵∠3=∠4,∴∠3=∠BAE.∵∠1=∠2,∴∠1+∠CAE=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD,∴AD∥BE.25.(1)1l∥2l;(2)①当Q在C点左侧时,∠BAC=∠CQP +∠CPQ,②当Q在C点右侧时,∠CPQ+∠CQP+∠BAC=180°.【解析】【分析】(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出结论;(2)分两种情况讨论:①当Q在C点左侧时;②当Q在C点右侧时.【详解】解:(1)1l∥2l.理由如下:∵AE平分∠BAC,CE平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的定义);又∵∠1+∠2=90°(已知),∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代换)∴1l∥2l(同旁内角互补,两直线平行)(2)①当Q在C点左侧时,过点P作PE∥1l.∵1l∥2l(已证),∴PE∥2l(同平行于一条直线的两直线互相平行),∴∠1=∠2,(两直线平行,内错角相等),∠BAC=∠EPC,(两直线平行,同位角相等),又∵∠EPC=∠1+∠CPQ,∴∠BAC=∠CQP +∠CPQ(等量代换)②当Q在C点右侧时,过点P作PE∥1l.∵1l∥2l(已证),∴PE∥2l(同平行于一条直线的两直线互相平行),∴∠1=∠2,∠BAC=∠APE,(两直线平行,内错角相等),又∵∠EPC=∠1+∠CPQ,∠APE+∠EPC=180°(平角定义)∴∠CPQ+∠CQP+∠BAC=180°.【点睛】本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.。
2019年七年级数学下学期期末模拟试卷一、选择题(本大题共12小题)1.在下列生活现象中,不是..平移现象的是 ( )A.小亮荡秋千的运动B.左右推动的推拉窗帘C.站在运行的电梯上的人D.坐在直线行驶的列车上的乘客2.点P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是()A.(4,2)B.(-2,-4)C.(-4,-2)D.(2,4)3.下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414B.C.﹣D.04.二元一次方程2x+y=7的正整数解有()A.一组B.二组C.三组D.四组5.不等式组的解集是( )A.x>﹣1B.x≤1C.x<﹣1D.﹣1<x≤16.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图所示的不完整的统计图,已知甲类书有30本,则丙类书的本数是()A.80B.90C.144D.2007.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B;④AD∥BE,且∠D=∠B.其中能说明AB∥DC的条件有()A.4个B.3个C.2个D.1个8.如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,B分别在直线a,b上,则∠1+∠2的值为()A.90°B.85°C.80°D.60°9.已知Q(2x+4,x2-1)在y轴上,则点Q的坐标为( )A.(0,4)B.(4,0)C.(0,3)D.(3,0)10.食堂的存煤计划用若干天,若每天用130kg,则缺少60kg;若每天用120kg,则还剩余60kg.设食堂的存煤共有xkg,计划用y天,则下面所列方程组正确的是A.6013060120x yx y+=⎧⎨-=⎩B.6013060120x yx y-=⎧⎨+=⎩C.6013060120y xy x+=⎧⎨-=⎩D.6013060120y xy x-=⎧⎨+=⎩11.某种导火线的燃烧速度是0.81厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使爆破员跑到150米以外的安全地区,导火线的长至少为( )A.22厘米B.23厘米C.24厘米D.25厘米12.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A ﹣…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,0)B.(-1,1)C.(-1,-2)D.(1,-2)二、填空题(本大题共6小题)13.把命题“同角的余角相等”改写成“如果…那么…”的形式.14.已知,如图6×6的网格中,点A的坐标为(﹣1,3),点C的坐标为(﹣1,﹣1),则点B的坐标为 .15.已知(x-3)2+│2x-3y+6│=0,则x=________,y=_________.16.不等式3(x+1)≥5x﹣9的正整数解是.17.某校为了丰富学生的课外体育活动,欲增购一批体育器材,为此该校对一部分学生进行一次题为“你喜欢的体育活动”的问卷调查(每人限选一项).根据所收集的数据,绘制成如下统计图(不完整):根据图中提供的信息得出“跳绳”部分的学生共有__________人.18.如图,已知AB∥CD,∠1=55°,∠2=45°,点G为∠BED内一点,∠BEG:∠DEG=2:3,EF 平分∠BED,则∠GEF= .三、解答题(本大题共8小题)19. 求x 的值:(2x-1)2-169=020.计算:21)2(18725.023------.21.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy ,按要求解答下列问题:(1)写出△ABC 三个顶点的坐标;(2)画出△ABC 向右平移6个单位后的图形△A 1B 1C 1;(3)求△ABC 的面积.22.如图,已知AB ∥CD ,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB 与EF 的位置关系,并说明理由.解: ,理由如下:∵AB ∥CD ,∴∠B=∠BCD ,( )∵∠B=70°,∴∠BCD=70°,( )∵∠BCE=20°,∴∠ECD=50°,∵∠CEF=130°,∴+ =180°,∴EF∥,()∴AB∥EF.()23.我市组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定,现随机抽取部分学生书法作品的评定结果进行统计,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B 级)有多少份?24.已知5x﹣1的算术平方根是3,4x+2y+1的立方根是1,求4x﹣2y的平方根.25.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?26.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的五分之二,求点M的坐标。
2019年初一数学下期末模拟试卷(含答案)一、选择题1.已知关于x的不等式组的解中有3个整数解,则m的取值范围是()A.3<m≤4B.4≤m<5C.4<m≤5D.4≤m≤52.点M(2,-3)关于原点对称的点N的坐标是: ( )A.(-2,-3) B.(-2, 3) C.(2, 3) D.(-3, 2)3.116的平方根是( )A.±12B.±14C.14D.124.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,买鸡的钱数为y,依题意可列方程组为()A.8374x yx y+=⎧⎨+=⎩B.8374x yx y-=⎧⎨-=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨+=⎩5.在实数0,-π,3,-4中,最小的数是()A.0B.-πC.3D.-46.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20°B.30°C.40°D.50°7.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个8.不等式4-2x>0的解集在数轴上表示为()A.B.C.D .9.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A .(2,1)B .(﹣2,﹣1)C .(﹣2,1)D .(2,﹣1)10.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <6 11.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135° 12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤: ①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( ) A .③④②① B .③④①② C .①②③④ D .④③①②二、填空题13.不等式组有3个整数解,则m 的取值范围是_____.14.27的立方根为 .15.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向 右平移到△A′B′D′的位置得到图②,则阴影部分的周长为_________.16.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.17.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.18.二项方程32540x +=在实数范围内的解是_______________19.若不等式组1x x a⎧⎨⎩><有解,则a 的取值范围是______. 20.已知点(0,)A a 和点(5,0)B ,且直线AB 与坐标轴围成的三角形的面积为10,则a 的值为________.三、解答题21.(1)计算:2020011(1)(2019)3sin 60()2π---+--+o (2)解不等式组:34223154x x x x +≥⎧⎪⎨+--≥⎪⎩①②,并求整数解。