关于旁路电容的深度对话
- 格式:pdf
- 大小:804.19 KB
- 文档页数:18
ldo的旁路电容好啦,今天我们聊聊“LDO旁路电容”这个话题。
你可能会想:“啥是LDO旁路电容?难不成又是某种电子元件的高大上名字?”放心,咱们今天不讲深奥的技术原理,也不讲什么学术论文。
我们就来点儿轻松的,边喝杯茶边聊的那种风格。
你要是懂了,脑袋里肯定也能冒出一个“哦,原来是这个意思”那种清爽感。
什么是LDO?这个嘛,其实就是低压差线性稳压器(Low Dropout Regulator)的缩写,翻译成白话就是,LDO就是用来“稳住电压”的一个小帮手。
就像你路上碰到一个热心大哥,他稳稳地拉住你,不让你摔倒。
LDO就干这个事儿,把电压稳得跟老母鸡照顾小鸡似的,给设备提供稳定的电压。
对了,LDO这个名字听起来是不是有点像什么高科技玩意儿?其实它只是个小小的稳压器。
至于“旁路电容”嘛,那可就更简单了,就是加在LDO旁边,给它当个辅助帮手,确保整个电路系统能够更平稳、更安稳地运行。
那问题来了,旁路电容到底是干嘛的呢?我们要是直接从字面上理解,旁路电容就是旁路——意思是电流要是想跳过LDO,找别的路走,旁边的电容就会提供一个临时的“安全通道”,保证电流能够顺利通过,不会乱跑。
你想,电流就像一群小兔子,跑得飞快,一不小心就跑偏了,偏到其他线路上去了,这不就麻烦了嘛。
旁路电容就像一个网,帮忙把这些兔子赶回到正道上。
再说了,旁路电容这个小配件其实是有大作用的。
你可别看它小小的,没它可不行。
它不仅能过滤掉电源噪声,还能降低高频信号的干扰。
说白了,它就是在你的电路中,起到“净化空气”的作用。
就好比你在一个吵闹的市场中购物,周围是各种嘈杂的声音,如果你戴个耳塞,整个人顿时清净了不少,能更专注地挑选心仪的商品。
旁路电容就像那个耳塞,让你电路中的信号更加清晰、稳定。
不加旁路电容,LDO的工作就会变得不那么完美。
你知道的,电路里的电压波动、噪声过多,就像人心浮气躁,做事总是心不在焉。
旁路电容的存在就能让这个问题迎刃而解。
它把这些“杂音”吸收掉了,让LDO能够更精准地工作。
电容旁路作用
嘿,朋友们!今天咱来唠唠电容旁路作用这个事儿。
你说电容旁路就像是一个神奇的小助手,在电路的世界里默默发挥着大作用。
就好比你在马路上开车,突然遇到了一段拥堵的路,这时候要是有条小路能让你绕过去,那多爽啊!电容旁路就类似这条小路。
在电路中,有时候会有一些杂波啊、干扰信号啥的,就像一群调皮的小孩子在捣乱。
这时候电容旁路就出马了,它能把这些不乖的信号给引走,让电路能顺畅地工作。
想象一下,要是没有电容旁路,那电路不就像没了润滑油的机器,卡卡的,多难受啊!电容旁路能让电流更平稳地流动,就像河水在河道里稳稳地流淌一样。
它还特别靠谱,不管啥时候需要它,它都在那。
而且它也不挑,不管是大电流还是小电流,它都能应付得来。
咱平时用的那些电子设备,里面可都少不了电容旁路的功劳。
手机啊、电脑啊,要是没有它,说不定用着用着就出毛病了。
你说这电容旁路是不是很牛?它就像一个默默守护电路的英雄,不声不响地干着重要的活儿。
有时候我就想啊,生活中是不是也需要这样的“电容旁路”呢?在我们遇到困难和干扰的时候,也有个东西能帮我们把这些不好的给引开,让我们能顺利地往前走。
所以啊,可别小看了电容旁路这个小小的东西,它的作用可大着呢!它让我们的电子世界变得更加精彩,让我们能享受到各种便捷的电子设备。
总之,电容旁路就是牛,不服不行啊!。
交流放大电路旁路电容1. 介绍交流放大电路是一种常见的电路配置,用于放大信号的幅度。
在交流放大电路中,旁路电容起着重要的作用。
本文将详细探讨交流放大电路中旁路电容的原理、设计方法以及其在电路中的作用。
2. 旁路电容的原理旁路电容是指将电容连接在交流信号源的输出端与地之间的电路中,起到旁路(绕行)交流信号的作用。
旁路电容将交流信号绕过负载电阻,使得交流信号能够绕过负载直接回到地。
通过将交流信号旁路到地,旁路电容可以提供更低的阻抗路径,从而改善交流信号的放大效果。
3. 旁路电容的设计方法在设计交流放大电路时,正确选择旁路电容的数值是非常重要的。
以下是一些常用的旁路电容设计方法:3.1 利用截止频率选择旁路电容在交流放大电路中,截止频率是指交流信号的增益下降到3dB的频率。
通过选择合适的旁路电容数值,可以使交流信号的截止频率达到预期的值。
截止频率可通过下式计算得出:f_c = 1 / (2 * π * R * C)其中,f_c为截止频率,R为负载电阻的阻值,C为旁路电容的电容值。
根据所需截止频率,可以计算出合适的旁路电容数值。
3.2 考虑交流信号的频率范围不同的交流信号源可能具有不同的频率范围。
在选择旁路电容时,需要考虑交流信号的频率范围,并选择一个能够满足该范围的电容。
通常情况下,旁路电容的数值需要满足以下条件:C >= 1 / (2 * π * R * f_max)其中,f_max为交流信号的最大频率。
3.3 考虑交流电路的放大倍数交流放大电路的放大倍数也会影响旁路电容的设计。
较高的放大倍数要求更低的截止频率,因此需要选择较大的旁路电容。
一般来说,可以选择一个符合所需截止频率要求的电容,并通过实验调整来达到满意的放大倍数。
4. 旁路电容的作用旁路电容在交流放大电路中起到了关键的作用。
以下是旁路电容在交流放大电路中的几个主要作用:4.1 降低负载电阻对交流信号的影响负载电阻会引入一定的阻抗,从而影响交流信号的幅度。
什么是旁路电容?什么是去耦电容?它们有什么区别和联系?一、旁路电容在电路中,如果希望将某一频率以上或全部交流成分的信号去掉,那么便可以使用滤波电容。
习惯上,通常将少部分只有滤波作用的电容器称为旁路电容器(Bypass Capacitors)或者傍路电容器。
例如,在晶体管的射极电阻或真空管的阴极电阻上并联的电容器,就被称为旁路电容(因为交流信号是经该电容器而进入接地端的);又如在电源电路中,除了数千微法的平滑滤波或反交联电容之外,通常也用零点几微法的高频电容来将高频旁路(实际上,此高频旁路电容也可被视为高频滤波及反交联电容)。
旁路电容的应用电路如下图所示。
二、去耦电容在电子电路中,经常会看到在集成电路的电源引脚附近有一个电解电容器,这个电容器就是去耦合电容器,简称去耦电容(Decoupling Capacitors),又称退耦电容器。
去耦电容器通常有两个作用:一个是蓄能;一个是去除高频噪声。
去耦电容器主要是去除高频,如RF信号的干扰。
干扰的进入方式是通过电磁辐射。
为什么说去耦电容具有蓄能的作用呢?举个简单的例子,我们就能很容易地明白了:我们可以把总电源看作一个水库,我们大楼内的家家户户都需要供水,这时,水不是直接来自于水库,那样距离太远啦,等水过来,我们已经渴的不行了,实际上我们用的水来自于大楼附近的水塔。
集成电路在工作的时候,其电流是不连续的,而且频率很高,而集成电路的电源引脚到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗也会很大(线路的电感影响非常大),这样会导致器件在需要电流的时候,不能及时供给,而去耦电容器可以弥补此不足,这也是为什么很多电路板在高频器件电源引脚处放置小电容的原因之一。
集成电路内部的开关在工作时产生的高频开关噪声将沿着电源线传播,去耦电容的主要功能就是提供一个局部的直流电源给集成电路,以减少开关噪声在电路板的传播并将噪声引导到地。
去耦电容器还可以防止电源携带的噪声对电路构成干扰,在设计电路时,去耦电容应放置在电源入口处,连线应尽可能短。
pwm控制器的旁路电容
PWM控制器的旁路电容主要用于吸收PWM控制器产生的谐波电流,从而降低电磁干扰(EMI)。
同时,旁路电容还可以减小电源内阻,平滑电流,减少电压波动和噪声。
旁路电容的选择需要考虑多个因素,包括电容值、耐压值和温度稳定性等。
一般来说,电容值越大,能够提供的电流就越大,因此可以更好地吸收谐波电流。
但是,电容值也不能过大,否则会导致启动时浪涌电流过大。
此外,旁路电容的耐压值也需要考虑。
由于PWM控制器产生的谐波电流可能会超过电源电压的幅值,因此旁路电容的耐压值应该大于或等于电源电压的最大值。
最后,旁路电容的温度稳定性也是一个重要的考虑因素。
由于旁路电容通常安装在靠近散热器的位置,因此需要承受较高的温度。
因此,选择温度稳定性好的电容可以保证其性能的可靠性。
总之,选择合适的旁路电容可以有效地降低PWM控制器的电磁干扰和提高电源的稳定性。
电容(2)旁路电容⼯作原理深度解析旁路电容(bypass capacitor)在⾼速数字逻辑电路中尤为常见,它的作⽤是在正常的通道(信号或电源,本⽂以电源旁路电容为例)旁边建⽴另外⼀个对⾼频噪声成分阻抗⽐较低的通路,从⽽将⾼频噪声成分从有⽤的信号⽤滤除,也因此⽽得名,如下图所⽰:通常我们见到的旁路电容位置如下图所⽰:如果是⾼密度BGA(Ball Grid Array)封装芯⽚,则旁路电容通常会放在PCB底层(芯⽚的正下⽅),这些旁路电容会使⽤过孔扇出(Fanout)后与芯⽚的电源与地引脚连接,如下图所⽰:更有甚者,很多⾼速处理器芯⽚(通常也是BGA封装)在出⼚时,已经将旁路电容贴在芯⽚上,如下图所⽰:台式电脑的CPU(Central Processing Unit)⼀般都是⽤CPU插槽进⾏安装,很多CPU芯⽚的背⾯(是芯⽚的背⾯,⽽不是贴芯⽚的PCB板背⾯)也会有很多旁路电容,如下图所⽰:总之,旁路电容的位置总是会与主芯⽚越来越靠近,原理图设计⼯程师在进⾏电路设计时,也通常会将这些旁路电容的PCB LAYOUT要点标记起来,⽤来指导PCB布局布线⼯程师,如下图所⽰:那么这⾥就有两个问题了:(1)为什么旁路电容⼀定要与主芯⽚尽可能地靠近?(2)为什么⼤多数旁路电容的值都是0.1uF(104)?这是巧合吗?要讲清楚这两个问题,⾸先我们应该理解旁路电容存在的意义,很多⼈分不清滤波电容、旁路电容,其实本质上两者是没有任何区别,只不过在细节上对电容的要求有所不同。
⽆论电容的应⽤场合名称叫什么,基本的(也是共同的)⼀点特性总是不会变的:储能。
电容的这⼀特性使得外部供电电源有所波动时,与电容并联的对象两端的电压所受的影响减⼩,如下图所⽰:上图中,我们⽤开关K1来模拟扰动的来源,很明显,每⼀次开关K1闭合或断开时,在电阻R1与R2的分压下,电阻R2两端的电压(V DD)都是会实时跟随变化的(即波动很⼤),只不过电压幅度不⼀致⽽已,我们认为开关的切换动作已经产⽣了电源噪声。
关于旁路电容的深度对话(第三部分)作者:David Ritter, Tamara Schmitz应用工程师Intersil公司继续关于排版的讨论通过一次关于基本知识的对话,让我们深入考察那没有什么魅力但是极其关键的旁路电容和去耦电容。
编辑引言:旁路电容是关注度低、没有什么魅力的元器件,一般来说,在许多专题特写中不把它作为主题,但是,它对于成功、可靠和无差错的设计是关键。
来自Intersil公司的作者David Ritter和Tamara Schmitz参加了关于该主题的进一步对话。
本文是对话的第三部分。
Dave和Tamara信仰辩论的价值、教育的价值以及谦虚地深入讨论核心问题的价值;简而言之,为了获取知识而展开对一个问题的讨论。
下面是,第三部分的对话,请“聆听”并学习。
(Tamara博士拿着一袋发着沙沙响声的书进入她的办公室,当Dave从旁边走过时她把那袋书扔在了桌子上。
)Dave: 嗨,Tamara:博士,你往那里扔什么?Tamara: 那是我们的读者邮件。
Dave: 我们收到邮件?你的意思是喜欢“来自新泽西Fort Lee的Richard Fader写道:这就是我听说的关于电容器的一切抱怨吗?”之类的邮件?Tamara: 是的,就是那样的信件。
Dave: 关于电容器以及排版吗?Tamara: 当然!这是一封来自Kyle(所有读者的姓名被改变,以保护他们隐私)。
在高幅度射频场中,他惯常于把电容器级联起来以旁路他的电路。
Dave: 正如我们所说的,有时候你需要这么做,但是,许多时间你不需要这么做。
Tamara: 他也问到了耦合电容。
看来他们在耦合电容上遇到的问题不如在旁路电容上遇到的问题大。
Dave: 是的,我已经注意到了那个问题,但是,一些人担心采用大的耦合电容,因为它太慢。
我认为,他们的思路不正确。
Tamara: 在今后的讨论中我们将着手解决那个问题。
这里是Carl的评价。
他对我们最近关于接地平面上的电压降问题提出的解决方案感到不确定。
去耦电容和旁路电容的电路设计题目嘛,今天咱们来聊聊那些电子设备里常见但是不起眼的小家伙们——去耦电容和旁路电容。
这俩小伙伴虽小,却功不可没,就像是电子世界里的小精灵一样,静静地为我们的电路保驾护航。
先说说去耦电容,它就像个灵活的接线员,负责过滤掉电路中的杂音和电压波动,让电子们安心工作,不被外界的“干扰”打扰。
就像你在聚会上,一旁的DJ突然放了个乱入的歌,你就得去耦一下,把那些不和谐的声音给消音掉,保持派对的好氛围。
而旁路电容呢,就像是路边的小摊贩,虽然看起来平凡无奇,却能帮你解决大问题。
它主要是为了去掉电源线上的高频噪声,让电子设备在电源方面享受“清静”,不被这些不速之客搞得焦头烂额。
就像你在一家饭店吃饭,忽然来了个烦人的苍蝇,服务员赶紧过来,放个小苹果醋,那苍蝇就自动“旁路”到了醋罐子里,餐桌上的氛围就又恢复安宁了。
这俩电容的设计和使用,其实挺有讲究的。
你得根据电路的需要,选对型号、安装位置,才能让它们发挥最大的功效。
就像是在家里安装净水器,你得考虑水质、水压,选对型号,才能让你的家庭饮水更放心。
去耦电容和旁路电容也有点像电子世界的“保险”,就像你开车要带安全带,虽然不常用,但一旦需要,就能救你一命。
所以,在设计电路的时候,别忘了这俩“保险”,它们能让你的电子设备更稳定、更可靠。
电子爱好者会在电路板上看到一堆这些小电容,心里可能会嘀咕:“这么多,到底有啥用?”其实啊,就像是做菜,有时候需要点细碎的调味料,虽然每一勺都不多,但能让菜肴的味道更丰富。
去耦电容和旁路电容虽然是电路中的“小角色”,却是功不可没的“配角”。
它们虽小,但在电子设备的稳定性和性能上,却扮演着不可或缺的角色。
就像是团队里的默默付出的成员,虽然不会出风头,却能让整个团队更加完美地运转。
所以,当你再次打开电子设备或者DIY自己的电路时,不妨留意一下那些小小的电容们。
它们或许不会出现在产品的说明书里,但它们的存在,却是保证电子设备正常运行的一把利器。
耦合电容和旁路电容的作用
嘿,你问耦合电容和旁路电容的作用呀?这俩家伙在
电路里可重要着呢。
咱先说耦合电容吧。
它就像个小信使,在电路里传递
信号。
比如说,一个电路的一部分产生了信号,要传给另
一部分,这时候耦合电容就上场啦。
它能让信号顺利地通过,同时又能阻止直流电流过去。
就像一个检查站,只让
特定的东西通过。
要是没有耦合电容,信号可能就传不过去,或者传得乱七八糟的。
它能让不同部分的电路协调工作,就像乐队里的指挥,让各个乐器配合得好好的。
再说说旁路电容。
这家伙就像个小保镖,保护电路不
受干扰。
有时候电路里会有一些杂波或者干扰信号,旁路
电容就能把这些坏家伙给引走,不让它们影响正常的电路
工作。
就像你在路上走,旁边有个垃圾桶很臭,旁路电容
就像个屏风,把臭味挡住,让你能安心走路。
它能让电路
更稳定,工作得更顺畅。
我给你讲个事儿吧。
我有个朋友,他自己组装收音机。
一开始他不知道耦合电容和旁路电容的作用,随便装了几
个电容上去。
结果收音机的声音很杂,根本听不清。
后来
他请教了别人,知道了这两个电容的重要性。
他重新安装了合适的耦合电容和旁路电容,嘿,这下收音机的声音可清晰了。
他可高兴了,说以后组装电路一定要注意这些小零件的作用。
所以啊,耦合电容和旁路电容在电路里可重要啦,一个负责传递信号,一个负责排除干扰。
有了它们,电路才能正常工作,发挥出最大的作用。
加油哦!。
关于旁路电容的深度对话(第一部分)作者:David Ritter, Tamara Schmitz应用工程师Intersil公司通过一次关于基本知识的对话,让我们深入考察那没有什么魅力但是极其关键的旁路电容和去耦电容。
编辑引言:旁路电容是关注度低、没有什么魅力的元器件,一般来说,在许多专题特写中不把它作为主题,但是,它对于成功、可靠和无差错的设计是关键。
来自Intersil公司的作者David Ritter 和Tamara Schmitz参加了关于该主题的进一步对话。
本文是对话的第一部分。
Dave和Tamara信仰辩论的价值、教育的价值以及谦虚地深入讨论核心问题的价值;简而言之,为了获取知识而展开对一个问题的讨论。
下面请“聆听”并学习。
David: 有一种观念认为,当我们做旁路设计时,我们对低频成分要采用大电容(微法级),而对高频成分要采用小电容(纳法或皮法级)。
Tamara: 我赞成,那有什么错吗?David: 那听起来很好并且是有意义的,但是,问题在于当我在实验室中验证那个规则时并未得到我们想要的结果!我要向您发出挑战,Tamara博士。
Tamara: 好啊!我无所畏惧。
David: 让我们看看,你有一个电压调整器并且它需要电源。
电源线具有一些串联阻抗(通常是电感以及电阻),这样对于短路来说,它在瞬间提供的电流就不会出现大变化。
它需要有一个局部电容供电,如图1所示。
图1:旁路电容的功能。
Tamara: 我到目前均赞成你的观点。
那就是旁路的定义。
Dave,接着说吧。
David: 例如,有些人可能用0.1 μF电容进行旁路。
他们也可能用一个1000pF的电容紧挨着它以处理更高的频率。
如果我们已经采用了一个0.1 μF的电容,那么,紧挨着它加一个1000pF电容就没有意义。
它会增加1%的容值,谁会在意?Tamara: 然而,除了电容值之外,有更多要研究的内容。
这两种数值的电容均不理想。
David: 我们必须考察0.1 μF的实际电路;它存在有效串联电阻(ESR)以及有效串联电感(ESL)。
Tamara: 有时候,你还要把介质损耗一项当成一个并联电阻来考虑,如图2所示。
图2:旁路电容的模型。
David: 现在,当我们遇到具有瞬态特性的这一损耗时,我们假设0.1 μF电容的ESL远远大约1000pF的电容。
我们需要某一器件在短期内供电,因ESL的存在而让0.1 μF的电容做不到这一点。
假设就在于1000pF的电容具有更低的ESL,因此,能够提供更好的电流。
Tamara: ESL与你获得以及封装的电容的类型有关。
其数值可能完全独立于电容本身的尺寸和数值,如图3所示。
David: (显示出对年轻同事所具有的知识的惊讶)Tamara: 我曾经看到过一些人把100 nF、10 nF和1 nF的电容分级并联起来使用,它们可能均采用相同的封装,例如0402,因为这些电容通常就是采用这种封装形式。
然而,每一种0402封装均具有相同的ESL,因为它们具有相同的电感以及相同的高频响应,因此,这么安装电容于事无补。
图3:旁路电容的阻抗。
David: 我们在实验室中所发现的问题在于,各种封装均是类似的。
我们所采用的大多数陶瓷电容均为面积是0805或0603的电容。
我测试发现,把0603 0.1 μF电容挨着0603 100pF电容安装,效果上不如仅仅采用两个0603 0.1 μF的电容。
Tamara: 那是完全有可能。
我猜测,你所处的频率范围就是0603 0.1 μF电容被最优化的频率范围。
图4:相同尺寸和不同尺寸的电容的阻抗比较。
David: 是的,ESR和ESL是原数值的一半且非常管用。
在这些应用中,我所研制的开关调整器的工作频率大约为1MHz。
Tamara: 在你的情况下,要调整电容的数值以及封装,以改善对你没有兴趣的那个频率范围的旁路网络。
图4假设我们谈论的是相同类型的电容(陶瓷电容)。
其它类型的电容—如钽电容—具有更高的ESR,因此,整个曲线突起。
另一方面,有时可能全部要采用钽电容。
David: 我们现在讲讲历史。
过去,人们采用他们手上能用的一切元器件。
那时,你无法获得封装小的100 μF电容,你不得不通过缩短旁路电容器上的引线来改善旁路网络。
当今的大电容的尺寸正逐渐缩小类似于较小电容所具有的尺寸。
当你开始认真考虑选择一只0.1 μF电容时,你肯定选择0603的封装,并且,最终会选择0402封装的电容(因为我没有看过0402封装的电容,我倾向于不采用那些电容)。
Tamara: 按照分级封装的阶梯电容(stepped capacitor)的确切含义来自于赛灵思公司的讨论。
他们的FPGA被用于各种各样的应用之中,并且,他们设法测试了所有的条件。
因此,他们在高达5Gsps 的宽频带内需要一种低阻抗电容对电源旁路。
另一方面,你需要一种较低带宽的解决方案。
David: 我的评论全部来自较之于比赛灵思的速度更低的电源应用。
你的辩论非常聪明,因为你指的是封装尺寸,而其他人没有那么深入的思考。
他们通常所,高频需要小电容,而低频需要大电容。
Tamara: 啊,真是的,我要脸红了。
David: 我的旁路事业一直是非常令人厌烦的,因为在大多数时间内,规则就是用0.1 μF电容旁路每一个芯片,那就管用了。
Tamara: 那不仅仅与封装有关,而且还与布局有关。
David: 绝对正确!我循着电路板上的电流路线,发现电路板上存在电感。
在任何电流路径上的电感与该路径的闭环面积呈正比。
因此,当你围绕一个区域对元器件进行布局时,你需要把元器件紧凑地布局。
那就是你为什么把元器件保持紧凑布局的原因—保持电感为低。
然后,选择具有良好ESL和ESR的电容。
我希望对于它有更多的设计艺术,但是,它的确是实用证明正确的少数的简单规则之一。
Tamara: 当然,你可以购买具有较低ESL和ESR的电容,但是,他们通常比标准的陶瓷电容更为昂贵。
David: 在大多数情形下,与每一块芯片尽可能接近的0.1 μF旁路电容仍然非常管用。
(未完待续)关于旁路电容的深度对话(第二部分)作者:David Ritter, Tamara Schmitz应用工程师Intersil公司通过一次关于基本知识的对话,让我们深入考察那没有什么魅力但是极其关键的旁路电容和去耦电容。
编辑引言:旁路电容是关注度低、没有什么魅力的元器件,一般来说,在许多专题特写中不把它作为主题,但是,它对于成功、可靠和无差错的设计是关键。
来自Intersil公司的作者David Ritter和Tamara Schmitz参加了关于该主题的进一步对话。
本文是对话的第二部分。
Dave和Tamara信仰辩论的价值、教育的价值以及谦虚地深入讨论核心问题的价值;简而言之,为了获取知识而展开对一个问题的讨论。
下面请“聆听”并学习。
Tamara: 我们上次关于旁路电容的对话很好,但是,我认为这个话题没有结束。
我们假设电容的低边有一块完美的接地层可用。
然而,在一半的情况下,这并不是有效的假设。
David: 我听您说,博士。
那天一位同事向我展示了他的最新的板子。
“我用的是四层板,完整的接地层,”他真诚地说,“没有问题呀。
”我没有把握他说的是否正确。
Tamara: 是的,接地层大有帮助,如果你使用正确的话。
David: 正如我们所说的,旁路电容应该尽可能近地放在电源的旁边。
我们假设读者知道把电容的另一边连接至良好的接地层。
Tamara: 可是,让我们确切一点说。
你说的“良好的接地”或“良好的接地层”是什么意思?David: 啊,接地应该是0V。
Tamara: 然而,它真是真正的零伏吗?David: 不,当然不是。
总是存在一些阻抗,总是存在一些引起电压降的电流。
Tamara: 因此,在一点的地电压永远不会跟另一点一样。
David: 有时候,当我们研究隔离问题时,我们可以假设局部接地层的电压是相对一致的。
另一方面,有些应用处于高频环境中,例如,接近发射器或微波炉。
这些设备有大量的信号耦合进它们的接地层之中。
Tamara: 那么,我们如何构建一块“良好的接地层”呢?我们的读者应该仅仅采用接地层吗?David: 有时候答案是肯定的。
Tamara: 然而,在接地层上时常存在足够大的电流,从而引起从一点至另一点之间出现巨大的电压降。
David: 因此,问题在于,你如何在一个系统中把每一个电路接地以最优化性能?Tamara: 那取决于电路的类型。
David: 是的,你可能在一个系统中要采用多种接地方案。
Tamara: 当然,所有的地最终都要接在同一个地方。
David: 是的,然而,我们要把每一块接地层直接连接至一个地方吗?Tamara: 我们可以这么做,而那被称为星型接地(这是一种非常流行的接地方式,如果使用正确,是一种成功的接地方式)。
David: 对于小的电路我们已经采用了那种技术,但是,对于较大的电路我们还需要研究。
Tamara: 当你设计大面积的电路时,问题更为严峻。
你不能让一个有用的旁路电容距离元件0.5英寸开外连接。
总的引线电感将让电容的性能退化。
David: 我喜欢把接地看成是一种局部现象。
跟随通过围绕一颗芯片(例如)的小的局部环路的电源和输入电流,并保持那个环路尽可能小和紧凑。
来自局部电路的各个接地层然后连接至较大的接地系统,这一接地系统要根据较大等级的电流进行设计。
Tamara: 你可以举一个例子吗?David: 当然,(例1)我们正在构建一个两输入的视频示波器(称为“波形监视器”)。
如图1所示为前端的简化电路图。
图1:两通道可选前端电路图。
Tamara: 那是几个馈入2:1复用器的视频放大器,在输出端上有一个缓冲放大器,对吗?David: 非常正确。
我们设计了一块像这样的板子(图2)。
图2:两通道可选前端的布局。
David: 这是一块四层电路板,尽管有两层用得很少(浅蓝和深蓝)。
红色是顶层,最后一层是接地层。
Tamara: 设计和布局看起来非常简单和干净。
David: 然而,在各个输入之间存在太多的耦合。
(即使当输入B被关闭时,它示出输入A的衰减版)。
Tamara: 在输入B上的信号有多大?David: 在我们的视频应用中,任何大于-90dB的信号均是不可接受的。
我们要测量的信号大约为-55dB。
Tamara: 我要更仔细地看看引起耦合的边缘电流(图3)。
图3:显示边缘电流的前端布局。
Tamara: 我明白。
正是来自输入A的边缘电流在输入B中引起一个信号。
David: 那正是我们所猜测的。
当边缘路径重叠时,我们就会发现存在串扰。
为了验证这一理论,我们在电路板上切了几刀,如图4所示(绿色线是切割线)。
图4:具有割裂接地层(绿色)的两个通道的可选前端布局。
David: 太令人惊讶了!耦合消失了—它实际上低于噪声的电平。