2016年秋季鲁教版五四制七年级数学上学期2.3简单的轴对称图形教案6
- 格式:doc
- 大小:370.00 KB
- 文档页数:3
2.3简单的轴对称图形(1)【自主探究】知识点一:线段的轴对称性线段是轴对称图形,线段有条对称轴,分别是:知识点二:线段垂直平分线的性质1.什么叫做线段的垂直平分线?2.线段垂直平分线有何性质?文字语言:符号语言(画图说明):针对训练二如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于E,如果BC=10cm,求△BCE的周长.知识点三:尺规作图用尺规作线段AB的垂直平分线.写出步骤.【基础巩固】1.如图所示,C是线段AB的垂直平分线上的一点,垂足为D,则下列结论中正确的有()①AD=BD;②AC=BC;③∠A=∠B;④∠ACD=∠BCD;⑤∠ADC=∠BDC=90°.2.如图,△ABC中,DE垂直平分BC,AD=3 cm,CD=7 cm,则AB=() .第1题图第2题图3.△ABC两边的中垂线相交于点P,则PA,PB,PC的大小关系为 . 【素养提优】1.1.如图直线MN是草原上的一条小河.将军从草原的A地出发到河边饮马,然后再到B地军营观察.那么走什么样的路线行程最短呢?2.如图,在△ABC中,AC=6cm.将△ABC折叠,使点C与点A重合,得折痕DE.若△ABE的周长9cm,试求△ABC的周长.3.如图,在△ABC中,AB=AC,AB的垂直平分线交AC于点P,交AB于点D.若BP+PC=12,求AB的长.【中考链接】(2020枣庄)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.1【方法提炼】线段垂直平分线的性质可用于说明线段相等.【达标测评】(共10分)(教师寄语:自信源于实力!)总得分:__________1.线段垂直平分线上的点到这条线段两个端点的距离__________.(1分)2.到三角形的三个顶点距离相等的点是()(2分)3.在Rt△ABC中,∠C=90°,AC>BC,AB的垂直平分线与AC相交于E点,连结BE,若∠CBE∶∠EBA=1∶4,则∠A=______度,∠ABC=_________度.(2分)4.如图,AB是△ABC的一条边,,DE是AB的垂直平分线,垂足为E,并交BC 于点D,已知AB=8cm,BD=6cm,那么EA=________, DA=____(2分).5.如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于E,如果BC=10cm,求△BCE的周长. (3分)(4题)(5题)。
轴对称中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。
早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。
1、教学目标:使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。
2、教学重点与难点:(一)教学重点了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。
(二)教学难点:如何感受、认识书法作品中的线条美、结构美、气韵美。
3、教具准备:粉笔,钢笔,书写纸等。
4、课时:一课时二、教学方法:要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。
(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。
(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。
三、教学过程:(一)组织教学让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。
(二)引入新课,通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!(三)讲授新课1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。
2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!A书法文字发展简史:①古文字系统甲古文——钟鼎文——篆书早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。
2.3简单的轴对称图形(第3课时)学习目标:1、掌握等腰(等边)三角形的性质2、能运用等腰(等边)三角形的性质解决数学问题重点:掌握等腰三角形的性质等边三角形的性质难点:等边三角形的性质和用尺规作等腰三角形学习过程:一、知识衔接:用纸剪一个等腰三角形ABC,将三角形对折,使它的两腰AB与AC重合,折痕与BC的交点为D,把纸展开后铺平.(1)等腰三角形ABC是轴对称图形吗?请找出它的对称轴.(2)顶角∠BAC的平分线所在的直线是等腰三角形ABC的对称轴吗?(3)底边BC上的中线所在的直线是等腰三角形ABC的对称轴吗?底边BC 上的高所在的直线呢?(4)沿对称轴对折,你能发现等腰三角形有哪些性质?二、探究新知:1、等腰三角形的性质:(1)等腰三角形是图形.(2)等腰三角形的、、重合(也称三线合一)它们所在的直线都是等腰三角形的.(3)等腰三角形的两个__________相等.2、等边三角形的性质任意画一个等边三角形ABC.(1)等边三角形ABC是轴对称图形吗?如果是请画出它的对称轴.(2)你能发现等边三角形有哪些性质?概括:等边三角形是轴对称图形,它有______条对称轴,等边三角形的每个内角都等于___°三、精讲点拨1、等腰直角三角形的两个底角是度?2、如果一个等腰三角形的底角是50°,它的顶角是°;如果等腰三角形的一个内角是50°,它的顶角是 °3、已知等腰三角形有一个内角为70°,求其它两个内角的度数.若有一个内角为110°,则其它两个内角的度数又是多少?四、课堂练习1、等腰三角形的周长为13,其中一边长为3,则该等腰三角形底边长( ).(A )7 (B )3 (C )7或3 (D )52、等腰三角形的两条边长分别为15cm 和7cm ,则它的周长为( ).(A )37cm (B )29cm (C )37cm 或29cm (D )无法确定3、在线段、角、等腰三角形、正三角形中,轴对称图形有( )个.(A )1个 (B )2个 (C )3个 (D )4个4、如图,在△ABC 中,AB =AC ,BD =AD ,DC =AC ,则∠B =_______.5、等腰三角形的一个内角是50°,那么其它两个内角分别是( ).(A )50°和80° (B )65°和65°(C )50°和80°或65°和65° (D )无法确定6、如图,在△ABC 中,AB=AC ,AB 的垂直平分线交AC 于D ,如果BC=10cm ,△BCD 的周长是16cm ,那么AB=_______cm.7、如下图,P,Q 是△ABC 边上BC 上的两点,且BP=PQ=QC=AP=AQ,求∠BAC 的度数.A Q C P B五、课堂小结:本节课的知识点是什么?这节课学到了哪些知识,最大的收获是什么?六、达标测试:1、在△ABC 中,AB=AC,BD ⊥AC,垂足为D, ∠A=40°, 则∠DBC=________2、已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为————3、O 是△ABC 中∠ABC, ∠ACB 的平分线的交点,OD ∥AB 交BC 于点D ,OE ∥AC 交BC 于点E ,若BC=10 cm ,则△ODE 的周长是___________.4、如图△ ABC 是等边三角形,D 点是AC 的中点,延长BC 到E ,使CE=CD ,过D 点作DM ⊥BE ,垂足是M 求证:BM=EM(3) (4) 5、等腰三角形腰上的高与另一腰的夹角为40°,则这个等腰三角形的顶角为 度.6、如图,△ABC 中,AB=AC ,∠A=36°AB 的中垂线DE 交AC 于D ,交AB 于E ,下述结论:(1)BD 平分∠ABC ;(2)AD=BD=BC ;(3)△BCD 的周长等于AB +BC ;(4)D 是AC 中点.其中正确的命题序号是_________________.7、在△ABC 中,AB=AC, ∠A=120°,AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N,交AC 于F ,(1)试猜想∠MAN 的大小并说明理由.(2)试证:BM=MN=NC作业:记忆所学过的定理,看谁记得又多又快.M CE N A B F。
2.小组活动:(1)在窗花的制作过程中,你是如何进行剪纸的?为什么要这样?(2)这些窗花(图案)有什么共同的特点?注:通过对收集材料、剪纸操作,增加学生对轴对称图形的感性认识,为轴对称概念的引出作准备.活动的目的一是为了交流,更主要的是说出(发现)“对称”.概念形成(一)轴对称图形1.在学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”.注:在学生经历了一系列的过程后让学生尝试归纳,这本身也是一种能力的培养和对轴对称的理解.教学中应该有意识地加以渗透.2.结合教科书第40页图2-2进一步分析轴对称图形的特点,以及对称轴的位置.3.学生举例:试举几个在现实生活中你所见到的轴对称例子.4.概念应用:(1)教科书第41页练习;(2)补充:判断下面的图形是不是轴对称图形?并简要说明理由.注:对于一个概念的建立,让学生经历“实物——概括——应用”的过程,符合学生的认识规律.(二)两个图形关于某条直线对称对于第二个概念的建立,分两个步骤进行:先观察图形,再进行画图.其目的是突出两个图形和这两个图形之间的关系,在这个基础上再给出定义,比较合理.1.观察教科书第41页中的图2-4,思考:图中的每对图形有什么共同的特点?2.操作:取一张薄纸,先对折,然后中间夹一张复写纸,再在纸上任意画一个图案,取出复写纸后你发现两层纸上的图案有什么关系?3.两个图形成轴对称的定义.如下图,图形F与图形F'就是关于直线l对称,点A与点A'是对称的.4.举例:你能举出一些生活中两个图形成轴对称的例子吗?辨析概念分组讨论:轴对称图形和两个图形成轴对称这两个概念之间的联系和区别.讨论后可列表比较如下:轴对称图形两个图形成轴对称区别一个图形两个图形联系1.沿着某条直线对折后,直线两旁的部分都能够互相重合(即直线两旁的两部分全等)2.都有对称轴(至少一条)3.如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条直线对称;如果把两个成轴对称的图形看成一个图形,那么这个图形就是轴对称图形注:通过讨论、比较,便于进一步理解概念,弄清它们之间的联系和区别,以突破本课的教学难点.采用小组讨论的目的意在引导学生参与,改变学习方式,发挥更佳的学习效果.实践和应用1.下列图片是生活中的一些建筑物,它们是轴对称图形吗?2.下列图形是部分汽车的标志,哪些是轴对称图形?奔驰宝马大众奥迪3.下图中的两个图形是否成轴对称?如果是,请找出它的对称轴.4.请在下图这一组图形符号中找出它们所蕴含的内在规律,然后在横线的空白处设计一个恰当的图形。
鲁教版数学七年级上册2.3《简单的轴对称图形》说课稿一. 教材分析鲁教版数学七年级上册2.3《简单的轴对称图形》这一节内容,主要让学生了解轴对称图形的概念,学会判断一个图形是否为轴对称图形,以及如何寻找图形的对称轴。
这部分内容是初中数学的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析面对七年级的学生,他们对数学知识的掌握已经有了一定的基础,但仍然需要通过具体实例来帮助他们理解抽象的概念。
在学习本节内容时,学生需要具备一定的观察能力和动手操作能力,能够通过观察、实践来发现图形的对称性质。
三. 说教学目标1.知识与技能:让学生掌握轴对称图形的概念,学会判断一个图形是否为轴对称图形,并能找出图形的对称轴。
2.过程与方法:通过观察、操作、交流等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 说教学重难点1.重点:轴对称图形的概念及其判断方法。
2.难点:如何寻找图形的对称轴,以及理解轴对称图形在实际应用中的意义。
五. 说教学方法与手段1.教学方法:采用问题驱动、实例引导、合作学习的方法,让学生在实践中掌握知识。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,提高学生的学习兴趣和效果。
六. 说教学过程1.导入新课:通过展示一些生活中的对称现象,如剪纸、建筑等,引导学生发现对称的美,激发他们对本节内容的兴趣。
2.探究新知:介绍轴对称图形的概念,让学生通过观察实例,发现轴对称图形的特征,学会判断一个图形是否为轴对称图形。
3.动手实践:让学生分组合作,寻找教室内的对称轴,找出教室内的轴对称图形。
4.讲解示范:教师讲解如何寻找图形的对称轴,并通过几何画板软件进行示范。
5.巩固练习:布置一些有关轴对称图形的练习题,让学生独立完成,检验他们对方程的理解和掌握程度。
6.课堂小结:对本节内容进行总结,强调轴对称图形的特点和判断方法。
鲁教版数学七年级上册2.3《简单的轴对称图形》教学设计一. 教材分析《简单的轴对称图形》是鲁教版数学七年级上册2.3节的内容,主要介绍轴对称图形的概念,性质以及应用。
通过本节课的学习,学生能够理解轴对称图形的定义,识别生活中的轴对称图形,并运用轴对称性质解决实际问题。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面几何有一定的了解。
但是,对于轴对称图形的概念和性质,学生可能还比较陌生。
因此,在教学过程中,需要引导学生从实际生活中的例子出发,逐步抽象出轴对称图形的概念,并理解其性质。
三. 教学目标1.知识与技能:学生能够理解轴对称图形的定义,识别生活中的轴对称图形,运用轴对称性质解决实际问题。
2.过程与方法:学生通过观察、操作、思考、交流等过程,培养空间想象能力和抽象思维能力。
3.情感态度与价值观:学生感受数学与生活的紧密联系,增强学习数学的兴趣和信心。
四. 教学重难点1.重点:轴对称图形的概念和性质。
2.难点:轴对称图形的性质的应用。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生从实际出发,理解轴对称图形的概念。
2.启发式教学法:引导学生观察、思考、交流,自主探索轴对称图形的性质。
3.实践操作法:让学生动手操作,加深对轴对称图形性质的理解。
六. 教学准备1.教具:准备一些生活中常见的轴对称图形,如剪纸、图片等。
2.学具:学生每人准备一张白纸,一把剪刀。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称图形,如剪纸、图片等,引导学生观察并提问:“这些图形有什么共同的特点?”学生回答后,教师总结出轴对称图形的定义。
2.呈现(10分钟)教师通过PPT或黑板,呈现一些轴对称图形的性质,如对称轴、对称点等,并引导学生思考这些性质的含义和应用。
3.操练(10分钟)学生分组进行实践活动,每组选择一个轴对称图形,用剪刀将图形剪下来,观察并讨论其对称轴、对称点等性质。
2.3 简单的轴对称图形 (1)鲁教版七年级上册 第二章 轴对称新教育行动就有收获【教学目标】1.经历探索简单图形轴对称性的过程,进一步体验轴对称的特征,发展空间观念. 2.探索并了解线段垂直平分线的有关性质,运用线段垂直平分线的性质解决实际问题. 3.会用尺规画线段的垂直平分线【温故互查】1.如图,DO 是△ABC 对称轴.(1)找出相等的线段,相等的角.(2)直线DO 与线段AB 有怎样的关系?处理方式:两人小组口述答案,大约2分钟目的:温顾——已知一点和对称轴,找该点的对称点.【活动导入】游戏规则:随机点一行(或一列学生)代表直线MN, 随机点一名学生A ,找出A 点关于直线MN 的对称点E (或请代表点E 的同学站起来);处理方式:先师主导,老师点,学生根据规则活动,让学生明白游戏规则;再学生二人组游戏:一人点,另一人找出对应点.大约2分钟;师追问:若已给出点A 和点E ,你能画出这两个点的对称轴吗?带着这个问题,我们一起来学习今天的新课吧!目的:知新——引入如何确定两点(或两点所在线段)的对称轴,来引入线段的垂直平分线.【问题导学】要求:独立完成1.自学课本P 46引例和“议一议”,完成下列问题.(1)线段是 图形,___________________的直线是它的一条对称轴.(2)垂直于一条线段,并且平分这条线段的直线,叫做这条线段的 线(简称 线). (3)若线段AB 的垂直平分线交AB 于点O , 点C 、 DAD 与BD 、 AC 与BC 、AE 与BE 、AF 与BF2.通过上面的探究,你发现了什么?线段的垂直平分线性质定理:数学符号语言:∵点C 是线段AB 的垂直平分线上的点, ∴____=____负责汇报交流结果(用SAS 证三角形全等或用轴对称的性质解释问题)。
此处这样处理的意图是夯实垂直平分线性质定理,以便于今后“遇垂直平分,直接得线段相等”!(板书1)3.自学课本P46—47例1,仿照例题,利用尺规,做出下面线段MN 的垂直平分线,不要求写出做法,但要保留作图痕迹哟!处理方式:先独学课本,仿照课本尺规画图,如遇问难,可以向大小组长求助,接下来老师引领,再演示一遍,目的一方面,回顾作图步骤;另一方面,演示所取半径不超过给定线段一半时的做法,追问此时不能成功作图的原因,强化对“半径大于给定线段长度一半”的理解,并强调画图勿忘结论。