北华航天工业学院数字信号处理实验1系统响应及系统稳定性
- 格式:doc
- 大小:23.50 KB
- 文档页数:4
实验一系统响应及系统稳定性实验报告标准化管理部编码-[99968T-6889628-J68568-1689N]一、实验目的(1)掌握求系统响应的方法(2)掌握时域离散系统的时域特性(3)分析、观察及检验系统的稳定性二、实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应。
已知输入信号, 可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。
也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。
可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的。
系统的稳态输出是指当n→∞时,系统的输出。
如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。
注意在以下实验中均假设系统的初始状态为零。
二、实验内容及步骤(1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter函数或conv函数求解系统输出响应的主程序。
程序中要有绘制信号波形的功能。
程序代码xn=[ones(1,32)];hn=[0.2 0.2 0.2 0.2 0.2];yn=conv(hn,xn);n=0:length(yn)-1;subplot(2,2,1);stem(n,yn,'.')title('(a)y(n)波形');xlabel('n');ylabel('y(n)')输出波形(2)给定一个低通滤波器的差分方程为输入信号)()(81nRnx=①分别求出系统对)()(81nRnx=和)()(2nunx=的响应序列,并画出其波形。
实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
实验要求1.每个实验进行之前须充分预习准备,实验完成后一周内提交实验报告;2.填写实验报告时,分为实验题目、实验目的、实验内容、实验结果、实验小结五项;3.实验报告要求:实验题目、实验目的、实验内容、实验结果四项都可打印;但每次实验的实验内容中的重要代码(或关键函数)后面要用手工解释其作用。
实验小结必须手写!(针对以前同学书写实验报告时候抄写代码太费时间的现象,本期实验报告进行以上改革)。
实验一信号、系统及系统响应实验目的:1. 掌握使用MATLAB进行函数、子程序、文件编辑等基本操作;2. 编写一些数字信号处理中常用序列的3. 掌握函数调用的方法。
实验内容:1.在数字信号处理的基本理论和MATLAB信号处理工具箱函数的基础上,可以自己编写一些子程序以便调用。
(1)单位抽样序列δ(n-n0)的生成函数impseq.m(2)单位阶跃序列u(n-n0)的生成函数stepseq.m(3)两个信号相加的生成函数sigadd.m(4)两个信号相乘的生成函数sigmult.m(5)序列移位y(n)=x(n-n0)的生成函数sigshift.m(6)序列翻褶y(n)=x(-n)生成函数sigfold.m(7)奇偶综合函数evenodd.m(8)求卷积和2.产生系列序列,并绘出离散图。
(1) x1(n)=3δ(n-2)-δ(n+4) -5≤n≤5(2) x3(n)=cos(0.04πn)+0.2w(n) 0≤n≤50其中:w(n)是均值为0,方差为1 的白噪声序列。
3.设线性移不变系统的抽样响应h(n)=(0.9)^n*u(n),输入序列x(n)=u(n)-u(n-10),求系统的输出y(n).实验二 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一 系统响应及系统稳定性。
实验二 时域采样与频域采样。
实验三 用FFT 对信号作频谱分析。
实验四 IIR 数字滤波器设计及软件实现。
实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
实验一:系统响应及系统稳定性1. 实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及判断系统的稳定性。
2. 实验原理与方法描述系统特性有多种方式,时域描述有差分方程和单位脉冲响应,频域描述有系统函数和频率响应。
已知输入信号可以由差分方程、单位脉冲响应、系统函数或频率响应求系统输出信号。
(1)求系统响应 本实验仅在时域求系统响应。
在计算机上,已知差分方程可调用filter 函数求系统响应;已知单位脉冲响应可调用conv 函数计算系统响应。
(2)系统的时域特性 系统的时域特性是指系统的线性、时不变性质、因果性和稳定性。
本实验重点分析系统的稳定性,包括观察系统的暂态响应和稳态响应。
(3)系统的稳定性判断 系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和条件。
实际中,检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。
可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的。
(4)系统的稳态响应 系统的稳态输出是指当∞→n 时,系统的输出。
如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n 的加大,幅度趋于稳定,达到稳态输出。
注意在以下实验中均假设系统的初始状态为零。
3.实验容及步骤(1)已知差分方程求系统响应 设输入信号 )()(81n R n x =,)()(2n u n x =。
已知低通滤波器的差分方程为 )1(9.0)1(05.0)(05.0)(-+-+=n y n x n x n y 。
试求系统的单位冲响应,及系统对)()(81n R n x =和)()(2n u n x =的输出信号,画出输出波形。
(2)已知单位脉冲响应求系统响应 设输入信号 )()(8n R n x =,已知系统的单位脉冲响应分别为)()(101n R n h =,)3()2(5.2)1(5.2)()(2-+-+-+=n n n n n h δδδδ,试用线性卷积法分别求出各系统的输出响应,并画出波形。
Experiment One the response and stability of systems1. Aims(1) Knowing how to compute the response of a system to an input.(2) Having a level of solid understanding of characterization in time-domain of systems.(3) To observe, verify and analyze the stability of systems.2. Principle and method:Discrete-Time LTI systems can be represented as a linear const difference equation or the impulse response in time domain and as a transform function in frequency-domain. The response of the system to an arbitrary input can be computed knowing the linear const difference equation or the impulse response.In this experiment, we compute the response of the system to an arbitrary input by two ways.1) Output computation using MATLAB, knowing the linear const difference equation.2) Output computation using linear convolution, knowing the impulse response of the systems.Signal processing toolbox in MATLAB provides us a convenient and efficient function to reach our objectives.Characterization in time-domain of systems refers to the linear, shift-invariant, causal and stable of a system. We focus on the stability of systems, including the steady and transient response.We defined a discrete-time system to be stable if and only if for every bounded input, the output is also bounded, or, its impulse response sequence is absolutely summable. The stability of a discrete-time system depends on the coefficients of its difference equation.It is impossible to examine the system whether the output is bound or not when all of whose input is bound ,or examine the response of the system satisfy the absolutely summable when examining whether the system is stable or not in practice .One of the feasible way is to add the unit step sequence to the input end, so we can decide the system is stable if its output tends to a constant (including zero).The steady state output is the output as n tends to infinity .If it is stable , the output at the initial period of time is defined to transient effect ,with n increasing ,the magnitude tends to be stable ,to reach the stable output .Pay attention that the initial state of the systems are supposed to be zero in thefollowing experiment .3. The contents and steps(1) Given a difference equation of low-pass filter following:)1(9.0)1(05.0)(05.0)(-+-+=n y n x n x n ythe input signal:)()(81n R n x = )()(2n u n x =① Solve the response of the system respectively when )()(81n R n x = and )()(2n u n x = ,and draw up their waveform.② Solve the unit impulse response of the system, and draw up their waveform .(2) Given the unit impulse response of the system following,)()(101n R n h =)3()2(5.2)1(5.2)()(2-+-+-+=n n n n n h δδδδSolve the output response of the system h1(n) and h2(n) by linear convolution respectively when the input )()(81n R n x = ,and draw up the waveform.(3) Given the difference equation of a resonator as following00() 1.8237(1)0.9801(2)()(2)y n y n y n b x n b x n =---+--Let 49.100/10=b , the frequency of the resonator is 0.4 rad.① Examine whether the system is stable or not by experiment. When the input is u(n), draw up the waveform of the system output.② Given the input signal is)4.0sin()014.0sin()(n n n x +=Solve the output response of the system, and draw up its waveform.4. Question for review(1) If the inputs are infinite long sequence, but the unit impulse response of systems are finite long sequence, can the response of the systems be solved by linear convolution? How?(2) If the signal passing a low-pass filter, filtrating the components of the high frequency, what will the change of the Time-Domain signal .Please analyze and illustrate by the results of the former experiment.5. The requirement of the report(1) Sketch the method of solving the response of systems in Time-Domain;(2) Sketch the method of justifying the stability of systems by experiment , analyze the stable output waveform of the above third experiment ;(3) Analyze and explain the results of each experiment simply ;(4) Answer the question for review simply;(5) Print the list of the procedures and each signal required.。
实验一系统响应及系统稳定性一、实验目的1.掌握求系统响应的方法。
2. 掌握时域离散系统的时域特性。
3. 分析、观察及检验系统的稳定性。
二、实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域中可以用系统函数描述系统特性。
已知差分方程、单位脉冲响应或者系统函数求出系统对于该输入信号的响应。
本实验采用matlab语言工具箱中的filter函数和conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,即求出系统的响应。
三、实验内容1.编程,包括产生输入信号,单位脉冲响应序列的子序列,用filter函数和conv 函数求解系统输出响应的子程序。
程序中要有绘制信号波形的功能。
2. 给定一低通滤波器的差分方程为y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1) 输入信号x1(n)=R8(n), x2(n)=u(n).(1)输入为x1(n)时系统响应。
(程序及波形)设初始状态y(-1)=1ys=1;xn=[1,zeros(1,50)];B=[0.05,0.05];A=[1,-0.9];xi=filtic(B,A,ys);hn=filter(B,A,xn,xi);n=0:length(hn)-1;stem(n,hn,'.' );x1=ones(1,8);yn=conv(x1,hn);n=0:length(yn)-1;stem(n,yn,'.')输入为u(n)时的系统响应:ys=1;xn=[1,zeros(1,50)];B=[0.05,0.05];A=[1,-0.9];xi=filtic(B,A,ys);hn=filter(B,A,xn,xi);n=0:length(hn)-1;stem(n,hn,'.' );x2=ones(1,50);yn=conv(x2,hn);n=0:length(yn)-1;stem(n,yn,'.')(2)求出系统的单位脉冲响应:ys=1;xn=[1,zeros(1,50)];B=[0.05,0.05];A=[1,-0.9];xi=filtic(B,A,ys);hn=filter(B,A,xn,xi);n=0:length(hn)-1;stem(n,hn,'.');3.给定系统的单位脉冲响应为h1(n)=R10(n), h2(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3).用线性卷积求出x1(n)=R8(n)分别对于两系统的输出响应,并画出波形。
实验一_系统响应及系统稳定性实验报告一、实验目的本实验旨在通过研究系统响应及系统稳定性的实验,掌握系统的动态特性及如何评价系统的稳定性。
二、实验仪器和器材1.计算机2.MATLAB软件3.稳态平台三、实验原理系统的响应是指系统对输入信号的反应。
在控制系统中,动态性能是系统的重要指标之一,它描述了系统响应的速度和稳定性。
首先通过给定的输入信号,将其输入到待测系统中,并记录系统的输出信号。
然后,通过分析输入信号和输出信号的关系,得到系统的动态性能参数,如过渡过程的时间、超调量等。
系统的稳定性是指系统在受到外界扰动时,能够保持稳定状态、不产生过大的波动。
一般通过稳定度来衡量系统的稳定性,而稳定度又可分为绝对稳定和相对稳定两种情况。
在稳定度分析中,通常使用稳定图的方式进行。
四、实验步骤1.运行MATLAB软件,打开控制系统实验模块。
2.设计一个给定的输入信号。
3.将输入信号输入待测系统中,记录系统的输出信号。
4.分析输入信号和输出信号的关系,得到系统的动态性能参数,如过渡过程的时间、超调量等。
5.通过稳态平台绘制系统的稳定图,评价系统的稳定性。
五、实验结果与分析通过实验我们得到了系统的动态性能参数,并绘制了系统的稳定图。
根据动态性能参数和稳定图来评价系统的动态特性和稳定性。
六、实验总结通过本次实验,我们学习了如何评价系统的动态性能和稳定性。
同时,我们也发现系统的动态特性和稳定性对于控制系统的性能起到了重要的影响。
在实际的控制系统设计中,需要充分考虑系统的动态特性和稳定性,以保证系统的性能和可靠性。
通过本次实验,我们进一步加深了对系统的理解,为日后的控制系统设计与优化提供了参考。
(2)filter解差分方程的解
A=[1,-0.9];B=[0.05,0.05]; %系统差分方程系数向量B和A
x1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号x1(n)=R8(n)
x2n=ones(1,128); %产生信号x2(n)=u(n)
hn=impz(B,A,58); %求系统单位脉冲响应h(n)
subplot(2,2,1);y='h(n)';tstem(hn,y); %调用函数tstem绘图
title('(a) 系统单位脉冲响应h(n)');box on
y1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n)
subplot(2,2,2);y='y1(n)';tstem(y1n,y);
title('(b) 系统对R8(n)的响应y1(n)');box on
y2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n)
subplot(2,2,4);y='y2(n)';tstem(y2n,y);
title('(c) 系统对u(n)的响应y2(n)');box on
(3)cov函数解线性卷积
x1n=[1 1 1 1 1 1 1 1 ]; %产生信号x1(n)=R8(n)
h1n=[ones(1,10) zeros(1,10)];
h2n=[1 2.5 2.5 1 zeros(1,10)];
y21n=conv(h1n,x1n);
y22n=conv(h2n,x1n);
figure(2)
subplot(2,2,1);y='h1(n)';tstem(h1n,y); %调用函数tstem绘图
title('(d) 系统单位脉冲响应h1(n)');box on
subplot(2,2,2);y='y21(n)';tstem(y21n,y);
title('(e) h1(n)与R8(n)的卷积y21(n)');box on
subplot(2,2,3);y='h2(n)';tstem(h2n,y); %调用函数tstem绘图
title('(f) 系统单位脉冲响应h2(n)');box on
subplot(2,2,4);y='y22(n)';tstem(y22n,y);
title('(g) h2(n)与R8(n)的卷积y22(n)');box on
(4)谐振器分析
un=ones(1,256); %产生信号u(n)
n=0:255;
xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号
A=[1,-1.8237,0.9801];B=[1/100.49,0,-1/100.49]; %系统差分方程系数向量B和A
y31n=filter(B,A,un); %谐振器对u(n)的响应y31(n)
y32n=filter(B,A,xsin); %谐振器对u(n)的响应y31(n)
figure(3)
subplot(2,1,1);y='y31(n)';tstem(y31n,y);
title('(h) 谐振器对u(n)的响应y31(n)');box on
subplot(2,1,2);y='y32(n)';tstem(y32n,y);
title('(i) 谐振器对正弦信号的响应y32(n)');box on
(5)注意事项
调用函数tstem函数源程序
function tstem(xn,yn)
%时域序列绘图函数
% xn:信号数据序列,yn:绘图信号的纵坐标名称(字符串)
n=0:length(xn)-1;
stem(n,xn,'.');box on
xlabel('n');ylabel(yn);
axis([0,n(end),min(xn),1.2*max(xn)])
如果使用stem函数就不用上面的函数了。
(6)课后题
10.1.4 简答思考题
(1) 如果输入信号为无限长序列,系统的单位脉冲响应是有限长序列,可否用线性卷积法求系统的响应。
①对输入信号序列分段;②求单位脉冲响应h(n)与各段的卷积;③将各段卷积结果相加。
具体实现方法有第三章介绍的重叠相加法和重叠保留法。
(2)如果信号经过低通滤波器,把信号的高频分量滤掉,时域信号的剧烈变化将被平滑,由实验内容(1)结果图10.1.1(a)、(b)和(c)可见,经过系统低通滤波使输入信号、和的阶跃变化变得缓慢上升与下降。
1
A=[1,-0.9];B=[0.05,0.05]; %系统差分方程系数向量B和A
x1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号x1(n)=R8(n)
x2n=ones(1,128); %产生信号x2(n)=u(n)
hn=impz(B,A,58); %求系统单位脉冲响应h(n)
subplot(2,2,1);stem(hn); %调用函数tstem绘图
title('(a) 系统单位脉冲响应h(n)');box on
y1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n)
subplot(2,2,2);stem(y1n);
title('(b) 系统对R8(n)的响应y1(n)');box on
y2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n)
subplot(2,2,4);stem(y2n);
title('(c) 系统对u(n)的响应y2(n)');box on
2
x1n=[1 1 1 1 1 1 1 1 ]; %产生信号x1(n)=R8(n)
h1n=[ones(1,10) zeros(1,10)];
h2n=[1 2.5 2.5 1 zeros(1,10)];
y21n=conv(h1n,x1n);
y22n=conv(h2n,x1n);
figure(2)
subplot(2,2,1);stem(h1n); %调用函数tstem绘图
title('(d) 系统单位脉冲响应h1(n)');box on
subplot(2,2,2);stem(y21n);
title('(e) h1(n)与R8(n)的卷积y21(n)');box on
subplot(2,2,3);stem(h2n); %调用函数tstem绘图
title('(f) 系统单位脉冲响应h2(n)');box on
subplot(2,2,4);stem(y22n);
title('(g) h2(n)与R8(n)的卷积y22(n)');box on
3
un=ones(1,256); %产生信号u(n)
n=0:255;
xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号
A=[1,-1.8237,0.9801];B=[1/100.49,0,-1/100.49]; %系统差分方程系数向量B和A y31n=filter(B,A,un); %谐振器对u(n)的响应y31(n)
y32n=filter(B,A,xsin); %谐振器对u(n)的响应y31(n)
figure(3)
subplot(2,1,1);stem(y31n);
title('(h) 谐振器对u(n)的响应y31(n)');box on subplot(2,1,2);stem(y32n);
title('(i) 谐振器对正弦信号的响应y32(n)');box on。