【志鸿优化设计—赢在高考】2014届高考一轮复习数学(人教A版·理)【配套训练】第七章 不等式 7.3
- 格式:doc
- 大小:387.50 KB
- 文档页数:3
第3讲平面向量的数量积及应用基础巩固1.已知a=(1,0),b=(1,1),(a+λb)⊥b,则λ等于()A.-2B.2C.D.-【答案】D【解析】由(a+λb)·b=0,得a·b+λ|b|2=0,得1+2λ=0,即λ=-,故选D.2.若向量a=(2,0),b=(1,1),则下列结论正确的是()A.a·b=1B.|a|=|b|C.(a-b)⊥bD.a∥b【答案】C【解析】a·b=2,选项A错误;|a|=2,|b|=,选项B错误;(a-b)·b=(1,-1)·(1,1)=0,选项C正确,故选C.3.已知向量a,b的夹角为120°,|a|=1,|b|=5,则|3a-b|等于()A.7B.6C.5D.4【答案】A【解析】|3a-b|=====7.故选A.4.(2012·湖南永州模拟)已知平面上三点A,B,C满足||=6,||=8,||=10,则·+·+·的值等于()A.100B.96C.-100D.-96【答案】C【解析】∵||=6,||=8,||=10,62+82=102,∴△ABC为直角三角形,即·=0.·+·+·=·(+)=·=-||2=-100.5.(2013届·浙江杭州质检)已知非零向量a,b满足|a+b|=|a-b|=|a|,则a+b与a-b的夹角为()A.30°B.60°C.120°D.150°【答案】B【解析】将|a+b|=|a-b|两边同时平方,得a·b=0;将|a-b|=|a|两边同时平方,得b2=a2.所以cos<a+b,a-b>===.所以<a+b,a-b>=60°.6.已知向量a=(2cos α,2sin α),b=(3cos β,3sin β),若a与b的夹角为60°,则直线x cos α-y sin α+=0与圆(x-cos β)2+(y+sin β)2=的位置关系是()A.相交B.相交且过圆心C.相切D.相离【答案】D【解析】∵a=(2cos α,2sin α),b=(3cos β,3sin β),∴|a|=2,|b|=3.∴a·b=6cos αcos β+6sin αsin β=6cos(α-β).而a·b=|a||b|cos 60°=3,∴6cos(α-β)=3⇒cos(α-β)=.则圆心(cos β,-sin β)到直线x cos α-y sin α+=0的距离d===1>=r,故直线与圆相离.7.设向量a与b的夹角为θ,定义a与b的“向量积”:a×b是一个向量,它的模|a×b|=|a||b|sin θ,若a=(-,-1),b=(1,),则|a×b|等于()A. B.2 C.2 D.4【答案】B【解析】∵|a|=|b|=2,a·b=-2,∴cos θ==-.又θ∈[0,π],∴sin θ=.∴|a×b|=2×2×=2.故选B.8.已知向量a=(4,3),b=(sin α,cos α),且a⊥b,那么tan 2α=.【答案】-【解析】由a⊥b得4sin α+3cos α=0,所以tan α=-⇒tan 2α=-.9.(2012·课标全国卷,15)已知向量a,b夹角为45°,且|a|=1,|2a-b|=,则|b|=. 【答案】3【解析】∵a,b的夹角为45°,|a|=1,∴a·b=|a||b|cos 45°=|b|,|2a-b|2=4-4×|b|+|b|2=10,∴|b|=3.10.关于平面向量a,b,c,有下列三个命题:①若a·b=a·c,则b=c.②若a=(1,k),b=(-2,6), a∥b,则k=-3.③非零向量a和b满足|a|=|b|=|a-b|,则a与a+b的夹角为60°.其中真命题的序号为(写出所有真命题的序号).【答案】②【解析】命题①明显错误.由两向量平行的充要条件得1×6+2k=0,k=-3,故命题②正确.由|a|=|b|=|a-b|,再结合平行四边形法则可得a与a+b的夹角为30°,命题③错误.11.已知=(2,5),=(3,1),=(6,3),在上是否存在点M,使⊥,若存在,求出点M的坐标;若不存在,请说明理由.【解】设存在点M,且=λ=(6λ,3λ),∴=-=(2-6λ,5-3λ),=-=(3-6λ,1-3λ).∵⊥,∴(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0,即45λ2-48λ+11=0,解得λ=或λ=.∴=(2,1)或=.∴存在M(2,1)或M满足题意.12.已知向量a=(1,2),b=(2,-2).(1)设c=4a+b,求(b·c)a;(2)若a+λb与a垂直,求λ的值;(3)求向量a在b方向上的投影.【解】(1)∵a=(1,2),b=(2,-2),∴c=4a+b=(4,8)+(2,-2)=(6,6).∴b·c=2×6-2×6=0.∴(b·c)a=0×a=0.(2)a+λb=(1,2)+λ(2,-2)=(2λ+1,2-2λ),由于a+λb与a垂直,∴2λ+1+2(2-2λ)=0,∴λ=.(3)设向量a与b的夹角为θ,向量a在b方向上的投影为|a|cos θ.∴|a|cos θ===-=-.13.已知a=(sin θ,1),b=(1,cos θ),c=(0,3),-<θ<.(1)若(4a-c)∥b,求θ;(2)求|a+b|的取值范围.【解】(1)4a-c=(4sin θ,4)-(0,3)=(4sin θ,1),∵(4a-c)∥b,∴4sin θcos θ-1=0.∴sin 2θ=.∵θ∈,∴2θ∈(-π,π).∴2θ=或,即θ=或.(2)a+b=(sin θ+1,1+cos θ),|a+b|===,∵-<θ<,∴-<θ+<.∴sin.∴2sin∈(-2,2].∴|a+b|∈(1,+1].拓展延伸14.(2012·湖南衡阳六校联考)已知向量m=,n=,函数f(x)=m·n.(1)若f(x) =1,求cos的值;(2)在△ABC中,角A,B,C的对边分别为a,b, c,且满足a cos C+c=b,求f(B)的取值范围. 【解】由题意得f(x)=sincos+cos2=sin+cos+=sin+.(1)由f(x)=1,可得sin=,则cos=2cos2-1=2sin2-1=-.(2)由a cos C+c=b可得a·+c=b,即b2+c2-a2=bc,则cos A ==,得A=,B+C=,易知0<B<,0<<,则<+<,所以1<sin+<.故f(B)的取值范围为.。
课时作业64 算法与程序框图一、选择题1.如下框图,当x1=6,x2=9,p=8.5时,x3等于( ).A.7 B.8 C.10 D.112.(2012江西南昌模拟)若如下程序框图所给的运行结果为S=20,那么判断框中应填入的关于k的条件是( ).A.k=9? B.k≤8?C.k<8? D.k>8?3.(2012北京高考)执行如图所示的程序框图,输出的S值为( ).A.2 B.4C.8 D.164.(2012安徽合肥六中模拟)阅读如图的程序框图,若输出的S的值等于16,那么在程序框图中的判断框内应填写的条件是( ).A.i>5? B.i>6?C.i>7? D.i>8?5.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为( ).A.S=S*(n+1) B.S=S*x n+1C.S=S*n D.S=S*x n6.(2012山东高考)执行下面的程序框图,如果输入a=4,那么输出的n的值为( ).A.2 B.3 C.4 D.57.若下面的程序框图输出的S是126,则①应为( ).A.n≤5? B.n≤6?C.n≤7? D.n≤8?二、填空题8.某程序框图如图所示,则该程序运行后输出的k的值是________.9.(2012上海十三校联考)根据右面的程序框图,要使得输出的结果在区间[-1,0]上,则输入的x的取值范围是__________.10.(2012陕西高考改编)下图是计算某年级500名学生期末考试(满分为100分)及格率q的程序框图,则图中空白框内应填入__________.三、解答题11.已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1)、(x2,y2)、…、(x n,y n)、…若程序运行中输出的一个数组是(x,-8),求x的值.12.程序框图如图,运行此程序,试求输出的b的值.参考答案一、选择题1.B 解析:∵x 1=6,x 2=9,∴x 1+x 22=6+92=7.5≠8.5,∴输出的p =x 2+x 32=9+x 32=8.5,∴x 3=8.2.D 解析:据程序框图可得当k =9时,S =11;k =8时,S =11+9=20.∴应填入“k >8?”.3.C 解析:初始:k =0,S =1,第一次循环:由0<3,得S =1×20=1,k =1;第二次循环:由1<3得,S =1×21=2,k =2;第三次循环:由2<3得,S =2×22=8,k =3.经判断此时要跳出循环.因此输出的S 值为8.4.A5.D 解析:这里要求的S 是x 1,x 2,…,x 10的乘积,S 从1开始每循环一次就乘以一个xn ,直到符合S =x 1x 2…x n 为止,然后跳出循环,输出S .6.B 解析:由程序框图知,当n =0时,P =1,Q =3;当n =1时,P =5,Q =7;当n =2时,P =21,Q =15,此时n 增加1变为3,满足P >Q ,循环结束,输出n =3.7.B 解析:程序是计算21+22+ (2)=126,解得n =6,所以判断框内应填“n ≤6?”.二、填空题8.5 解析:第1次循环:k =3,a =43,b =34;第2次循环:k =4,a =44,b =44;第3次循环:k =5,a =45,b =54.此时,满足条件a >b ,循环终止,因此,输出的k 的值是 5.9.2,52解析:由程序框图可得输出值y =x 2,x <0,4-2x ,x ≥0,若y ∈[-1,0],则-1≤x 2≤0,x <0,或-1≤4-2x ≤0,x ≥0,解得2≤x ≤52.10.q =MM +N 解析:由框图可知M 表示及格人数,N 表示不及格人数,所以q =MM +N.三、解答题11.解:开始n =1,x 1=1,y 1=0→n =3,x 2=3,y 2=-2→n =5,x 3=9,y 3=-4→n =7,x 4=27,y 4=-6→n =9,x 5=81,y 5=-8,则x =81.12.解:运行程序各次结果分别为i =10,a =1012,b =a =1012;i =9,a =947,b =a =947;…;i =5,b =a =613;i =4,a =6<613,b =a =6;i =3,a =7>6,此时程序结束,故输出b 的值为 6.。
课时作业29 等比数列及其前n 项和一、选择题1.已知数列{a n }是等比数列,且a 1=18,a 4=-1,则{a n }的公比q 为( ). A .2 B .-12 C .-2 D .122.在等比数列{a n }中,a 2a 6=16,a 4+a 8=8,则a 20a 10=( ). A .1 B .-3C .1或-3D .-1或33.(2013山东实验高三一诊)在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7=( ).A .4B .6C .8D .8-4 24.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( ).A .n (2n -1)B .(n +1)2C .n 2D .(n -1)25.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( ).A .80B .30C .26D .166.在等比数列{a n }中,a 1=2,其前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于( ).A .2n +1-2B .3nC .2nD .3n -17.已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为( ).A .32B .53C .94D .不存在 二、填空题8.等比数列{a n }中,S n 表示前n 项和,a 3=2S 2+1,a 4=2S 3+1,则公比q 为__________.9.在等差数列{a n }中,a 1=1,a 7=4,数列{b n }是等比数列,已知b 2=a 3,b 3=1a 2,则满足b n <1a 80的最小自然数n 是__________.10.已知在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且A ,B ,C 成等差数列,三边a ,b ,c 成等比数列,b =3,则△ABC 的面积是__________.三、解答题11.已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(1)求数列{a n }的通项;(2)求数列{2n a}的前n 项和S n .12.已知数列{a n }满足:a 1=1,a 2=a (a >0).数列{b n }满足b n =a n a n +1(n ∈N *).(1)若{a n }是等差数列,且b 3=12,求a 的值及{a n }的通项公式;(2)若{a n }是等比数列,求{b n }的前n 项和S n ;(3)当{b n }是公比为q -1的等比数列时,{a n }能否为等比数列?若能,求出a 的值;若不能,请说明理由.参考答案一、选择题1.C 解析:选C.由a 4a 1=q 3=-8⇒q =-2,故选C.2.A 解析:由a 2a 6=16,得a 24=16⇒a 4=±4,又a 4+a 8=8,可得a 4(1+q 4)=8,∵q 4>0,∴a 4=4.∴q 2=1,a 20a 10=q 10=1. 3.C 解析:由题意知数列{a n }满足10900a a >⎧⎨≤⎩,,即20902080d d -+>⎧⎨-+≤⎩,,所以20,95,2d d ⎧>⎪⎪⎨⎪≤⎪⎩即209<d ≤52,选C.4.C 解析:由a 5·a 2n -5=22n (n ≥3),得a 2n =22n ,∵a n >0,∴a n =2n . 易得结论.5.B 解析:设S 2n =a ,S 4n =b ,由等比数列的性质知:2(14-a )=(a -2)2,解得a =6或a =-4(舍去),同理(6-2)(b -14)=(14-6)2,所以b =S 4n =30.6.C 解析:∵数列{a n }为等比数列,设其公比为q ,则a n =2q n -1,∵数列{a n +1}也是等比数列, ∴(a n +1+1)2=(a n +1)(a n +2+1).∴a 2n +1+2a n +1=a n a n +2+a n +a n +2.∴a n +a n +2=2a n +1.∴a n (1+q 2-2q )=0,得q =1,即a n =2.∴S n =2n .7.A 解析:因为a 7=a 6+2a 5,所以q 2-q -2=0,q =2或q =-1(舍去).又a m a n =a 12q m +n -2=4a 1,所以m +n =6.则1m +4n =16⎝ ⎛⎭⎪⎫1m +4n (m +n ) =16⎝ ⎛⎭⎪⎫1+n m +4m n +4≥32. 当且仅当n m =4m n,即n =2m 时,等号成立. 此时m =2,n =4.选A.二、填空题8.3 解析:由a 3=2S 2+1,a 4=2S 3+1得a 4-a 3=2(S 3-S 2)=2a 3, ∴a 4=3a 3.∴q =a 4a 3=3.9.7 解析:{a n }为等差数列,a 1=1,a 7=4,6d =3,d =12, ∴a n =n +12,∵{b n }为等比数列,b 2=2,b 3=23,q =13. ∴b n =6×⎝ ⎛⎭⎪⎫13n -1,b n <1a 80=281.∴81<26×⎝ ⎛⎭⎪⎫13n -1,即3n -2>81=34. ∴n >6,从而可得n min =7.10.334解析:因为△ABC 的内角A ,B ,C 成等差数列, 所以A +C =2B ,B =π3. 又因为三边a ,b ,c 成等比数列,b = 3.所以ac =b 2=3.于是S △ABC =12ac sin B =32×32=334. 三、解答题11.解:(1)由题设知公差d ≠0.由a 1=1,a 1,a 3,a 9成等比数列,得1+2d 1=1+8d 1+2d,解得d =1,或d =0(舍去). 所以{a n }的通项a n =1+(n -1)×1=n .(2)由(1)知2n a =2n ,由等比数列前n 项和公式得S n =2+22+23+…+2n =2(1-2n )1-2=2n +1-2.12.解:(1)∵{a n }是等差数列,a 1=1,a 2=a ,∴a n =1+(n -1)(a -1).又∵b 3=12,∴a 3a 4=12,即(2a -1)(3a -2)=12.解得a =2或a =-56. ∵a >0,∴a =2.∴a n =n .(2)∵数列{a n }是等比数列,a 1=1,a 2=a (a >0),∴a n =a n -1.∴b n =a n a n +1=a 2n -1.∵b n +1b n=a 2, ∴数列{b n }是首项为a ,公比为a 2的等比数列.当a =1时,S n =n ;当a ≠1时,S n =a (a 2n -1)a 2-1=a 2n +1-a a 2-1. (3)数列{a n }不能为等比数列.∵b n =a n a n +1,∴b n +1b n =a n +1a n +2a n a n +1=a n +2a n. 则a n +2a n=a -1.∴a 3=a -1. 假设数列{a n }能为等比数列.由a 1=1,a 2=a ,得a 3=a 2.∴a 2=a -1, ∵此方程无解,∴数列{a n }一定不能为等比数列.。
阶段检测三 数列 不等式(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{a n }中,a 5+a 11=30,a 4=7,则a 12的值为( ). A .15 B .23 C .25 D .372.已知实数列-1,x ,y ,z ,-2成等比数列,则xyz 等于( ). A .-4 B .±4 C .-22D .±2 23.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( ).A .(2,3)B .(-∞,2)∪(3,+∞)C .⎝ ⎛⎭⎪⎫13,12D .⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞ 4.已知x ,y 均为正数,且x ≠y ,则下列四个数中最小的一个是( ). A .12⎝ ⎛⎭⎪⎫1x +1y B .1x +yC .1xyD .12x 2+y 25.等比数列{a n }的首项a 1=1 002,公比q =12,记p n =a 1·a 2·a 3·…·a n ,则p n 达到最大值时,n 的值为( ).A .8B .9C .10D .116.已知不等式组⎩⎪⎨⎪⎧x +y ≤1,x -y ≥-1,y ≥0表示的平面区域为M ,若直线y =kx -3k 与平面区域M 有公共点,则k 的取值X 围是( ).A.⎣⎢⎡⎦⎥⎤-13,0B.⎝⎛⎦⎥⎤-∞,13 C.⎝ ⎛⎦⎥⎤0,13D.⎝⎛⎦⎥⎤-∞,-13 7.若直线2ax -by +2=0(a >0,b >0)被圆x 2+y 2+2x -4y +1=0截得的弦长为4,则1a +1b的最小值为( ).A .14B .12C .2D .4 8.已知各项均不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8等于( ).A .2B .4C .8D .169.若不等式x 2+ax +1≥0对于一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是( ).A .0B .-2C .-52D .-310.(2012某某高考)小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ).A .a <v <abB .v =abC .ab <v <a +b2D .v =a +b211.数列{a n }的通项a n =n 2⎝⎛⎭⎪⎫cos2n π3-sin2n π3,其前n 项和为S n ,则S 30为( ).A .470B .490C .495D .51012.在R 上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗(x +a )<1对任意实数x 成立,则( ).A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则a +b 2cd的最小值是__________.14.已知数列{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=________.15.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,则a 的值为________.16.在数列{a n }中,若a 2n -a 2n +1=p (n ≥1,n ∈N *,p 为常数),则称{a n }为“等方差数列”,下列是对“等方差数列”的判断:①若{a n }是等方差数列,则{a 2n }是等差数列;②{(-1)n}是等方差数列;③若{a n }是等方差数列,则{a kn }(k ∈N *,k 为常数)也是等方差数列. 其中真命题的序号为__________(将所有真命题的序号填在横线上).三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知a ,b ,c ∈R +,且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.18.(12分)已知函数f (x )=|x +a |+|x -2|. (1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值X 围.19.(12分)已知p :x -5x -3≥2,q :x 2-ax ≤x -a ,若⌝p 是⌝q 的充分条件,某某数a的取值X 围.20.(12分)已知数列{a n }满足a 1=1,a 2=-13,a n +2-2a n +1+a n =2n -6. (1)设b n =a n +1-a n ,求数列{b n }的通项公式; (2)求当n 为何值时,a n 的值最小.21.(12分)数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n (S n -1).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)设b n =log 2S nS n +2,数列{b n }的前n 项和为T n ,求满足T n ≥6的最小正整数n . 22.(12分)有n 个首项为1的等差数列,设第m 个数列的第k 项为a mk (m ,k =1,2,3,…,n ,n ≥3),公差为d m ,并且a 1n ,a 2n ,a 3n ,…,a nn 成等差数列.(1)当d 3=2时,求a 32,a 33,a 34以及a 3n ;(2)证明d m =p 1d 1+p 2d 2(3≤m ≤n ,p 1,p 2是m 的多项式),并求p 1+p 2的值;(3)当d 1=1,d 2=3时,将数列{}d m 分组如下:(d 1),(d 2,d 3,d 4),(d 5,d 6,d 7,d 8,d 9),…(每组数的个数构成等差数列),设前m 组中所有数之和为(c m )4(c m >0),求数列{2m c·d m }的前n 项和S n .参考答案1.B2.C 解析:∵xz =(-1)×(-2)=2,y 2=2, ∴y =-2(y =2不合题意). ∴xyz =-2 2.3.A 解析:由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎫-13=b a ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).4.D 解析:∵12⎝ ⎛⎭⎪⎫1x +1y =x +y 2xy >2xy 2xy =1xy,∴不能选A.又∵1x +y <12xy <1xy, ∴不能选C ,下面比较B 和D.令x =1,y =2,则B 中的式子等于13,D 中的式子等于110.∴D 选项中的式子的值最小.5.C 解析:a n =1 002×⎝ ⎛⎭⎪⎫12n -1<1⇒n >10,即等比数列{a n }前10项均不小于1,从第11项起小于1,故p 10最大.6.A 解析:如图所示,画出可行域,直线y =kx -3k 过定点(3,0),由数形结合,知该直线的斜率的最大值为k =0,最小值为k =0-13-0=-13.7.D 解析:圆的标准方程为(x +1)2+(y -2)2=4,所以圆的直径为4,而直线被圆截得的弦长为4,则直线应过圆心(-1,2),所以有-2a -2b +2=0,即a +b =1.所以1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=1+1+b a +a b≥2+2b a ×a b=4.8.D 解析:因为{a n }为等差数列,所以a 3+a 11=2a 7,所以已知等式可化为4a 7-a 27=0,解得a 7=4或a 7=0(舍去),又{b n }为等比数列,所以b 6b 8=b 27=a 27=16.9.C 解析:设f (x )=x 2+ax +1,则对称轴为x =-a 2.若-a 2≥12,即a ≤-1时,f (x )在10,2⎛⎤ ⎥⎝⎦上是减函数,应有12f ⎛⎫ ⎪⎝⎭≥0⇒52-≤a ≤-1;若2a -≤0,即a ≥0时,则f (x )在10,2⎛⎤⎥⎝⎦上是增函数,应有f (0)=1>0恒成立,故a ≥0; 若0≤2a -≤12,即-1≤a ≤0,则应有222112424a aa a f ⎛⎫-=-+=- ⎪⎝⎭≥0恒成立,故-1≤a ≤0.,综上可得,有a ≥52-. 10.A 解析:v =2211aba b a b=++<2ab a b +-a =22ab a ab a b --+=2ab a a b -+>22a a a b -+=0,所以2aba b+>a ,即v >a .故选A. 11.A 解析:注意到a n =n 2cos 23n π,且函数y =cos 23x π的最小正周期是3,因此当n是正整数时,a n +a n +1+a n +2=12-n 2-12(n +1)2+(n +2)2=3n +72,其中n =1,4,7,…,S 30=(a 1+a 2+a 3)+(a 4+a 5+a 6)+…+(a 28+a 29+a 30)=(3×1+72)+(3×4+72)+…+(3×28+72)=3×10(128)2⨯++72×10=470.12.C 解析:(x -a )⊗(x +a )<1 ⇔(x -a )[1-(x +a )]<1 ⇔-x 2+x +a 2-a -1<0 ⇔x 2-x -a 2+a +1>0.∵不等式对任意实数x 成立,∴Δ<0,即1-4(a -a 2+1)<0, 4a 2-4a -3<0,解得-12<a <32. 13.4 解析:由题知a +b =x +y ,cd =xy ,x >0,y >0,则2()a b cd+=2()x y xy +=4,当且仅当x =y 时取等号. 14.323(1-4-n) 解析:由a 2=2,a 5=14,得a 1=4,q =12.则a n =4·12⎛⎫ ⎪⎝⎭n -1=23-n ,a n a n +1=25-2n =23·14⎛⎫ ⎪⎝⎭n -1.所以a 1a 2,a 2a 3,…,a n a n +1是以14为公比,以23为首项的等比数列.故a 1a 2+a 2a 3+…+a n a n +1 =323(1-4-n). 15.3 解析:不等式组10,10x y x +-≥⎧⎨-≤⎩表示的区域为甲图中阴影部分.又因为ax -y +1=0恒过定点(0,1),当a =0时,不等式组10,10,10x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩所表示的平面区域的面积为12,不合题意;当a <0时,所围成的区域面积小于12,所以a >0,此时所围成的区域为三角形,如图乙所示,由其面积为S =12×1×(a +1)=2,解得a =3.甲乙16.①②③ 解析:①正确,因为a n 2-21n a +=p ,所以21n a +-2n a =-p ,于是数列{2n a }为等差数列.②正确,因为(-1)2n -(-1)2(n +1)=0为常数,于是数列{(-1)n}为等方差数列.③正确,因为2kn a -2kn k a +=(2kn a -21kn a +)+(21kn a +-22kn a +)+(22kn a +-23kn a +)+…+(21kn k a +--2kn k a +)=kp ,则{a kn }(k ∈N *,k 为常数)也是等方差数列.17.证明:∵a ,b ,c ∈R +,且a +b +c =1,∴111111a b c ⎛⎫⎛⎫⎛⎫---⎪⎪⎪⎝⎭⎝⎭⎝⎭ (1)(1)(1)a b c abc---=()()()b c a c a b abc+++=8=, 当且仅当a =b =c =13时取等号.18.解:(1)当a =-3时,f (x )=25,2,1,23,25, 3.x x x x x -+≤⎧⎪<<⎨⎪-≥⎩当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1; 当2<x <3时,f (x )≥3无解;当x ≥3时 ,由f (x )≥3得2x -5≥3,解得x ≥4; 所以f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)由f (x )≤|x -4|,得|x -4|-|x -2|≥|x +a |. 当x ∈[1,2]时,由|x -4|-|x -2|≥|x +a |, 得4-x -(2-x )≥|x +a |, 即-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0. 故满足条件的a 的取值X 围为[-3,0]. 19.解:由53x x --≥2,得13x x --≤0, ∴1≤x <3.由x 2-ax ≤x -a ,得(x -a )(x -1)≤0. (1)当a <1时,解得a ≤x ≤1; (2)当a =1时,解得x =1; (3)当a >1时,解得1≤x ≤a . ∵⌝p 是⌝q 的充分条件,∴q 是p 的充分条件.设p 对应集合A ,q 对应集合B ,则A ={x |1≤x <3}且B ⊆A . 当a <1时,B ={x |a ≤x ≤1},B A ,不符合题意; 当a =1时,B ={x |x =1},B ⊆A ,符合题意;当a >1时,B ={x |1≤x ≤a },若B ⊆A ,需1<a <3. 综上,得1≤a <3.∴实数a 的取值X 围是[1,3).20.解:(1)由a n +2-2a n +1+a n =2n -6得, (a n +2-a n +1)-(a n +1-a n )=2n -6, 即b n +1-b n =2n -6.b 1=a 2-a 1=-14.当n ≥2时,b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=-14+(2×1-6)+(2×2-6)+…+[2(n -1)-6]=-14+2×(1)2n n --6(n -1)=n 2-7n -8. 经验证,当n =1时,上式也成立.∴数列{b n }的通项公式为b n =n 2-7n -8.(2)由(1)可知,a n +1-a n =n 2-7n -8=(n +1)(n -8). 当n <8时,a n +1<a n ,即a 1>a 2>a 3>…>a 8; 当n =8时,a 9=a 8;当n >8时,a n +1>a n ,即a 9<a 10<a 11<…. ∴当n =8或n =9时,a n 的值最小.21.(1)证明:∵S n 2=a n (S n -1),∴S n 2=(S n -S n -1)(S n -1)(n ≥2). ∴S n S n -1=S n -1-S n ,即1n S -11n S -=1. ∴1n S ⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列. (2)解:由(1)知S n =1n,∴b n =log 2n +2n.∴T n =log 2(31×42×53×64×…×n +2n )=log 2(n +1)(n +2)2≥6.∴(n +1)(n +2)≥128.∵n ∈N *,∴n ≥10.∴满足T n ≥6的最小正整数为10. 22.解:(1)当d 3=2时,∵a 31=1,∴a 32=a 31+d 3=3,a 33=a 31+2d 3=5,a 34=a 31+3d 3=7,…,a 3n =a 31+(n -1)d 3=2n -1. (2)由题意知a mn =1+(n -1)d m ,a 2n -a 1n =[1+(n -1)d 2]-[1+(n -1)d 1]=(n -1)(d 2-d 1),同理,a 3n -a 2n =(n -1)(d 3-d 2),a 4n -a 3n =(n -1)(d 4-d 3),…,a nn -a (n -1)n =(n -1)(d n-d n -1).又因为a 1n ,a 2n ,a 3n ,…,a nn 成等差数列, 所以a 2n -a 1n =a 3n -a 2n =…=a nn -a (n -1)n .故d 2-d 1=d 3-d 2=…=d n -d n -1,即{d n }是公差为d 2-d 1的等差数列. 所以,d m =d 1+(m -1)(d 2-d 1)=(2-m )d 1+(m -1)d 2.令p 1=2-m ,p 2=m -1,则d m =p 1d 1+p 2d 2,此时p 1+p 2=1.(3)当d 1=1,d 2=3时,d m =2m -1(m ∈N *).数列{d m }分组如下:(d 1),(d 2,d 3,d 4),(d 5,d 6,d 7,d 8,d 9),…. 按分组规律,第m 组中有2m -1个奇数,所以第1组到第m 组共有1+3+5+…+(2m -1)=m 2个奇数.注意到前k 个奇数的和为1+3+5+…+(2k -1)=k 2,所以前m 2个奇数的和为(m 2)2=m 4.即前m 组中所有数之和为m 4,所以(c m )4=m 4.因为c m >0,所以c m =m ,从而2c m d m =(2m -1)·2m (m ∈N *).所以S n =1·2+3·22+5·23+7·24+…+(2n -3)·2n -1+(2n -1)·2n.2S n =1·22+3·23+5·24+…+(2n -3)·2n +(2n -1)·2n +1.故-S n =2+2·22+2·23+2·24+…+2·2n -(2n -1)·2n +1=2(2+22+23+…+2n )-2-(2n -1)·2n +1=2×2(2n-1)2-1-2-(2n -1)·2n +1=(3-2n )2n +1-6.所以S n =(2n -3)2n +1+6.。
《志鸿优化设计》2014届高考数学人教A版理科一轮复习题库:第九章解析几何9.1直线及其方程A.0 B.33C. 3D.- 37.已知函数f(x)=a x(a>0,且a≠1),当x<0时,f(x)>1,方程y=ax+1a表示的直线是().二、填空题8.直线ax+my-2a=0(m≠0)过点(1,1),则该直线的倾斜角为__________.9.若A(2,2),B(a,0),C(0,b)(ab≠0)三点共线,则1a+1b=__________.10.在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点.下列命题中正确的是__________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点②如果k与b都是无理数,则直线y=kx+b 不经过任何整点③直线l经过无穷多个整点,当且仅当l经过两个不同的整点④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数⑤存在恰经过一个整点的直线三、解答题11.设直线l的方程为(a+1)x+y+2-a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.12.已知直线l:kx-y+1+2k=0(k∈R).(1)求证:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.参考答案一、选择题1.A 解析:直线的斜率k =-1-0-1-0=1, ∴tan α=1.∴α=45°.2.C 解析:过点M ,N 的直线方程为y +14+1=x -2-3-2. 又∵P (3,m )在这条直线上,∴m +14+1=3-2-3-2,m =-2. 3.C 解析:由A ·C <0及B ·C <0,可知A ≠0,B ≠0,又直线Ax +By +C =0过⎝ ⎛⎭⎪⎪⎫-C A ,0,⎝ ⎛⎭⎪⎪⎫0,-C B ,且-C A >0,-C B >0, ∴直线不过第三象限.4.A 解析:易知A (-1,0).∵|PA |=|PB |,∴P 在AB 的中垂线即x =2上.∴B (5,0).∵PA ,PB 关于直线x =2对称,∴k PB =-1.∴l PB :y -0=-(x -5),即x +y -5=0.5.B 解析:由条件知k l 1=3,k l 2=-k , ∴3×(-k )=-1.∴k =13,即k l 2=-13. 又l 2过点(0,5),∴l 2:y =-13x +5,即x +3y -15=0. 6.C 解析:由k PQ =-3得直线PQ 的倾斜角为120°,将直线PQ 绕点P 顺时针旋转60°所得直线的倾斜角为60°,∴所得直线的斜率k =tan 60°= 3.7.C 解析:∵f (x )=a x 且x <0时,f (x )>1,∴0<a <1,1a >1.又∵y =ax +1a ,令x =0得y =1a ,令y =0得x =-1a2. ∵⎪⎪⎪⎪⎪⎪⎪⎪-1a 2>1a ,故C 项图符合要求.二、填空题 8.135° 解析:∵ax +my -2a =0(m ≠0)过点(1,1),∴a +m -2a =0.∴m =a .直线方程为ax +ay -2a =0,又m =a ≠0,∴直线方程即为x +y -2=0.∴斜率k =-1.∴倾斜角α=135°.9.12解析:设直线方程为x a +y b =1,因为A (2,2)在直线上,所以2a +2b =1,即1a +1b =12. 10.①③⑤ 解析:对于①,举例:y =2x + 3.故①正确;对于②,举例:y =2x -2,过整点(1,0),故②不正确;对于③,不妨设两整点(a 1,b 1),(a 2,b 2),(b 1≠b 2),则直线为:y =b 2-b 1a 2-a 1(x -a 1)+b 1,只需x -a 1为a 2-a 1的整数倍,即x -a 1=k (a 2-a 1),(k ∈Z)就可得另外整点.故③正确.对于④,举例:y =x +12,k 与b 均为有理数,但是直线不过任何整点.故④不正确.对于⑤,举例:y =2x -2,只过整点(1,0),故⑤正确.三、解答题11.解:(1)∵l 在两坐标轴上的截距相等, ∴直线l 的斜率存在,a ≠-1.令x =0,得y =a -2.令y =0,得x =a -2a +1. 由a -2=a -2a +1,解得a =2或a =0. ∴所求直线l 的方程为3x +y =0或x +y +2=0.(2)直线l 的方程可化为y =-(a +1)x +a -2.∵l 不经过第二象限,∴⎩⎨⎧ -(a +1)≥0,a -2≤0.∴a ≤-1.∴a 的取值范围为(-∞,-1].12.(1)证明:设直线过定点(x 0,y 0), 则kx 0-y 0+1+2k =0对任意k ∈R 恒成立, 即(x 0+2)k -y 0+1=0恒成立.所以x 0+2=0,-y 0+1=0.解得x 0=-2,y 0=1,故直线l 总过定点(-2,1).(2)解:直线l 的方程为y =kx +2k +1, 则直线l 在y 轴上的截距为2k +1, 要使直线l 不经过第四象限,则⎩⎨⎧k ≥0,1+2k ≥0,解得k 的取值范围是k ≥0. (3)解:依题意,直线l 在x 轴上的截距为-1+2k k ,在y 轴上的截距为1+2k ,∴A ⎝ ⎛⎭⎪⎪⎫-1+2k k ,0,B (0,1+2k ).第 11 页 又-1+2k k <0且1+2k >0,∴k >0.故S =12|OA ||OB | =12×1+2k k ×(1+2k ) =12⎝ ⎛⎭⎪⎪⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时,取等号. 故S 的最小值为4,此时直线l 的方程为x -2y +4=0.。
《志鸿优化设计》2014届高考数学人教A版理科一轮复习教学案:第九章解析几何9.6双曲线渐近线y=____y=____离心率e=ca,e∈(1,+∞),其中c=a2+b2实虚轴线段A1A2叫做双曲线的______,它的长|A1A2|=______;线段B1B2叫做双曲线的______,它的长|B1B2|=____;____叫做双曲线的实半轴长,____叫做双曲线的虚半轴长a,b,c的关系c2=a2+b2(c>a>0,c>b>0)1.双曲线x216-y29=1的焦距为().A.10 B.7 C.27 D.52.设F1,F2是双曲线x2-y224=1的两焦点,P是双曲线上一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于().A.4 2 B.8 3 C.24D.483.设双曲线x2a2-y29=1(a>0)的渐近线方程为3x±2y=0,则a的值为().A.4 B.3 C.2 D.14.若双曲线x 2a 2-y 2b 2=1的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ).A. 5 B .5 C. 2D .25.(2019届广东深圳南头中学高三12月月考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点与抛物线y 2=12x 的焦点重合,且双曲线的离心率等于3,则该双曲线的标准方程为( ).A.x 23-y 26=1B.x 212-y 224=1 C.x 227-y 218=1 D.y 218-x 227=1 6.已知双曲线x 2a -y 22=1的一个焦点坐标为(-3,0),则其渐近线方程为__________.一、双曲线的定义及应用【例1-1】 已知定点A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,求另一焦点F 的轨迹方程.【例1-2】 △PF 1F 2的顶点P 在双曲线x 2a 2-y 2b2=1上,F 1,F 2是双曲线的焦点,且∠F 1PF 2=θ.求△PF 1F 2的面积S .方法提炼1.求点的轨迹方程时,首先要根据给定条件,探求轨迹的曲线类型.若能确定是哪种曲线,则用待定系数法求得相应方程,这种做法可以减少运算量,提高解题速度与质量.在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支.若是双曲线的一支,则需确定是哪一支.2.在“焦点三角形”中,正弦定理、余弦定理、双曲线的定义是经常使用的知识点.另外,还经常结合||PF1|-|PF2||=2a,运用平方的方法,建立它与|PF1||PF2|的联系.请做演练巩固提升4二、求双曲线的标准方程【例2】根据下列条件,求双曲线方程:(1)与双曲线x29-y216=1有共同的渐近线,且过点(-3,23);(2)与双曲线x216-y24=1有公共焦点,且过点(32,2).方法提炼求双曲线的标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e 及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线的方程为x2a2-y2b2=λ(λ≠0),再由条件求出λ的值即可.请做演练巩固提升2三、双曲线的几何性质【例3】(2019重庆高考)设P为直线y=b 3ax与双曲线x2a2-y2b2=1(a>0,b>0)左支的交点,F1是左焦点,PF1垂直于x轴,则双曲线的离心率e=__________.方法提炼根据双曲线的特点,考查较多的几何性质就是双曲线的离心率和渐近线.求离心率或离心率的取值范围的方法通常是根据条件列出关于a,c的齐次方程或不等式,然后再转化成关于e的方程或不等式求解.求渐近线方程的关键是分清两种位置下的双曲线所对应的渐近线方程.请做演练巩固提升1莫忽略对轨迹中x范围的界定【典例】(12分)(2019四川高考)如图,动点M与两定点A(-1,0),B(1,0)构成△MAB,且直线MA,MB的斜率之积为4.设动点M的轨迹为C.(1)求轨迹C的方程;(2)设直线y=x+m(m>0)与y轴相交于点P,与轨迹C相交于点Q,R,且|PQ|<|PR|,求|PR ||PQ |的取值范围. 规范解答:(1)设M 的坐标为(x ,y ),当x =-1时,直线MA 的斜率不存在;当x =1时,直线MB 的斜率不存在. 于是x ≠1且x ≠-1.此时,MA 的斜率为y x +1,MB 的斜率为y x -1. 由题意,有y x +1·y x -1=4,(3分) 化简可得4x 2-y 2-4=0.故动点M 的轨迹C 的方程为4x 2-y 2-4=0(x ≠1且x ≠-1).(4分)(2)由⎩⎨⎧y =x +m ,4x 2-y 2-4=0消去y ,可得3x 2-2mx -m 2-4=0.(*)对于方程(*),其判别式Δ=(-2m )2-4×3(-m 2-4)=16m 2+48>0,而当1或-1为方程(*)的根时,m 的值为-1或1.(6分)结合题设(m >0)可知,m >0,且m ≠1. 设Q ,R 的坐标分别为(x Q ,y Q ),(x R ,y R ),则x Q ,x R 为方程(*)的两根. 因为|PQ |<|PR |,所以|x Q |<|x R |,x Q =m -2m 2+33, x R =m +2m 2+33. 所以|PR ||PQ |=⎪⎪⎪⎪⎪⎪⎪⎪x R x Q =21+3m 2+121+3m2-1 =1+221+3m 2-1.(9分) 此时1+3m 2>1,且1+3m 2≠2, 所以1<1+221+3m 2-1<3,且1+221+3m2-1≠53, 所以1<|PR ||PQ |=⎪⎪⎪⎪⎪⎪⎪⎪x R x Q <3,且|PR ||PQ |=⎪⎪⎪⎪⎪⎪⎪⎪x R x Q ≠53.(11分)综上所述,|PR ||PQ |的取值范围是⎝ ⎛⎭⎪⎪⎫1,53∪⎝ ⎛⎭⎪⎪⎫53,3.(12分) 答题指导:(1)区分双曲线中的a ,b ,c 大小关系与椭圆中的a ,b ,c 大小关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.(2)双曲线的离心率大于1,而椭圆的离心率e ∈(0,1).(3)双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b2=1(a >0,b >0)的渐近线方程是y =±a bx . (4)若利用弦长公式计算,在设直线斜率时要注意说明斜率不存在的情况.(5)直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点. 1.(2019浙江高考)如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( ).A .3B .2 C. 3D. 22.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( ). A.x 25-y 24=1 B.x 24-y 25=1 C.x 23-y 26=1 D.x 26-y 23=1 3.已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1||PF 2|=( ).A .2B .4C .6D .84.(2019天津高考)已知双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)与双曲线C 2:x 24-y 216=1有相同的渐近线,且C 1的右焦点为F (5,0),则a =__________,b =__________.5.双曲线x 2a 2-y 2b2=1(a >1,b >0)的焦距为2c ,直线l 过点(a,0)和(0,b ),且点(1,0)到直线l的距离与点(-1,0)到直线l 的距离之和s ≥45c ,求双曲线的离心率e 的取值范围.参考答案基础梳理自测 知识梳理1.双曲线 焦点 焦距2.(-a,0) (a,0) (0,-a ) (0,a ) ±b ax ±a b x 实轴 2a 虚轴 2b a b基础自测1.A 解析:∵c 2=16+9=25, ∴c =5,2c =10.2.C 解析:由⎩⎨⎧3|PF 1|=4|PF 2|,|PF 1|-|PF 2|=2,∴|PF 1|=8,|PF 2|=6.又|F 1F 2|=10,∴△PF 1F 2是直角三角形.∴S =12×6×8=24. 3.C 解析:由渐近线方程可知b a =32, 所以a =23b =23×3=2. 4.A 解析:焦点(c,0)到渐近线y =b a x 的距离为bc a 2+b 2=2a ,则b =2a .又a 2+b 2=c 2,∴5a 2=c 2.∴离心率e =c a = 5.5.y =±2x 解析:∵焦点坐标为(-3,0),∴a >0且a +2=3,∴a =1.∴双曲线方程为x 2-y 22=1,渐近线方程为y =±2x .考点探究突破【例1-1】 解:设F (x ,y )为轨迹上的任意一点,因为A ,B 两点在以C ,F 为焦点的椭圆上, 所以|FA |+|CA |=2a ,|FB |+|CB |=2a (其中a 表示椭圆的长半轴长).所以|FA |+|CA |=|FB |+|CB |.所以|FA |-|FB |=|CB |-|CA |=122+92-122+(-5)2=2, 即|FA |-|FB |=2.由双曲线的定义知,F 点在以A ,B 为焦点,2为实轴长的双曲线的下半支上.所以点F 的轨迹方程是y 2-x 248=1(y ≤-1). 【例1-2】 解:设双曲线的左焦点为F 1,右焦点为F 2,如图所示.由双曲线的定义知||PF 1|-|PF 2||=2a . 在△F 1PF 2中,由余弦定理,得cos θ=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=(|PF 1|-|PF 2|)2-|F 1F 2|2+2|PF 1||PF 2|2|PF 1||PF 2|=4a 2-4c 22|PF 1||PF 2|+1 =-2b 2|PF 1||PF 2|+1, ∴|PF 1||PF 2|=2b 21-cos θ. 在△F 1PF 2中,由正弦定理,得S △F 1PF 2=12|PF 1||PF 2|sin θ =sin θ1-cos θ·b 2. 【例2】 解:(1)设所求双曲线方程为x 29-y 216=λ(λ≠0),将点(-3,23)代入得λ=14, ∴所求双曲线方程为x 29-y 216=14, 即x 294-y 24=1. (2)设双曲线方程为x 216-k -y 24+k=1, 将点(32,2)代入得k =4(k =-14舍去).∴所求双曲线方程为x 212-y 28=1. 【例3】 324解析:因为F 1为左焦点,PF 1垂直于x 轴,所以P 点坐标为⎝⎛⎭⎪⎪⎫-c ,-bc 3a . 又因为P 点为直线与双曲线的交点,所以c 2a 2-b 2c 29a 2b 2=1,即89e 2=1, 所以e =324. 演练巩固提升1.B 解析:由题意可知椭圆的长轴长2a 1是双曲线实轴长2a 2的2倍,即a 1=2a 2,而椭圆与双曲线有相同的焦点.故离心率之比为ca 2c a 1=a 1a 2=2. 2.A 解析:由题意得,x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线方程为y =±b a x ,即bx ±ay =0. 又圆C 的标准方程为(x -3)2+y 2=4,半径长为2,圆心坐标为(3,0).∴a 2+b 2=32=9,且|3b |a 2+b 2=2,解得a 2=5,b 2=4.∴该双曲线的方程为x 25-y 24=1. 3.B 解析:不妨设点P 在双曲线C 的右支上,由双曲线的定义得:|PF 1|-|PF 2|=2.两边平方得|PF 1|2-2|PF 1||PF 2|+|PF 2|2=4.①在△PF 1F 2中,cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|, 即|PF 1|2+|PF 2|2-|PF 1||PF 2|=8,② 由①②可解得|PF 1||PF 2|=4.4.1 2 解析:∵C 1与C 2的渐近线相同, ∴b a =2.又C 1的右焦点为F (5,0),∴c =5,即a 2+b 2=5.∴a 2=1,b 2=4,∴a =1,b =2.5.解:直线l 的方程为x a +y b =1,即bx +ay -ab =0.由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离d 1=b (a -1)a 2+b 2.同理得到点(-1,0)到直线l 的距离 d 2=b (a +1)a 2+b 2.∴s =d 1+d 2=2ab a 2+b 2=2ab c .由s ≥45c ,得2ab c ≥45c ,即5a c 2-a 2≥2c 2. 于是得5e 2-1≥2e 2, 即4e 4-25e 2+25≤0. 解不等式,得54≤e 2≤5.由于e >1,∴离心率e 的取值范围是⎣⎢⎡⎦⎥⎤52,5.。
《志鸿优化设计》2014届高考数学人教A版理科一轮复习教学案:第二章函数2.6对数与对数函数常用对数 底数为__________自然对数 底数为__________3.对数的运算(1)对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么 ①log a (M ·N )=__________;②log a M N =__________;③log a M n =______(n ∈R).(2)换底公式log a b =______________________.4.对数函数的图象和性质(1)对数函数的定义一般地,我们把函数y =__________叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数y =log a x (a >0,且a ≠1)的图象和性质 a >1 0<a <1 图象性 质[来源:1] 定义域:__________[来源:1][来源:1ZXXK] 值域:______ 过定点______,即x =1时,y =______单调性:在(0,+∞)上是______ 单调性:在(0,+∞)上是______当0<x <1时,y ∈______;当x >1时,y ∈______ 当0<x <1时,y∈______;当x >1时,y ∈______ 5.指数函数与对数函数的关系函数y =a x (a >0,且a ≠1)与函数__________互为反函数.1.若a >0,a ≠1,x >y >0,n ∈N *,则下列各式:①(log a x )n =n log a x ;②(log a x )n =log a x n ;③log a x =-log a 1x ;④n log a x =1n log a x ; ⑤log a x n =log a n x ;⑥log a x -y x +y =-log a x +y x -y. 其中正确的有( ).A .2个B .3个C .4个D .5个2.函数y =2-x lg x的定义域是( ). A .{x |0<x <2} B .{x |0<x <1,或1<x <2}C .{x |0<x ≤2}D .{x |0<x <1,或1<x ≤2}3.已知0<log a 2<log b 2,则a ,b 的关系是( ).A .0<a <b <1B .0<b <a <1C .b >a >1D .a >b >14.(2019安徽高考)(log 29)·(log 34)=( ). A.14 B.12C .2D .45.函数y =log a (x -1)+2(a >0且a ≠1)的图象恒过一定点是__________.一、对数式的化简与求值【例1-1】 若x log 32=1,则4x +4-x =__________.【例1-2】 (2019北京高考)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=__________.方法提炼对数式化简求值的基本思路:(1)利用换底公式及log ma N n =n m log a N 尽量地转化为同底的和、差、积、商的运算;(2)利用对数的运算法则,将对数的和、差、倍数运算,转化为对数真数的积、商、幂再运算;(3)利用约分、合并同类项,尽量地求出具体值.请做演练巩固提升1二、对数函数的图象与性质【例2-1】已知函数y=f(x)(x∈R)满足f(x+1)=f(x-1),且x∈[-1,1]时,f(x)=x2,则函数y=f(x)与y=log5x的图象的交点个数为__________.【例2-2】已知f(x)=log a(a x-1)(a>0,且a≠1).(1)求f(x)的定义域;(2)讨论函数f(x)的单调性.方法提炼1.利用复合函数(只限由两个函数复合而成的)判断函数单调性的方法:(1)找出已知函数是由哪两个函数复合而成的;(2)当外函数为对数函数时,找出内函数的定义域;(3)分别求出两函数的单调区间;(4)按照“同增异减”确定函数的单调区间.提醒:研究函数的单调区间一定要在函数的定义域上进行.2.图中各函数的底数a ,b ,c ,d 与1的大小关系可按下列规律进行记忆:图中直线y =1与四个函数图象交点的横坐标即为它们相应的底数,∴0<c <d <1<a <b ,在x 轴上方由左到右底数逐渐增大,在x 轴下方由左到右底数逐渐减小.请做演练巩固提升2三、对数函数性质的综合应用【例3-1】(2019上海高考改编)已知f (x )=lg(x +1).(1)若0<f (1-2x )-f (x )<1,求x 的取值范围;(2)若g (x )是以2为周期的偶函数,且当0≤x ≤1时,有g (x )=f (x ),求函数y =g (x )(x ∈[1,2])的解析式.【例3-2】 已知函数f (x )=-x +log 21-x 1+x. (1)求f ⎝ ⎛⎭⎪⎪⎫12 014+f ⎝ ⎛⎭⎪⎪⎫-12 014的值; (2)当x ∈(-a ,a ],其中a ∈(0,1),a 是常数时,函数f (x )是否存在最小值?若存在,求出f (x )的最小值;若不存在,请说明理由.方法提炼1.求f (a )+f (-a )的值,常常联想到函数的奇偶性,因此,解此类问题一般先判断奇偶性,再求值.2.求形如f (2 014),f (2 013)的值往往与函数的周期有关,求此类函数值一般先研究函数的周期性.3.已知函数的最值或求函数的最值,往往探究函数的单调性.请做演练巩固提升5幂值、对数值大小比较问题不能准确作出图象而致误【典例】 已知a =2log 3.45,b =4log 3.65,c =3log 0.315⎛⎫ ⎪⎝⎭,则( ).A .a >b >cB .b >a >cC .a >c >bD .c >a >b解析:c =3log 0.315⎛⎫ ⎪⎝⎭=3log 0.35-=310log 35,log 2 3.4>log 2 2=1,log 4 3.6<log 4 4=1,log 3 103>log 3 3=1, 又log 2 3.4>log 2 103>log 3 103, ∴log 2 3.4>log 3 103>log 4 3.6. 又∵y =5x 是增函数,∴a >c >b .答案:C答题指导:通过高考阅卷的数据分析与总结,我们可以得到以下误区警示及备考建议:1.本题避开传统单独幂值或对数值的大小比较问题的命题思路,而是将幂值与对数值大小比较问题揉合在一起考查.易错误区有:(1)不能准确地作出图象,利用图象进行大小比较.(2)找不到比较大小的中介值而影响大小的比较.2.通过对该题的解答过程来看,我们在备考中要注意:(1)加强对指数、对数知识交汇处试题的训练.(2)重视指数函数、对数函数图象、性质的学习,提高图象、性质的应用能力.(3)强化幂值与对数值混杂在一起进行大小比较问题的求解方法,即引入中间量分组比较法的训练.1.(2019重庆高考)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( ).A .a =b <cB .a =b >cC .a <b <cD .a >b >c2.函数f (x )=2|log |2x 的图象大致是( ).3.已知函数f (x )=a log 2x +b log 3x +2,且f ⎝ ⎛⎭⎪⎪⎫12 014=4,则f (2 014)的值为__________. 4.已知lg x +lg y =2lg(2x -3y ),则32log x y 的值为__________.5.已知函数f(x)=log a(x+1)-log a(1-x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并予以证明;(3)当a>1时,求使f(x)>0的x的取值范围.参考答案基础梳理自测 知识梳理 1.a b =N (a >0,且a ≠1) b =log a N a N (1)负数和零 (2)0 (3)1 (4)N2.log a N 10 lg N e ln N3.(1)①log a M +log a N ②log a M -log a N③n log a M (2)log c b log c a(a >0,且a ≠1;c >0,且c ≠1;b >0)4.(1)log a x (a >0,且a ≠1) (2)(0,+∞) R (1,0) 0 增函数 减函数 (-∞,0) (0,+∞) (0,+∞) (-∞,0)5.y =log a x (a >0,且a ≠1)基础自测1.B 解析:由对数运算性质可知③⑤⑥正确.2.D 解析:由⎩⎪⎨⎪⎧ 2-x ≥0,x >0,x ≠1,得0<x <1或1<x ≤2. 3.D 解析:由0<log a 2<log b 2知,a ,b 均大于1.又log 2a >log 2b ,∴a >b ,∴a >b >1.4.D 解析:原式=(log 232)·(log 322)=4(log 23)·(log 32)=4·lg 3lg 2·lg 2lg 3=4. 5.(2,2)考点探究突破【例1-1】 829解析:由x log 32=1,得x =log 23,∴4x +4-x =2log 34+2log 34 =9+19=829. 【例1-2】 2 解析:由已知可得,lg(ab )=1,∴f (a 2)+f (b 2)=lg a 2+lg b 2=lg(a 2b 2)=2lg(ab )=2×1=2.【例2-1】4 解析:由f (x +1)=f (x -1),得f (x )=f (x +2),则函数f (x )是以2为周期的函数,作出函数y =f (x )与y =log 5x 的图象(如图),可知函数y =f (x )与y =log 5x 的图象的交点个数为4.【例2-2】解:(1)由a x -1>0,得a x >1. 当a >1时,x >0;当0<a <1时,x <0.∴当a >1时,f (x )的定义域为(0,+∞); 当0<a <1时,f (x )的定义域为(-∞,0).(2)当a >1时,设0<x 1<x 2,则1<1x a <2x a ,故0<1x a -1<2x a -1, ∴log a (1x a -1)<log a (2x a -1). ∴f (x 1)<f (x 2).故当a >1时,f (x )在(0,+∞)上是增函数. 类似地,当0<a <1时,f (x )在(-∞,0)上为增函数.【例3-1】解:(1)由⎩⎨⎧2-2x >0,x +1>0,得-1<x <1.由0<lg(2-2x )-lg(x +1)=lg 2-2x x +1<1得1<2-2x x +1<10. 因为x +1>0,所以x +1<2-2x <10x +10,-23<x <13.由⎩⎪⎨⎪⎧-1<x <1,-23<x <13,得-23<x <13. (2)当x ∈[1,2]时,2-x ∈[0,1],因此y =g (x )=g (x -2)=g (2-x )=f (2-x )=lg(3-x ).【例3-2】 解:(1)f (x )的定义域是(-1,1),f (x )=-x +log 21-x 1+x, f (-x )=x +log 21+x 1-x, =-(-x )+log 2⎝ ⎛⎭⎪⎪⎫1-x 1+x -1 =-⎝ ⎛⎭⎪⎪⎫-x +log 21-x 1+x =-f (x ). 即f (x )+f (-x )=0.所以f ⎝ ⎛⎭⎪⎪⎫12 014+f ⎝ ⎛⎭⎪⎪⎫-12 014=0. (2)令t =1-x 1+x =-1+21+x在(-1,1)内单调递减,y =log 2t 在t >0上单调递增,所以f (x )=-x +log 21-x 1+x在(-1,1)内单调递减.所以当x ∈(-a ,a ],其中a ∈(0,1),函数f (x )存在最小值f (a )=-a +log 21-a 1+a. 演练巩固提升1.B 解析:a =log 23+log 23=log 233,b =log 29-log 23=log 233,因此a =b ,而log 233>log 22=1,log 32<log 33=1,所以a =b >c ,故选B.2.C 解析:∵f (x )=2|log |2x=⎩⎪⎨⎪⎧x ,x ≥1,1x,0<x <1,∴选C. 3.0 解析:∵f ⎝ ⎛⎭⎪⎪⎫12 014+f (2 014)=a log 212 014+b log 312 014+2+a log 22 014+b log 32 014+2=4,∴f (2 014)=0. 4.2 解析:依题意,可得lg(xy ) =lg (2x -3y )2,即xy =4x 2-12xy +9y 2,整理得4⎝ ⎛⎭⎪⎪⎫x y 2-13⎝ ⎛⎭⎪⎪⎫x y +9=0, 解得x y =1或x y =94. ∵x >0,y >0,2x -3y >0,∴x y =94,∴32log x y =2. 5.解:(1)f (x )=log a (x +1)-log a (1-x ), 则⎩⎨⎧x +1>0,1-x >0,解得-1<x <1. 故所求定义域为{x |-1<x <1}.(2)f (x )为奇函数.证明如下:由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ).故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域{x |-1<x <1}上是增函数,所以f(x)>0 x+11-x>1.解得0<x<1.所以使f(x)>0的x的取值范围是{x|0<x<1}.。
第3讲简单的线性规划问题
1.若实数x,y满足不等式组则x+y的最小值是( )
A. B.3 C.4 D.6
【答案】B
【解析】题中的不等式组表示的平面区域如图中阴影所示,令z=x+y,则y=-x+z,平移直线y=-x,易得当平移后的直线经过点A(2,1)(该点是直线x+2y-4=0与2x-y-3=0的交点)时,z取得最小值,最小值是2+1=3,因此选
B.
2.已知x,y满足则使目标函数z=4x+y-10取得最小值的最优解有( )
A.1个
B.2个
C.3个
D.无数多个
【答案】D
【解析】画出可行域如图,作直线l0:4x+y=0.由z=4x+y-10得y=-4x+z+10,所以求z的最小值,即求直线y=-4x+z+10在y轴上截距的最小值,因为将l0向右上方平移到与4x+y-4=0重合时z最小,故最优解有无数多个,故选D.
3.不等式(x-2y+1)(x+y-3)≤0在坐标平面内表示的区域(用阴影部分表示)应是( )
【答案】C
【解析】(x-2y+1)(x+y-3)≤0
⇔
结合图形可知选C.
4.(2013届·安徽阜阳月考)P(2,t)在不等式组表示的平面区域内,则点P(2,t)到直线3x+4y+10=0距离的最大值为( )
A.2
B.4
C.6
D.8
【答案】B
【解析】如图所示,结合图形可知点A(2,1)到已知直线的距离最大,则最大值为=4.
5.若不等式组所表示的平面区域被直线y=kx+分为面积相等的两部分,则k的值是( )
A. B. C. D.
【答案】A
【解析】由题意作出线性约束条件的可行域如下图,由图可知可行域为△ABC的边界及内部,y=kx+恰过点
A,y=kx+将区域平均分成面积相等的两部分,故过BC的中点D,即=k×,k=.
6.满足条件的可行域中共有整点的个数为( )
A.3
B.4
C.5
D.6
【答案】B
【解析】画出可行域,由可行域知有4个整点,分别是(0,0),(0,-1),(1,-1),(2,-2).
7.如果点P在平面区域上,点Q在曲线x2+(y+2)2=1上,那么|PQ|的最小值为( )
A.-1
B.-1
C.2-1
D.-1
【答案】A
【解析】由图可知不等式组确定的区域为阴影部分(包括边界),点P到点Q的距离的最小值为点(-1,0)到点(0,-2)的距离减去圆的半径1,由图可知|PQ|min=-1=-1.
8.若A为不等式组表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为.
【答案】
【解析】不等式组表示的平面区域如图中阴影部分所示,直线x+y=a扫过的区域为四边形AOBC.
∴S四边形AOBC=S△AOD-S△CBD
=×2×2-.
9.(2012·湖北卷,14)若变量x,y满足约束条件则目标函数z=2x+3y的最小值是.
【答案】2
【解析】作出可行域如图所示,由l0:y=-x平移知过点A(1,0)时,目标函数取到最小值,代入可得z=2.
10.不等式组所确定的平面区域记为D.点(x,y)是区域D内的点,若圆O:x2+y2=r2上的所有点都在区域D内,则圆O的面积的最大值是.
【答案】
【解析】画出不等式组所表示的平面区域如图中阴影部分所示,其中离原点最近的距离为,故r的最大值为,
所以圆O的面积的最大值是.
11.由约束条件所确定的平面区域的面积S=f(t),试求f(t)的表达式.
【解】由约束条件所确定的平面区域是五边形ABCEP,如图中阴影部分所示,其面积S=f(t)=S△OPD-S△AOB-S△ECD,
而S△OPD=×1×2=1,
S△OAB=t2,S△ECD=(1-t)2,
所以S=f(t)=1-t2-(1-t)2=-t2+t+.
12.变量x,y满足
(1)设z=,求z的最小值;
(2)设z=x2+y2,求z的取值范围.
【解】由约束条件
作出(x,y)的可行域如图所示.
由解得A.
由解得C(1,1).
由解得B(5,2).
(1)∵z=,
∴z的值即是可行域中的点与原点O连线的斜率.
观察图形可知zmin=kOB=.
(2)z=x2+y2的几何意义是可行域上的点到原点O的距离的平方.结合图形可知,可行域上的点到原点的距离中,dmin=|OC|=,dmax=|OB|=.
故2≤z≤29.
13.若x,y满足约束条件
(1)求目标函数z=x-y+的最值;
(2)若目标函数z=ax+2y仅在点(1,0)处取得最小值,求a的取值范围.
【解】(1)可求得A(3,4),B(0,1),C(1,0).
平移初始直线x-y=0,过点A(3,4)时,z取最小值-2,过点C(1,0)时,z取最大值1.
故z的最大值为1,最小值为-2.
(2)直线ax+2y=z仅在点(1,0)处取得最小值,
由图象可知-1<-<2,即-4<a<2.
拓展延伸
14.(2012·山东泰安模拟)某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质
和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
【解】方法一:设需要预订满足要求的午餐和晚餐分别为x个单位和y个单位,所花的费用为z元,
则依题意得z=2.5x+4y,且x,y满足
z在可行域的四个顶点A(9,0),B(4,3),C(2,5),D(0,8)处的值分别是zA=2.5×9+4×0=22.5,
zB=2.5×4+4×3=22,
zC=2.5×2+4×5=25,
zD=2.5×0+4×8=32.
比较可知,zB最小,因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.
方法二:设需要预订满足要求的午餐和晚餐分别为x个单位和y个单位,所花的费用为z元,
则依题意得z=2.5x+4y,且x,y满足
让目标函数表示的直线2.5x+4y=z在可行域上平移,可知z=2.5x+4y在B(4,3)处取得最小值.
因此,应该为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.。