第五章 应用题复习(2)
- 格式:ppt
- 大小:805.00 KB
- 文档页数:44
北师大版数学八年级上期第五章二元一次方程组应用题表格类训练一1.为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如下表是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+ 220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元.(1)请问表中二档电价、三档电价各是多少?(2)小明家6月份用电560度,应交费多少元?2.芳芳妈对家里的经济收支情况有记账的好习惯.下表记录的是她家2018年第一季度水表、电表的读表数和所缴水电费的情况:(1)请你根据表中提供的信息求出水、电的收费单价(即每吨水的收费标准和每度电的收费标准);(2)今年4月份芳芳家水表读数为574(吨),电表读数为1340(度),那么芳芳家本月水电费应缴多少元?3.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元吨15吨及以下a超过15吨但不超过25吨的部分b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费______元;用a,b的代数式表示(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a,b的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.4.茜茜数码专卖店销售容量分别为1G、2G、4G、8G和16G的五种移动U盘,2020年10月1日的销售情况如下表:U盘容量(G)124816销售数量(只)563(1)由于不小心,表中销售数量中,2G和4G销售数量被污染,但知道4G的销售数量比2G的销售数量的2倍少2只,且5种U盘的销售总量是30只.求2G和4G的销售数量.(2)若移动U盘的容量每增加1G,其销售单价增加10元,已知2020年10月1日当天销售这五种U盘的营业额是2730元,求容量为4G的移动U盘的销售单价是多少元?5.某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车6300轿车4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?6.在石家庄外国语学校组织的读书节活动中,为帮扶山区学校贫困同学,某班班长代表班级购买了一些学习用品,他与学习委员的对话如图所示:(1)请根据图中信息,列出二元一次方程组,并通过求解说明班长确实算错了;(2)若要将领来的700元全部用来买水笔,恰好花完.班长用列表法将所用方案进行了梳理:单价6元笔的数量a05…单价10元笔的数量b7067…则满足条件的所有方案共______种,表中a+b的最大值是______.7.宏远商贸公司有A,B两种型号的商品需运出,这两种商品的体积和质量分别如右表所示.体积(m3/件)质量(吨/件)A型商品0.80.5B型商品21(1)已知一批商品有A,B两种型号,体积一共是20m3,质量一共是10.5吨,则A,B两种型号的商品各有几件?(2)物流公司现有可供使用的货车,每辆额定载重3.5吨,容积为6m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式才能使运费最少?并求出该方式下的运费.8.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费。
第五章列方程解应用题(2)——简单方程[知识领航]列方程解应用题是一种常用的解题方法,其关键在于理解题意,找出等量关系,从而建立方程。
很多题目虽然我们能用多种方法来求解,但是列方程法却是最好的选择。
因为它省去了逆向思维的麻烦,往往是通过正向理解就能列出式子,接下来的工作就是单纯的数学问题了——即解简单方程的问题。
我们用下面这个例子来说明简单方程法在解应用题上的优势。
题目如下:一个水塘里有一些龟和鹤,足数共120只,鹤的只数是龟的3倍。
问龟、鹤各有多少只?若用求解和倍问题的思路来解答这道题,会考虑“龟有4只足,鹤有2只足,所以当鹤的只数是龟的3倍时,鹤的足数只是龟的1.5倍”,那么就会得出以下的解答过程120÷(1+3÷2)=48(只龟足),48÷4=12(只龟),12×3=36(只鹤);而若用简单方程法的思路来解答,我们可以很容易想到设龟有x只,那么鹤就有3x只,根据题意列出如下方程:4x+2×3x=120,解方程得x=12(只龟),3x=36(只鹤)。
显然,后一种方法即简单方程法比起前一种方法思维过程要直观明了很多。
由此可见,解答应用题的时候不仅要挑选正确的解题方法,更要挑选直观的解题方法![经典例题][例1]乐乐的妈妈给了她10元的零花钱。
乐乐到超市花了这10元,其中四元钱用来买了文具。
又知一支“可爱多”冰激凌的价格是3元,那么爱吃冰激凌的乐乐买了几支“可爱多”呢?[分析]要求的是乐乐买了几支“可爱多”,那么我们就设这个待求的未知量为x。
我们已知的是乐乐总共花的钱数为10元、文具花费为4元。
而冰激凌的价格是3元,那么花在冰激凌的总费用为3×x元。
根据题意,我们容易得出这样的等量关系:[解答]设乐乐买了x支“可爱多”。
4+3×x=103x=6x=2答:乐乐买了2支“可爱多”。
[举一反三]1.幼儿园里,陆老师要把小朋友们的画钉到涂鸦版上去。
一元一次方程应用(二)----“希望工程”义演与追赶小明(基础)知识讲解【学习目标】1.能够分析复杂问题中的数量关系,建立方程解决实际问题;体会对同一问题设不同未知数的算法多样化;2.能借助“线段图”分析复杂问题中的数量关系,发展文字语言、图形语言、符号语言之间的转换能力;3.归纳利用方程解决实际问题的一般步骤,进一步体会模型思想.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.要点二、“希望工程”义演(分配问题)分配(调配或比例)问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等. 这类问题与生活密切相关,考察大家分析问题能力的同时,也考察了同学们的日常生活知识.要点诠释:分配问题中关键是要认识清楚部分量、总量以及两者之间的关系,在分配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系.要点三、追赶小明(行程问题)(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.【典型例题】类型一、“希望工程”义演(分配问题)1.(2015春•南关区校级期中)抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?【思路点拨】首先设应调至甲地段x 人,则调至乙地段(29﹣x )人,则调配后甲地段有(28+x )人,乙地段有(15+29﹣x )人,根据关键语句“调配后甲地段人数是乙地段人数的2倍”可得方程28+x=2(15+29﹣x ),再解方程即可.【答案与解析】解:设应调至甲地段x 人,则调至乙地段(29﹣x )人,根据题意得:28+x=2(15+29﹣x ),解得:x=20,所以:29﹣x=9,答:应调至甲地段20人,则调至乙地段9人.【总结升华】此题主要考查了一元一次方程的应用,关键是弄懂题意,表示出调配后甲、乙两地段各有多少人.举一反三:到市场去【答案】(1)设该经营户从蔬菜市场批发了辣椒x kg ,则蒜苗(40)x -kg ,得1.6 1.8(40)70x x +-=解得:10x = 4030x -=(2)利润: 10(2.6 1.6)30(3.3 1.8)55-+-=(元)答:该经营户批发了10kg 辣椒和30kg 蒜苗;当天能赚55元.【变式2】某商店选用A 、B 两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?【答案】解:设要用A 种糖果x 千克,则B 种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25×100解得:x=62.5.当x=62.5时,100-x=37.5.答:要用A 、B 两种糖果分别为62.5千克和37.5千克.类型二、追赶小明(行程问题)1.一般问题2.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?【答案与解析】解:设小山娃预订的时间为x 小时,由题意得:4x+0.5=5(x-0.5),解得x =3.所以4x+0.5=4×3+0.5=12.5(千米).答:学校到县城的距离是12.5千米.【总结升华】当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量.举一反三:【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.【答案】解:设这段坡路长为a 千米,汽车的平均速度为x 千米/时,则上坡行驶的时间为10a 小时,下坡行驶的时间为20a 小时.依题意,得:21020a a x a ⎛⎫+= ⎪⎝⎭, 化简得: 340ax a =.显然a ≠0,解得1133x = 答:汽车的平均速度为1133千米/时.2.相遇问题(相向问题)3.(2016•云南模拟)昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米.求甲、乙两车的速度.【思路点拨】设出乙车速度,进而表示出甲车速度,再根据相遇问题,两车行驶的路程之和为128千米列出方程,解方程求出x 的值即可.【答案与解析】解:40分钟=小时,设乙车速度为x 千米/时,甲车速度为(x+20)千米/时,根据题意,得(x+x+20)=128,解得x=86,则甲车速度为:x+20=86+20=106.答:甲车速度为106千米/时,乙车速度为86千米/时.【总结升华】本题主要考查了一元一次方程的应用,解答本题的关键是根据路程=速度×时间公式列出一元一次方程,此题难度不大.举一反三:【变式】(2015•绥棱县期末)A 、B 两站相距300千米,一列快车从A 站开出,行驶速度是每小时60千米,一列慢车从B 站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)【答案】解:设快车开出x 小时后两车相遇,根据题意得:60x+40(x ﹣)=300. 3.追及问题(同向问题)4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?【答案与解析】解:设通讯员x 小时可以追上学生队伍,则根据题意, 得18145560x x =⨯+, 得:16x =, 16小时=10分钟. 答:通讯员用10分钟可以追上学生队伍.【总结升华】追及问题:路程差=速度差×时间,此外注意:方程中x 表示小时,18表示分钟,两边单位不一致,应先统一单位.4.航行问题(顺逆流问题)5.一艘船航行于A 、B 两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离.【答案与解析】解法1:设船在静水中速度为x 千米/时,则船顺水航行的速度为(x+4)千米/时,逆水航行的速度为(x-4)千米/时,由两码头的距离不变得方程:3(x+4)=5(x-4),解得:x=16,(16+4)×3=60(千米)答:两码头之间的距离为60千米.解法2:设A 、B 两码头之间的距离为x 千米,则船顺水航行时速度为3x 千米/时,逆水航行时速度为5x 千米/时,由船在静水中的速度不变得方程:4435x x -=+,解得:60x = 答:两码头之间的距离为60千米.【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.类似地,当物体在空中飞翔时,常会遇到顺风逆风问题,解题思路类似顺逆流问题.【巩固练习】一、选择题1.一份数学试卷有20道选择题,规定答对一道得5分,不做或做错一题扣1分,结果某学生得分为76分,则他做对题数为( )道.A. 16B. 17C. 18D. 192.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则甲票、乙票的票价分别是( ).A .甲票10 元/张,乙票8 元/张B .甲票8元∕张,乙票10元∕张C .甲票12元/张,乙票lO 元∕张D .甲票lO 元/张,乙票12元∕张3.足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,一个队打14场比赛,负5场,共得19分,那么这个队胜了( ).A .3场B .4场C .5场.D .6场4. 飞机逆风时速度为x 千米/小时,风速为y 千米/小时,则飞机顺风时速度为 ( ).A .()x y +千米/小时B .()x y -千米/小时C .(2)x y +千米/小时D .(2)x y +千米/小时5.(2015秋•宜兴市校级期中)某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为x 小时,则可列方程得( )A .B .C .5(x ﹣)=4xD .6. 甲列车从A 地以50千米/时的速度开往B 地,1小时后,乙列车从B 地以70千米/时的速度开往A 地,如果A ,B 两地相距200千米,则两车相遇点距A 地( )千米.A. 100B. 112C. 112.5D. 114.5二、填空题7. 学校买回2元的圆珠笔和6元的钢笔作为奖品,共用了290元,已知圆珠笔数量比钢笔数量多5支,那么圆珠笔买了 支,钢笔买了 支.8.(2015•新宾县模拟)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列方程为________.9.若干本书分给某班同学,如果每人6本,则余18本;如果每人7本,则缺24本,则这个班的同学有 人,书有 本.10.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过________秒钟两人首次相遇;(2)当两人同时同地同向而行时,经过________秒钟两人首次相遇.11.(2016春•原阳县校级月考)某水池有甲进水管和乙出水管,已知单开甲注满水池需6h,单开乙管放完全池水需要9h,当同时开放甲、乙两管时需要h水池水量达全池的.12.一架飞机飞行于两城市之间,顺风需要5小时30分,逆风需要6小时,已知风速为每小时20千米,则无风时飞机的速度为千米/时.三、解答题13. 甲乙两车间共120人,其中甲车间人数比乙车间人数的4倍少5人.(1)求甲、乙两车间各有多少人?(2)若从甲、乙两车间分别抽调工人,组成丙车间研制新产品,并使甲、乙、丙三个车间的人数比为13∶4∶7,那么甲、乙两车间要分别抽调多少工人?14.(2016春•蓬溪县期中)某人原计划用26天生产一批零件,工作两天后因改变了操作方法,每天比原来多生产5个零件结果提前4天完成任务,问原来每天生产多少个零件?这批零件有多少个?15. A、B两地相距216千米,甲、乙分别在A、B两地,若甲骑车的速度为15千米/时,乙骑车的速度为12千米/时.(1)甲、乙同时出发,背向而行,问几小时后他们相距351千米?(2)甲、乙相向而行,甲出发三小时后乙才出发,问乙出发几小时后两人相遇?(3)甲、乙相向而行,要使他们相遇于AB的中点,乙要比甲先出发几小时?(4)甲、乙同时出发,相向而行,甲到达B处,乙到达A处都分别立即返回,几小时后相遇?相遇地点距离A有多远?【答案与解析】一、选择题1.【答案】A【解析】设他做对题数为x道,则不做或做错了(20-x)道,根据题意得:5x-(20-x)=76.2.【答案】A【解析】设乙票价为x元,则甲票价为(2+x)元,依题意得4x+8(2+x)=112. 3.【答案】C【解析】设该队共平x场,则该队胜了14-x-5=9-x场,依题意得3(9-x)+x=19,x=4∴该队胜了14-x-5=9-4=5场.4.【答案】C【解析】逆风速度+2风速=顺风速度.5.【答案】B.【解析】根据从家到学校的路程相等可得方程为:5x=4×(x+).6.【答案】C【解析】200505050112.5 5070-⨯+=+二、填空题7.【答案】40,35【解析】设钢笔数量是x支,圆珠笔数量是(x+5)支,则6x+2×(x+5)=290,x=35.35+5=40.8.【答案】20x=15(x+4)﹣10 .9.【答案】42,270【解析】设这个班的同学有x人,则:6x+18=7x-24,解得:x=42,则6x+18=270.也可设有数y本,y-18y+24=67,解得y=270,y-18=642.10.【答案】25;200【解析】(1)相遇问题:4002579=+(秒);(2)追及问题:40020097=-(秒).11.【答案】6;【解析】解:设水池容积为1,同时开放甲、乙两管时需要xh水池水量达全池的,依题意得:(﹣)x=,解得x=6,∴同时开放甲、乙两管时需要6h水池水量达全池的.12.【答案】460【解析】设飞机无风时飞行速度为x千米/时,题意得:112×(x+20)=6×(x-20),解,得x=460.三、解答题13.【解析】解:(1)设乙车间有x人,那么甲车间有(4x-5)人,根据题意得:x+(4x-5)=120,x=25.4x-5=4×25-5=95(人).(2)设甲、乙、丙三个车间人数比的一份为x人,则这三个车间的人数依次为13x人4x人、7x人,依题意得:13x+4x+7x=120.x=5.当x=5时,95-13x=95-13×5=30(人),25-4x=25-4×5=5(人).答:原甲、乙车间各有95人和25人.需分别从甲、乙两车间分别抽调30人和5人组成丙车间.14.【解析】解:设原来每天生产x个零件,根据题意可得:26x=2x+(x+5)×20,解得:x=25,故26×25=650(个).答:原来每天生产25个零件,这批零件有650个.15. 【解析】(1)解:设x小时后,甲、乙相距351千米,依题意,得15x+12x=351-216,解这个方程,得x=5.答:5小时后,甲、乙相距351千米. (2)解:设乙出发x小时后两人相遇.依题意,得15(3+x)+12x=216,解这个方程,得x=163.答:乙出发163小时后,甲、乙两人相遇.(3)解:设当乙比甲早出发x小时,使甲、乙二人相遇于AB的中点.依题意,得1121621612221512x⨯⨯-=,解这个方程,得x=415.答:只要乙比甲先出发415小时,两人就能相遇于AB的中点.(4)解:设x小时后甲乙相遇,依题意,得15x+12x=216×3解这个方程,得x=24.当x=24时,12x-216=72(千米).答:24小时后两人相遇,相遇地点距离A地72千米.。
人教版四年级数学上册第五章《平行四边形和梯形》复习题卷一、单选题(共4小题,共12分)1.把一个平行四边形任意分割成两个梯形,这两个梯形的()总相等。
A. 面积B. 高C. 上、下底的和D. 以上都不对2.下面梯形是()A. 等腰梯形B. 直角梯形3.梯形中,()是平行的。
A. 上底和下底B. 上底和腰C. 两条腰4.用细铁丝焊成一个边长8厘米的正方形,然后把它拉成一个底长10厘米的最大的平行四边形,求与这条边相邻的另一条边的正确列式()A. (10+8)÷2B. 8×4-20C. 8×2-10D. 8×4÷2二、判断题(共4小题,共12分)5.两条平行线永不相交。
()6.平行四边形的底上只有一条高。
()7.正方形和长方形都属于平行四边形。
()8.一个平行四边形可以分成两个完全一样的三角形,梯形、长方形。
()9.如图,将一个长方形对折后,沿虚线剪开,打开就得到一个________梯形.10.平行四边形可以有________条高11.下图中的门用到了平行四边形的________性。
12.图中,直线c和直线d的位置关系是互相________,直线c是直线________的垂线。
直线d是直线________的垂线。
13.有________个平行四边形14.指出下面梯形的上底和下底,并画出相应的高.15.先用七巧板拼一拼,再把拼成的图形画出来.(1)用两块七巧板拼一个梯形,可以怎样拼?(2)用三块七巧板拼一个梯形,可以怎样拼?16.小明家想把自来水接到房子前的水表处,请你设计最节省长度的水管安装线路。
(1)在图中画出水管安装线路图。
(2)你设计的理由是________________________________________________六、应用题(共1小题,共16分)17.平均四边形的周长是56厘米,其中一条边长是10厘米.平行四边形另外三条边分别是多少厘米?参考答案一、单选题1.【答案】B【解析】【解答】把一个平行四边形任意分割成两个梯形,这两个梯形的高总相等.故答案为:B.【分析】把一个平行四边形任意分割成两个梯形后,两个梯形的高还等于原平行四边形的高,由于平行四边形有无数条高且都是相等的,所以两个梯形的高是相等的,据此解答.2.【答案】A【解析】【解答】图中的梯形内角都不是直角,而且两腰相等,所以它是等腰梯形.故答案为:A.【分析】根据直角梯形的定义:有一个直角的梯形,叫直角梯形;等腰梯形的定义:两腰相等的梯形是等腰梯形,据此判断.3.【答案】A【解析】【解答】解:梯形中,上底和下底是平行的。
【精品】第五章《圆》六年级数学上册提优精选题汇编2 人教版一.选择题(共8小题)1.在长6厘米,宽4厘米的长方形纸上画一个最大的圆,圆的半径是()A.6厘米B.4厘米C.2厘米2.在一个长10cm,宽8cm的长方形中画一个最大的圆,这个圆的直径是()A.8cm B.10cm C.5cm3.在一个长8分米,宽6分米的长方形中画一个最大的圆,圆的半径是()分米.A.8 B.6 C.4 D.34.把一张直径4厘米的圆形纸片对折两次得到一个扇形,这个扇形的周长是()厘米.A.4πB.4+πC.πD.π5.如图中圆的直径是6厘米,则正方形的面积是()A.9.42cm2B.18cm2C.25cm2D.28.26cm26.用同样长的一根铅丝,先折成一个最大的圆,再折成一个最大的正方形,他们的面积相比较是()A.圆的面积大B.正方形的面积大C.一样大D.无法比较7.如图:r=3dm,这个扇形的面积是()dm2.A.28.26 B.9.42 C.7.065 D.4.718.如果小圆的直径等于大圆的半径,那么,小圆面积是大圆面积的()A.B.C.2倍二.填空题(共8小题)9.一个圆扩大后,面积比原来多8倍,周长比原来多50.24厘米,这个圆原来的面积是平方厘米.10.在解决“已知圆的直径是10m,求这个圆的面积?”这个问题上,小红根据圆面积公式的推导过程(如下图)分步求出结果,请给小红补上第二步算式.第一步:3.14×10÷2=15.7(m)第二步:.11.在同一圆中,扇形的大小与这个扇形的的大小有关.12.已知大扇形面积是小扇形面积的倍,如果它们的圆心角相等,那么小扇形半径是大扇形半径的.13.若两个圆的半径相等,则它们的周长也相等..14.已知一个半圆工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤、先将半圆工件作如图所示的无滑动翻转,使它的直径贴地面,再将它沿地面向右平移30米,已知半圆工件的直径为4米,则圆心O所经过的路线的长为米.(π取3.14)15.在一个长方形里画一个最大的圆,已知这个圆的周长是18.84厘米,这个长方形的宽是厘米.16.圆沿一条直线滚动时,圆心也在一条上运动,并且当圆滚动一周时,圆心所走过的距离等于圆的.三.判断题(共5小题)17.圆的半径和直径都相等的.(判断对错)18.半径相等的两个圆,它们的周长也一定相等..(判断对错)19.圆不论大小,每个圆的周长都是各自直径的π倍.(判断对错)20.半径为2米的圆,其面积和周长的大小相等..(判断对错)21.扇形的面积大小只与所在圆的半径有关,半径越大,扇形面积越大..(判断对错)四.计算题(共2小题)22.求下面各圆的面积.(1)r=4分米(2)d=3厘米(3)c=12.56米.23.求下面阴影部分的周长.五.操作题(共1小题)24.画一个周长是12.56厘米的圆,并求出它的面积.六.解答题(共3小题)25.公园里有一个直径是8米的圆形花坛,在花坛周围有一条宽2米的小路.这条石子小路的面积是多少?26.如图,已知OC=4cm,OD=2cm;∠AOC=60°,求阴影部分的面积.27.在一个周长为80厘米的正方形纸片内,要剪一个最大的圆,这个圆的半径是多少厘米?周长呢?七.应用题(共4小题)28.王帅响应“绿色出行”的号召,选择骑自行车上学.自行车轮胎的外直径是80cm,王帅从家到学校用了10分钟.如果车轮每分钟转100圈,王帅家距离学校多少米?(车身长度忽略不计)29.如图是一种可折叠的圆桌,直径是1m,折叠后变成了正方形.折叠后的桌面面积是多少平方米?折叠部分是多少平方米?30.一根7米长的绳子,绕树一周还余下0.72米,树的直径是多少米?31.有一个圆形花坛,半径是50米,王叔叔每天早晨绕花坛跑4圈,他每天早晨跑多少米?参考答案与试题解析一.选择题(共8小题)1.解:4÷2=2(厘米)答:这个圆的半径是2厘米.故选:C.2.解:这个圆的直径是8厘米;故选:A.3.解:一个长8分米,宽6分米的长方形中画一个最大的圆,圆的半径是3分米.故选:D.4.解:得到的是一个圆心角是360°÷4=90°的扇形,π×4×+4=π+4(厘米)答:这个扇形的周长是(π+4)厘米.故选:B.5.解:6÷2=3(厘米),3×3÷2×4,=9÷2×4,=4.5×4,=18(平方厘米);答:正方形的面积是18平方厘米.故选:B.6.解:设周长为L,周长为L的正方形面积是=≈0.0625L2;周长为L的圆的面积是π×=≈0.0796L2;比较可知,面积最大的是圆.故选:A.7.解:×60=×60=4.71(平方分米)答:这个扇形的面积是4.71平方分米.故选:D.8.解:小圆面积=π×1×1=π,大圆面积=π×2×2=4π,小圆面积是大圆面积的:π÷4π=.故选:B.二.填空题(共8小题)9.解:50.24÷3.14÷2=8(厘米);8+1=9,9=3×3,3﹣1=2,8÷2=4(厘米);3.14×42,=3.14×16,=50.24(平方厘米);答:这个圆原来的面积是50.24平方厘米.故答案为50.24.10.解:15.7×(10÷2)2=3.14×25=78.5(m2)答:这个圆的面积是78.5平方米.故答案为:15.7×(10÷2)2=78.5(m2).11.解:在同一圆中,扇形的大小与这个扇形的圆心角的大小有关;故答案为:圆心角.12.解:因为,S大扇:S小扇=9:4,它们的圆心角相等,又因为,9=32,4=22,所以,当大小两个扇形的圆心角相等,大扇形面积与小扇形面积的比是9:4时,小扇形半径是大扇形半径的.故答案为:.13.解:因为两个圆的半径相等,设第一个圆的半径是r,则第二个圆的半径也是r,根据圆的周长=2×π×r,则它们的周长也相等,说法正确;故答案为:正确.14.解:先将半圆作如图所示的无滑动翻转,开始到直立圆心O的高度不变,所走路程为圆弧,从直立到扣下正好是一个旋转的过程,球心走的是圆弧,即球在无滑动旋转中通过的路程为圆弧,为2π;再将它沿地面平移30米,可得圆心O所经过的路线长:2π+30=36.28(米)答:圆心O所经过的路线的长为36.28米故答案为:36.28.15.解:18.84÷3.14=6(厘米)答:长方形的宽是6厘米.故答案为:6.16.解:圆沿一条直线滚动时,圆心也在一条直线上运动,并且当圆滚动一周时,圆心所走过的距离等于圆的周长;故答案为:直线,周长.三.判断题(共5小题)17.解:在同圆或等圆中,所有的半径相等,所有的直径也相等;原题没有说是在同圆或等圆,所以说法错误.故答案为:×.18.解:因为两个圆的半径相等,设第一个圆的半径是r,则第二个圆的半径也是r,根据圆的周长=2×π×r,则它们的周长也相等,说法正确;故答案为:√.19.解:根据圆周率的含义得出:所有圆的周长都是各自直径的π倍,说法正确.故答案为:√.20.解:圆周长是:2×3.14×2=12.56(米);圆面积是:3.14×22=3.14×4=12.56(平方米);圆的周长和面积它们不是同类量无法进行比较.故答案为:×.21.解:因为扇形的面积公式S=,所以扇形的面积与圆心角和半径有关;所以原题说法错误;故答案为:×.四.计算题(共2小题)22.解:(1)3.14×42=3.14×16=50.24(平方分米)答:面积是50.24平方分米.(2)3.14×(3÷2)2=3.14×2.25=7.065(平方厘米)答:面积是7.065平方分米.(3)3.14×(12.56÷3.14÷2)2=3.14×4=12.56(平方米)答:面积是12.56平方米.23.解:3.14×8×2=25.12×2=50.24(厘米)答:阴影部分的周长是50.24厘米.(2)3.14×(4+2)=3.14×6=18.84(厘米)答:阴影部分的周长是18.84厘米.(3)3.14×4+4×2=12.56+8=20.56(厘米)答:阴影部分的周长是20.56厘米.五.操作题(共1小题)24.解:12.56÷3.14÷2=4÷2=2(厘米)取一点O为圆心,以2厘米为半径画圆如下:3.14×22=3.14×4=12.56(平方厘米)答:它的面积是12.56平方厘米.六.解答题(共3小题)25.解:内圆半径是:8÷2=4(米)3.14×[(4+2)2﹣42]=3.14×[36﹣16]=3.14×20=62.8(平方米)答:石子路的面积有62.8平方米.26.解:3.14×(42﹣22)×=3.14×12×=6.28(cm2)答:阴影部分的面积是6.28cm2.27.解:正方形的边长是:80÷4=20(厘米)半径:20÷2=10(厘米)圆的周长:3.14×20=62.8(厘米)答:这个圆的半径是10厘米,周长是62.8厘米.七.应用题(共4小题)28.解:80厘米=0.8米车轮的速度:3.14×0.8×100=3.14×80=251.2(米)行驶的路程:251.2×10=2512(米)答:王帅家距离学校2512米.29.解:如图所示:(1)圆内最大正方形的面积:1×(1÷2)÷2×2=0.5(平方米)答:折叠后的桌面面积是0.5平方米.(2)半径:1÷2=0.5米圆的面积:3.14×0.5×0.5=0.785(平方米)折叠部分是:0.785﹣0.5=0.285(平方米)答:折叠部分是0.285平方米.30.解:(7﹣0.72)÷3.14=6.28÷3.14=2(米)答:树的直径是2米.31.解:2×3.14×50×4=314×4=1256(米)答:他每天早晨跑1256米.。
八年级数学上册第五章《二元一次方程组》应用练习题1.某超市对甲、乙两种商品进行打折销售,其中甲种商品打八折,乙种商品打七五折,已知打折前,买6件甲种商品和3件乙种商品需600元;打折后,买50件甲种商品和40件乙种商品需5200元.(1)打折前甲、乙两种商品每件分别为多少元?(2)某人购买甲种商品80件,乙种商品100件,问打折后购买这些商品比不打折可节省多少元?2.育德中学800名学生参加第二十届运动会开幕式大型表演,道具选用红黄两色锦绣手幅.已知红色手幅每个4元;黄色手幅每个2.5元;购买800个道具共花费2420元,那么两种手幅各多少个?3.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?4.某山区有若干名中,小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a元,资助一名小学生的学习费用需要b元.某校学生积极捐款,初中各年级学生捐款数额与其捐助贫困中学生和小学生人数的部分情况如下表:捐款数额/元资助贫困中学生人数/名资助贫困小学生人数/名七年级4000 2 4八年级4200 3 3九年级5000(1)求a,b的值;(2)九年级学生的捐款恰好解决了剩余贫困中小学生的学习费用,请计算九年级学生可捐助的贫困小学生人数.5.某写字楼门口安装了一个如图所示的旋转门,旋转门每转一圈按正常负载可以出去6人,每分钟转4圈.(1)问:按正常负载半小时此旋转门可出去多少人?(2)紧急情况时,旋转门每圈负载出去人数可增加50%,但因此每分钟门的转速降低25%.①直接写出紧急情况时旋转门每分钟可以出去人;②该写字楼有9层,每层10间办公室,平均每个办公室6人,为了符合消防安全要求,要在一楼再安装几近普通侧门,每近侧门每分钟能通过45人,在紧急情况下,要使整写字楼的人能在5分钟内全部安全离(下楼时间忽略不计),至少要安装几道普通侧门.6.工厂接到订单生产如图所示的巧克力包装盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,仓库有甲、乙两种规格的纸板共2600张,其中甲种规格的纸板刚好可以裁出4个侧面(如图①),乙种规格的纸板可以裁出3个底面和2个侧面(如图②),裁剪后边角料不再利用.(1)若裁剪出的侧面和底面恰好全部用完,问两种规格的纸板各有多少张?(2)一共能生产多少个巧克力包装盒?7.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”8.列二元一次方程组解应用题:某居民小区为了绿化小区环境,建设和谐家园.准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示.计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?9.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?10.某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店,A种商品每件的售价为48元,B种商品每件的售价为31元,且商店将购进A、B共50件的商品全部售出后,要获得的利润超过348元,求A种商品至少购进多少件?参考答案1.解:(1)设打折前甲种商品每件x元,乙种商品每件y元,依题意,得:,解得:.答:打折前甲种商品每件40元,乙种商品每件120元.(2)80×40+100×120﹣80×0.8×40﹣100×0.75×120=3640(元).答:打折后购买这些商品比不打折可节省3640元.2.解:设购买红色手幅x个;购买黄色手幅y个,根据题意得,解得,答:购买红色手幅280个;购买黄色手幅520个.3.解:设甲每小时行x千米,乙每小时行y千米,则可列方程组为,解得,答:甲每小时行10千米,乙每小时行15千米.4.解:(1)由题意得:解得:(2)设初三年级学生捐助x名贫困中学生,捐助y名贫困小学生.由题意得:800x+600y=5000得:4x+3y=25∵x、y均为非负整数∴x=1,y=7或x=4,y=3答:初三年级学生可捐助1名贫困中学生,捐助7名贫困小学生;或捐助4名贫困中学生,捐助3名贫困小学生.5.解:(1)正常负载下,半小时可出去:30×4×6=720人(2)①紧急情况下,出去人数可增加50%,则每圈出去人数为:6×(1+50%)=9人,每分钟门转速降低25%,即每分钟转的圈数为4×(1﹣25%)=3圏则每分钟可以出去:3×9=27人故答案填27②写字楼的总人数为:9×10×6=540人急情况下,要使整写字楼的人能在5分钟,旋转门出去的人数为:5×27=135人则剩下的人数为540﹣135=405人,要从普通侧门通过则有405÷(45×5)≈1.8,即至少安装2道普通侧门6.解:(1)设甲种规格的纸板有x个,乙种规格的纸板有y个,依题意,得:,解得:.答:甲种规格的纸板有1000个,乙种规格的纸板有1600个.(2)1600×3÷2=2400(个).。
2020年北师大版数学一年级下册重难点题型同步训练第五章《加与减(二)》第一、二课:小兔请客、采松果一、单选题1.(2020模拟一下·竹山期末)一个加数是7,和是85,另一个加数是()。
’A. 72B. 78C. 82【答案】B【解析】【解答】解:85-7=78故答案为:B。
2.(2020模拟一下·龙华期末)一个算式中,被减数是35,减数是7,差是()。
A. 32B. 38C. 28【答案】C【解析】【解答】35-7=28故答案是:C。
3.(2020模拟一下·龙华期末)下列算式的结果最接近60的是()。
A. 46+9B. 66-7C. 63-6【答案】B【解析】【解答】46+9=55;66-7=59;63-6=57算式的结果最接近60的是66-7。
故答案为:B。
4.下面()得数是四十几。
A. 72-3B. 34+5C. 9+32【答案】C【解析】【解答】解:A、72-3=69;B、34+5=39;C、9+32=41。
故答案为:C。
5.(2020模拟一下·佛山期中)68比()多8。
A. 6B. 60C. 70【答案】B【解析】【解答】68-8=60,68比60多8。
故答案为:B。
6.比50多40的数是()。
A. 30B. 90C. 40【答案】B【解析】【解答】50+40=90.故答案为:B.7.29 - 9=()A. 2B. 9C. 20D. 10 【答案】C【解析】【分析】29减9等于20二、判断题8.(2020模拟一下·盐田期末)如果☆-12=8,那么☆=20。
( )【答案】正确【解析】【解答】解:如果☆-12=8,那么☆=8+12=20。
故答案为:正确。
9.(2020模拟一下·云南期末)有50个学生,6个老师。
每人一个面包,55个面包够了。
()【答案】错误10.(2020模拟一下·云南期末)两个数相减,差一定比被减数小。
【单元提优试题】人教版六年级上册第五章《圆》专项训练二(提高版)【原卷版】一.选择题(共11小题)1.一根绳子可围成一个半径是6米的圆,若用它围成一个正三角形,那么它的边长是()米.A.πB.4πC.6πD.12π2.c=28.26米,圆的面积是()A.20.25平方米B.14.13平方米C.63.585平方米D.64.85平方米3.c=12.56分米,圆的面积是()A.3.14平方分米B.4平方分米C.6.28平方分米D.12.56平方分米4.把一张圆形纸片沿半径平均分成若干份,拼成一个近似的长方形,其周长与圆的周长相比,()A.等于圆的周长B.大于圆的周长C.小于圆的周长D.无法比较5.一个长方形和一个圆的周长相等.已知长方形的长是9分米,宽是6.7分米,圆的面积是()A.31.4平方分米B.78.5平方分米C.314平方分米D.68.8平方分米6.如果把圆的半径按1:3缩小,那么新的圆与原来的圆的面积比是()A.3:1B.1:3C.1:9D.9:17.计算如图阴影部分的面积.正确的算式是()A.3.14×6﹣3.14×4B.3.14×(3﹣2)C.3.14×(32﹣22)8.如图,把圆分成若干等份,拼成近似的长方形后,周长增加了8dm.原来的这个圆的面积是()dm2.A.12.56B.25.12C.50.249.在下面关于圆周率π的叙述中,错误的有()个.①π是一个无限不循环小数;②π=3.14;③π>;④π是圆的周长与它半径的比值.A.0B.1C.2D.310.两个圆的周长相等,那么它们的面积()A.也相等B.不一定相等C.无法比较11.用一张边长是2分米的正方形纸,剪一个面积尽可能大的圆,这个圆的面积是()平方分米A.3.14B.12.56C.6.28二.填空题(共9小题)12.正方形的面积是16平方厘米,阴影部分的面积是平方厘米.13.一个圆形餐桌面的直径是2米,它的面积是平方米,如果一个人需要0.6米宽的位置就餐,这张餐桌大约能坐人.14.把一个直径是5cm的圆切拼成一个近似的长方形,这个长方形的周长是cm.15.在一张长12厘米、宽10厘米的彩纸上画一个最大的圆,这个圆的周长是厘米,面积是平方厘米.16.小明把一个圆规的两脚张开8厘米,他画出的圆的周长是厘米?面积是平方厘米?17.用圆规画一个周长是9.42cm的圆,圆规两脚间的距离应是cm,这个圆的面积是.18.一个圆环形,内圆的半径是4厘米,外圆的半径是6厘米,那么这个圆环的面积是.19.把圆剪拼成长方形(如图),已知圆的周长比长方形少10厘米,那么圆的半径是厘米,长方形的面积是平方厘米.20.两条同样长的铁丝分别围成一个正方形和一个圆形,已知正方形的边长是6.28厘米,圆的半径是厘米.三.判断题(共11小题)21.一个圆的周长是18.84厘米,那么这个半圆的周长就是9.42厘米.(判断对错)22.一个半圆的周长是20.56分米,这个半圆的面积是41.12平方分米.(判断对错)23.一个圆的周长扩大到原来的3倍,它的面积就扩大到原来的6倍.(判断对错)24.不论大圆还是小圆,它们的圆周率都相等,都是π.(判断对错)25.如果大圆的半径等于小圆的直径,那么小圆的面积是大圆的一半.(判断对错)26.求半圆形的周长就是求圆周长的一半..(判断对错)27.圆的半径扩大到原来的2倍,周长和面积也扩大到原来的2倍(判断对错)28.圆的周长是和它半径相同的半圆的周长的2倍.(判断对错).29.直径是2厘米的圆小于半径是2厘米的圆..(判断对错)30.半圆的周长等于圆的周长的1/2 加直径的长,所以半个圆的面积等于圆面积的1/2加直径的长度.(判断对错)31.圆越大圆周率越大,圆越小圆周率越小..(判断对错)四.应用题(共5小题)32.将圆平均分成若干个小扇形,剪拼成一个近似的长方形(如图).(1)如果长方形的长是12.56厘米,圆的面积是多少?(2)如果圆的半径是10厘米,阴影部分的面积是多少?33.一种洒水车的前轮直径是6分米,如果它每分钟转3周,它每分钟前进多少米?34.一块圆形菜地原来的周长是18.84米,现在周围加宽2米,这块菜地的面积增加多少平方米?35.笑笑绕着圆形花坛边缘走一圈,刚好走了62.8米.这个花坛的面积是多少平方米?(π取3.14)36.一辆自行车车轮的直径是0.65米,如果平均每分钟转100圈,那么骑25分钟能行多少米?五.解答题(共4小题)37.把一个圆形纸片分成若干等份,拼成以半径为宽的近似长方形,已知这个长方形的周长为49.68cm.求圆形纸片的半径.38.城市广场有个圆形的喷泉,量得周长是37.68米,这个喷泉占地面积是多少平方米?39.淘气和笑笑练习竞走,淘气沿长9米、宽4米的长方形花坛走,笑笑沿直径为8米的圆形花坛走.他们的速度相同,谁先走完?40.用圆规画一个周长为12.56cm的圆,并用字母标出它的圆心、半径、直径;再计算它的面积.【解析版】一.选择题(共11小题)1.一根绳子可围成一个半径是6米的圆,若用它围成一个正三角形,那么它的边长是()米.A.πB.4πC.6πD.12π【解答】解:π×6×2÷3=12π÷3=4π(米)答:它的边长是4π米.故选:B.2.c=28.26米,圆的面积是()A.20.25平方米B.14.13平方米C.63.585平方米D.64.85平方米【解答】解:28.26÷3.14÷2=4.5(米)=3.14×4.52=3.14×20.25=63.585(平方米),答:圆的面积是63.585平方米.故选:C.3.c=12.56分米,圆的面积是()A.3.14平方分米B.4平方分米C.6.28平方分米D.12.56平方分米【解答】解:3.14×(12.56÷3.14÷2)2=3.14×22=3.14×4=12.56(平方分米),答:圆的面积是12.56平方分米.故选:D.4.把一张圆形纸片沿半径平均分成若干份,拼成一个近似的长方形,其周长与圆的周长相比,()A.等于圆的周长B.大于圆的周长C.小于圆的周长D.无法比较【解答】解:把圆沿半径平均分成若干份,拼成一个近似的长方形,这个长方形的长等于圆周长的一半,宽等于圆的半径,所以拼成的长方形的周长比圆的周长多2条半径的长度.答:长方形的周长大于圆的周长.故选:B.5.一个长方形和一个圆的周长相等.已知长方形的长是9分米,宽是6.7分米,圆的面积是()A.31.4平方分米B.78.5平方分米C.314平方分米D.68.8平方分米【解答】解:(9+6.7)×2=15.7×2=31.4(分米)31.4÷3.14÷2=10÷2=5(分米)3.14×52=3.14×25=78.5(平方分米).答:圆的面积是78.5平方分米.故选:B.6.如果把圆的半径按1:3缩小,那么新的圆与原来的圆的面积比是()A.3:1B.1:3C.1:9D.9:1【解答】解:假设原来圆的半径为1,则缩小后的半径为,新的圆和原来的圆的面积比是:(π××):(π×1×1)=:1=1:9答:新的圆与原来的圆的面积比是1:9.故选:C.7.计算如图阴影部分的面积.正确的算式是()A.3.14×6﹣3.14×4B.3.14×(3﹣2)C.3.14×(32﹣22)【解答】解:由圆环的面积公式可得,如图阴影部分的面积,正确的算式是3.14×(32﹣22).故选:C.8.如图,把圆分成若干等份,拼成近似的长方形后,周长增加了8dm.原来的这个圆的面积是()dm2.A.12.56B.25.12C.50.24【解答】解:3.14×(8÷2)2=3.14×16=50.24(平方分米)答:原来圆的面积是50.24平方分米.故选:C.9.在下面关于圆周率π的叙述中,错误的有()个.①π是一个无限不循环小数;②π=3.14;③π>;④π是圆的周长与它半径的比值.A.0B.1C.2D.3【解答】解:①π是一个无限不循环小数,说法正确;②π≈3.14,所以本选项说法错误;③因为=3.14,圆周率π大于3.14,所以π>说法正确;④π是圆的周长与它周长的比值,所以本选项说法错误;故选:C.10.两个圆的周长相等,那么它们的面积()A.也相等B.不一定相等C.无法比较【解答】解:根据圆的周长公式:C=2πr,可以得出两个圆周长相等,则它们的半径就相等;再根据圆的面积公式:S=πr2,半径相等则面积就相等.故选:A.11.用一张边长是2分米的正方形纸,剪一个面积尽可能大的圆,这个圆的面积是()平方分米A.3.14B.12.56C.6.28【解答】解:2÷2=1(分米)S=πr2=3.14×12=3.14(平方分米)答:这个圆的面积是 3.14平方分米.故选:A.二.填空题(共9小题)12.正方形的面积是16平方厘米,阴影部分的面积是37.68平方厘米.【解答】解:如图所示:3.14×16×=3.14×12=37.68(平方厘米)答:阴影部分的面积是37.68平方厘米.故答案为:37.68.13.一个圆形餐桌面的直径是2米,它的面积是 3.14平方米,如果一个人需要0.6米宽的位置就餐,这张餐桌大约能坐10人.【解答】解:3.14×(2÷2)2=3.14×1=3.14(平方米)3.14×2=6.28(米)6.28÷0.6≈10(人)答:它的面积是 3.14平方米,这张餐桌大约能坐10人.故答案为:3.14,10.14.把一个直径是5cm的圆切拼成一个近似的长方形,这个长方形的周长是20.7cm.【解答】解:3.14×5+5=15.7+5=20.7(厘米)答:这个长方形的周长是20.7厘米.故答案为:20.7.15.在一张长12厘米、宽10厘米的彩纸上画一个最大的圆,这个圆的周长是31.4厘米,面积是78.5平方厘米.【解答】解:3.14×10=31.4(厘米);3.14×(10÷2)2=3.14×25=78.5(平方厘米);答:这个圆的周长是31.4厘米,面积是78.5平方厘米.故答案为:31.4、78.5.16.小明把一个圆规的两脚张开8厘米,他画出的圆的周长是50.24厘米?面积是200.96平方厘米?【解答】解:3.14×8×2=50.24(厘米),3.14×82=3.14×64=200.96(平方厘米),答:这个圆的周长是50.24厘米,面积是200.96平方厘米.故答案为:50.24、200.9617.用圆规画一个周长是9.42cm的圆,圆规两脚间的距离应是 1.5cm,这个圆的面积是7.065cm2.【解答】解:9.42÷3.14÷2=3÷2=1.5(cm)3.14×1.52=3.14×2.25=7.065(cm2)答:圆规两脚间的距离应是 1.5cm,这个圆的面积是7.065cm2.故答案为:1.5,7.065cm2.18.一个圆环形,内圆的半径是4厘米,外圆的半径是6厘米,那么这个圆环的面积是62.8平方厘米.【解答】解:3.14×(62﹣42)=3.14×20=62.8(平方厘米)答:圆环的面积是62.8平方厘米.故答案为:62.8平方厘米.19.把圆剪拼成长方形(如图),已知圆的周长比长方形少10厘米,那么圆的半径是5厘米,长方形的面积是78.5平方厘米.【解答】解:圆的半径:10÷2=5(厘米)圆的面积:3.14×52=3.14×25=78.5(平方厘米)答:圆的半径是5厘米,长方形的面积是78.5平方厘米.故答案为:5,78.5.20.两条同样长的铁丝分别围成一个正方形和一个圆形,已知正方形的边长是6.28厘米,圆的半径是4厘米.【解答】解:圆的周长(正方形的周长): 6.28×4=25.12(厘米)圆的半径:25.12÷3.14÷2=8÷2=4(厘米)答:圆的半径是4厘米.故答案为:4.三.判断题(共11小题)21.一个圆的周长是18.84厘米,那么这个半圆的周长就是9.42厘米.×(判断对错)【解答】解:圆的直径是:18.84÷3.14=6(厘米),半圆的周长是:18.84÷2+6,=9.42+6,=15.42(厘米),半圆的周长是15.42厘米,不是9.42厘米;原题说法错误.故答案为:×.22.一个半圆的周长是20.56分米,这个半圆的面积是41.12平方分米.×(判断对错)【解答】解:设这个半圆的半径为r分米,由题意得:πr+2r=20.563.14r+2r=20.565.14r=20.565.14r÷5.14=20.56÷5.14r=4.3.14×42÷2=3.14×16×2=25.12(平方分米),答:这个半圆的面积是25.12平方分米.故答案为:×.23.一个圆的周长扩大到原来的3倍,它的面积就扩大到原来的6倍.×(判断对错)【解答】解:根据分析可得,当一个圆的周长扩大到原来的3倍,圆的半径扩大3倍,面积扩大32=9倍;所以原题说法错误.故答案为:×.24.不论大圆还是小圆,它们的圆周率都相等,都是π.√(判断对错)【解答】解:根据圆周率的含义:圆的周长和它直径的比值,叫做圆周率,可知不管是大圆还是小圆,都相等,都是π,说法正确.故答案为:√.25.如果大圆的半径等于小圆的直径,那么小圆的面积是大圆的一半.×(判断对错)【解答】解:设小圆半径为1,则大圆半径为2小圆面积=π×1×1=π大圆面积=π×2×2=4π小圆面积是大圆面积的:π÷4π=所以原题说法错误.故答案为:×.26.求半圆形的周长就是求圆周长的一半.×.(判断对错)【解答】解:半圆的周长是这个圆周长的一半加上它的直径.所以求半圆形的周长就是求圆的周长的一半的长度的说法是错误的.故答案为:×.27.圆的半径扩大到原来的2倍,周长和面积也扩大到原来的2倍×(判断对错)【解答】解:设原来圆的半径为r,则直径为2r,圆的周长为:2πr,圆的面积为:πr2,半径扩大2倍后,圆的半径为2r,圆的直径为4r,圆的周长为:4πr,圆的面积为:(2r)2π=4πr2,周长扩大到原来的:4πr÷2πr=2,面积扩大到原来的:4πr2÷πr2=4.答:周长扩大到原来的2倍,面积则扩大到原来的4倍.故答案为:×.28.圆的周长是和它半径相同的半圆的周长的2倍.×(判断对错).【解答】解:因为半径相同,2πr÷(πr+2r)=.答:圆的周长是和它半径相同的半圆的周长的倍.故答案为:×.29.直径是2厘米的圆小于半径是2厘米的圆.√.(判断对错)【解答】解:因为2÷2=1(厘米)1厘米<2厘米;所以直径是2厘米的圆小于半径是2厘米的圆;故答案为:√.30.半圆的周长等于圆的周长的1/2 加直径的长,所以半个圆的面积等于圆面积的1/2加直径的长度.×(判断对错)【解答】解:据分析可知:半圆的周长等于圆周长的一半加直径,半圆的面积等于圆的面积的一半,故答案为:×.31.圆越大圆周率越大,圆越小圆周率越小.错误.(判断对错)【解答】解:圆周率的大小与圆的大小无关,圆的周长变大,圆的直径就变大,但圆周率不变;所以圆越大圆周率越大,圆越小圆周率越小,说法错误;故答案为:错误.四.应用题(共5小题)32.将圆平均分成若干个小扇形,剪拼成一个近似的长方形(如图).(1)如果长方形的长是12.56厘米,圆的面积是多少?(2)如果圆的半径是10厘米,阴影部分的面积是多少?【解答】解:(1)圆的半径:12.56×2÷(2×3.14)=25.12÷6.28=4(厘米)圆的面积:3.14×42=3.14×16=50.24(平方厘米)答:圆的面积是50.24平方厘米.(2)阴影部分的面积:3.14×102×=314×=235.5(平方厘米)答:阴影部分的面积是235.5平方厘米.33.一种洒水车的前轮直径是6分米,如果它每分钟转3周,它每分钟前进多少米?【解答】解:3.14×6×3=3.14×18=56.52(分米)56.52分米=5.652米答:它每分钟前进 5.652米.34.一块圆形菜地原来的周长是18.84米,现在周围加宽2米,这块菜地的面积增加多少平方米?【解答】解:18.84÷3.14÷2=3(米)3+2=5(米)3.14×(52﹣32)=3.14×16=50.24(平方米)答:这块菜地的面积增加50.24平方米.35.笑笑绕着圆形花坛边缘走一圈,刚好走了62.8米.这个花坛的面积是多少平方米?(π取3.14)【解答】解:花坛的半径:62.8÷(2×3.14)=62.8÷6.28=10(米)花坛的面积:3.14×102=314(平方米)答:花坛面积是314平方米.36.一辆自行车车轮的直径是0.65米,如果平均每分钟转100圈,那么骑25分钟能行多少米?【解答】解:3.14×0.65×100=2.041×100=204.1(米)204.1×25=5102.5(米)答:骑25分钟能行5102.5米.五.解答题(共4小题)37.把一个圆形纸片分成若干等份,拼成以半径为宽的近似长方形,已知这个长方形的周长为49.68cm.求圆形纸片的半径.【解答】解:设半径为r厘米,(πr+r)×2=49.68(πr+r)×2÷2=49.68÷2πr+r=24.844.14r=24.84.14r÷4.14=24.84÷4.14r=6.答:圆形纸片的半径是 6 厘米.38.城市广场有个圆形的喷泉,量得周长是37.68米,这个喷泉占地面积是多少平方米?【解答】解:3.14×(37.68÷3.14÷2)2=3.14×62=3.14×36=113.04(平方米)答:这个喷泉的占地面积是113.04平方米.39.淘气和笑笑练习竞走,淘气沿长9米、宽4米的长方形花坛走,笑笑沿直径为8米的圆形花坛走.他们的速度相同,谁先走完?【解答】解:(9+4)×2=13×2=26(米)3.14×8=25.12(米)26>25.12所以笑笑先走完.答:笑笑先走完.40.用圆规画一个周长为12.56cm的圆,并用字母标出它的圆心、半径、直径;再计算它的面积.【解答】解:(1)12.56÷3.14÷2=2(厘米);作图如下:(2)S=3.14×22=12.56(cm2)答:圆的面积为12.56cm2声明:试。