万有引力与航天专题复习
- 格式:doc
- 大小:241.50 KB
- 文档页数:5
2024-2025年新课标全国卷专题分类汇总专题5:万有引力与航天1.(2024课标Ⅱ卷·19题·6分· 中)如图,海王星绕太阳沿椭圆轨道运动,P 为近日点,Q 为远日点,M 、N 为轨道短轴的两个端点,运行的周期为T 0.若只考虑海王星和太阳之间的相互作用,则海王星在从P 经M 、Q 到N 的运动过程中( )A .从P 到M所用的时间等于T 04B .从Q 到N 阶段,机械能渐渐变大C .从P 到Q 阶段,速率渐渐变小D .从M 到N 阶段,万有引力对它先做负功后做正功1.(2024年新课标全国卷III)关于行星运动的规律,下列说法符合史实的是A .开普勒在牛顿定律的基础上,导出了行星运动的规律B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星根据这些规律运动的缘由D .开普勒总结出了行星运动的规律,发觉了万有引力定律2.(2024年新课标全国卷II)由于卫星的放射场不在赤道上,同步卫星放射后须要从转移轨道经过调整再进入地球同步轨道。
当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行。
已知同步卫星的环绕速度约为3.1×103m/s ,某次放射卫星飞经赤道上空时的速度为 1.55×103m/s ,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为 A .西偏北方向,1.9×103m/s B .东偏南方向,1.9×103m/s C .西偏北方向,2.7×103m/s D .东偏南方向,2.7×103m/s 3.(2024年新课标全国卷)假设地球是一半径为R 、质量分布匀称的球体。
一矿井深度为d 。
已知质量分布匀称的球壳对壳内物体的引力为零。
矿井底部和地面处的重力加速度大小之比为 A .1- B .1+ C .D .4.(2024年新课标全国卷II)假设地球可视为质量匀称分布的球体。
2024届高考物理一轮复习 万有引力与航天专题分析(真题)一、单选题1.(2023·湖北·统考高考真题)2022年12月8日,地球恰好运行到火星和太阳之间,且三者几乎排成一条直线,此现象被称为“火星冲日”。
火星和地球几乎在同一平面内沿同一方向绕太阳做圆周运动,火星与地球的公转轨道半径之比约为3:2,如图所示。
根据以上信息可以得出( ) A .火星与地球绕太阳运动的周期之比约为278: B .当火星与地球相距最远时,两者的相对速度最大 C .火星与地球表面的自由落体加速度大小之比约为94: D .下一次“火星冲日”将出现在2023年12月8日之前2.(2023·山西·统考高考真题)2023年5月,世界现役运输能力最大的货运飞船天舟六号,携带约5800kg 的物资进入距离地面约400km (小于地球同步卫星与地面的距离)的轨道,顺利对接中国空间站后近似做匀速圆周运动。
对接后,这批物资( ) A .质量比静止在地面上时小 B .所受合力比静止在地面上时小C .所受地球引力比静止在地面上时大D .做圆周运动的角速度大小比地球自转角速度大3.(2023·浙江·统考高考真题)木星的卫星中,木卫一、木卫二、木卫三做圆周运动的周期之比为1:2:4。
木卫三周期为T ,公转轨道半径是月球绕地球轨道半径r 的n 倍。
月球绕地球公转周期为0T ,则( ) A .木卫一轨道半径为16nr B .木卫二轨道半径为2nrC .周期T 与T 0之比为32nD .木星质量与地球质量之比为2302T n T4.(2023·山东·统考高考真题)牛顿认为物体落地是由于地球对物体的吸引,这种吸引力可能与天体间(如地球与月球)的引力具有相同的性质、且都满足2MmF r ∝。
已知地月之间的距离r 大约是地球半径的60倍,地球表面的重力加速度为g ,根据牛顿的猜想,月球绕地球公转的周期为( ) A .30πr gB .30πg rC .120πr gD .120πg r5.(2023·北京·统考高考真题)在太空实验室中可以利用匀速圆周运动测量小球质量。
万有引力与航天知识点归纳一、万有引力定律1. 内容自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量和的乘积成正比,与它们之间距离的平方成反比。
2. 公式,其中,称为引力常量。
3. 适用条件适用于两个质点间的相互作用。
当两个物体间的距离远大于物体本身的大小时,物体可视为质点。
对于质量分布均匀的球体,为两球心间的距离。
二、万有引力定律的应用1. 计算天体质量对于中心天体和环绕天体,根据万有引力提供向心力。
若已知环绕天体的线速度和轨道半径,则。
若已知环绕天体的角速度和轨道半径,则。
若已知环绕天体的周期和轨道半径,则。
2. 计算天体密度对于质量为、半径为的天体,若有一颗卫星绕其做匀速圆周运动,轨道半径为。
由,天体的体积。
当卫星绕天体表面运行时,则。
三、人造卫星1. 卫星的动力学方程万有引力提供向心力,即。
2. 卫星的线速度由可得,说明卫星的线速度与轨道半径的平方根成反比,轨道半径越大,线速度越小。
3. 卫星的角速度由可得,轨道半径越大,角速度越小。
4. 卫星的周期由可得,轨道半径越大,周期越大。
5. 地球同步卫星特点:周期,与地球自转周期相同。
轨道平面与赤道平面重合。
高度,线速度。
四、宇宙速度1. 第一宇宙速度定义:卫星在地面附近绕地球做匀速圆周运动的速度。
计算:由(为地球半径),可得。
这是人造地球卫星的最小发射速度,也是卫星绕地球做匀速圆周运动的最大环绕速度。
2. 第二宇宙速度,当卫星的发射速度大于而小于时,卫星绕地球运行;当卫星的发射速度等于或大于时,卫星将脱离地球的引力束缚,成为绕太阳运行的人造行星。
3. 第三宇宙速度,当卫星的发射速度等于或大于时,卫星将挣脱太阳引力的束缚,飞到太阳系以外的宇宙空间去。
五、双星系统1. 特点两颗星绕它们连线上的某一点做匀速圆周运动,它们之间的万有引力提供各自做圆周运动的向心力。
2. 规律对于质量分别为、的两颗星,轨道半径分别为、,两星之间的距离为()。
万有引力与航天专题1.[2024·安徽卷] 2024年3月20日,我国探月工程四期鹊桥二号中继星成功发射升空.当抵达距离月球表面某高度时,鹊桥二号开始进行近月制动,并顺利进入捕获轨道运行,如图所示,轨道的半长轴约为51 900 km.后经多次轨道调整,进入冻结轨道运行,轨道的半长轴约为9900 km,周期约为24 h.则鹊桥二号在捕获轨道运行时()A.周期约为144 hB.近月点的速度大于远月点的速度C.近月点的速度小于在冻结轨道运行时近月点的速度D.近月点的加速度大于在冻结轨道运行时近月点的加速度1.B[解析] 冻结轨道和捕获轨道的中心天体是月球,根据开普勒第三定律得T12R13=T22R23,整理得T2=T1√R23R13≈288 h,A错误;根据开普勒第二定律得,鹊桥二号在捕获轨道运行时在近月点的速度大于在远月点的速度,B正确;在近月点从捕获轨道到冻结轨道变轨时,鹊桥二号需要减速进行近月制动,故鹊桥二号在捕获轨道近月点的速度大于在冻结轨道运行时近月点的速度,C错误;在两轨道的近月点所受的万有引力相同,根据牛顿第二定律可知,在捕获轨道运行时近月点的加速度等于在冻结轨道运行时近月点的加速度,D错误.2.[2024·北京卷] 科学家根据天文观测提出宇宙膨胀模型:在宇宙大尺度上,所有的宇宙物质(星体等)在做彼此远离运动,且质量始终均匀分布,在宇宙中所有位置观测的结果都一样.以某一点O为观测点,以质量为m的小星体(记为P)为观测对象.当前P到O点的距离为r0,宇宙的密度为ρ0.(1)求小星体P远离到2r0处时宇宙的密度ρ;(2)以O点为球心,以小星体P到O点的距离为半径建立球面.P受到的万有引力相当于球内质量集中于O点对P的引力.已知质量为m1和m2、距离为R的两个质点间的引力势能E p=-G m1m2R,G为引力常量.仅考虑万有引力和P远离O点的径向运动.①求小星体P从r0处远离到2r0处的过程中动能的变化量ΔE k;②宇宙中各星体远离观测点的速率v满足哈勃定律v=Hr,其中r为星体到观测点的距离,H为哈勃系数.H与时间t有关但与r无关,分析说明H随t增大还是减小.2.(1)18ρ0 (2)①-23G πρ0m r 02 ②H 随t 增大而减小[解析] (1)在宇宙中所有位置观测的结果都一样,则小星体P 运动前后距离O 点半径为r 0和2r 0的球内质量相同,即ρ0·43πr 03=ρ·43π(2r 0)3解得小星体P 远离到2r 0处时宇宙的密度ρ=18ρ0(2)①此球内的质量M =ρ0·43πr 03 P 从r 0处远离到2r 0处,由能量守恒定律得 动能的变化量ΔE k =-G Mmr 0-(-GMm 2r 0)=-23G πρ0m r 02 ②由①知星体的速度随r 0增大而减小,星体到观测点距离越大运动时间t 越长,由v =Hr知,H 减小,故H 随t 增大而减小3.[2024·甘肃卷] 小杰想在离地表一定高度的天宫实验室内,通过测量以下物理量得到天宫实验室轨道处的重力加速度,可行的是 ( ) A .用弹簧测力计测出已知质量的砝码所受的重力 B .测量单摆摆线长度、摆球半径以及摆动周期 C .从高处释放一个重物,测量其下落高度和时间D .测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径3.D [解析] 在天宫实验室内,物体处于完全失重状态,重力提供了物体绕地球做匀速圆周运动的向心力,故A 、B 、C 中的实验均无法得到天宫实验室轨道处的重力加速度;物体所受的万有引力提供物体绕地球做匀速圆周运动的向心力,有mg =G Mm r 2=m 4π2T 2r ,整理得轨道处的重力加速度为g =4π2T 2r ,故通过测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径可行,D 正确.4.(多选)[2024·广东卷] 如图所示,探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以60 m/s 的速度竖直匀速下落.此时启动“背罩分离”,探测器与背罩断开连接,背罩与降落伞保持连接.已知探测器质量为1000 kg,背罩质量为50 kg,该行星的质量和半径分别为地球的110和12.地球表面重力加速度大小g 取10 m/s 2.忽略大气对探测器和背罩的阻力.下列说法正确的有 ( )A .该行星表面的重力加速度大小为4 m/s 2B .该行星的第一宇宙速度为7.9 km/sC .“背罩分离”后瞬间,背罩的加速度大小为80 m/s 2D .“背罩分离”后瞬间,探测器所受重力对其做功的功率为30 kW4.AC [解析] 设地球的质量为M ,半径为R ,行星的质量为M',半径为R',在星球表面可近似认为物体所受重力等于其所受万有引力,有GMm R2=mg ,可得GM =gR 2,同理,在该行星表面有GM'=g'R'2,联立得该星球表面的重力加速度g'=M 'R 2MR '2g =110×22×10 m/s 2=4 m/s 2,A 正确;地球的第一宇宙速度v =√GMR=7.9 km/s,则该行星的第一宇宙速度v'=√GM 'R '=√15×GM R =√15×7.9 km/s,B 错误;探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以v =60 m/s 的速度竖直匀速下落,此时背罩受到降落伞的拉力F =(m 探+m 背)g'=4200 N,“背罩分离”后瞬间,由牛顿第二定律有F -m 背g'=m 背a ,解得背罩的加速度大小为a =80 m/s 2,C 正确;“背罩分离”后瞬间,探测器所受重力对其做功的功率为P =m 探g'v =1000×4×60 W=2.4×105 W=240 kW,D 错误.5.[2024·广西卷] 潮汐现象出现的原因之一是在地球的不同位置海水受到月球的引力不相同.图中a 、b 和c 处单位质量的海水受月球引力大小在( )A .a 处最大B .b 处最大C .c 处最大D .a 、c 处相等,b 处最小5.A [解析] 根据万有引力公式F =G Mm R 2,可知图中a 处单位质量的海水受到月球的引力最大,故选A .6.[2024·海南卷] 神舟十七号载人飞船返回舱于2024年4月30日在东风着陆场成功着陆,在飞船返回至离地面十几公里时打开主伞飞船快速减速,返回舱速度大大减小,在减速过程中()A.返回舱处于超重状态B.返回舱处于失重状态C.主伞的拉力不做功D.重力对返回舱做负功6.A[解析] 返回舱在减速过程中,加速度竖直向上,处于超重状态,故A正确,B错误;主伞的拉力与返回舱运动方向相反,对返回舱做负功,故C错误;返回舱的重力与返回舱运动方向相同,重力对返回舱做正功,故D错误.7.[2024·海南卷] 嫦娥六号进入环月圆轨道,周期为T,轨道高度与月球半径之比为k,引力常量为G,则月球的平均密度为 ()A.3π(1+k)3GT2k3B.3πGT2C.π(1+k)3GT2k D.3πGT2(1+k)37.D[解析] 设月球半径为R,质量为M,对嫦娥六号,根据万有引力提供向心力得G Mm [(k+1)R]2=m4π2T2·(k+1)R,月球的体积V=43πR3,月球的平均密度ρ=MV,联立可得ρ=3πGT2(1+k)3,故选D.8.(多选)[2024·河北卷] 2024年3月20日,“鹊桥二号”中继星成功发射升空,为“嫦娥六号”在月球背面的探月任务提供地月间中继通讯.“鹊桥二号”采用周期为24 h的环月椭圆冻结轨道(如图所示),近月点A距月心约为2.0×103 km,远月点B距月心约为1.8×104 km,CD 为椭圆轨道的短轴,下列说法正确的是()A.“鹊桥二号”从C经B到D的运动时间为12 hB.“鹊桥二号”在A、B两点的加速度大小之比约为81∶1C.“鹊桥二号”在C、D两点的速度方向垂直于其与月心的连线D.“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s8.BD[解析] “鹊桥二号”围绕月球沿椭圆轨道运动,根据开普勒第二定律可知,在近地点A处的速度最大,在远地点B处的速度最小,则从C→B→D的平均速率小于从D→A→C 的平均速率,所以从C→B→D的运动时间大于半个周期,即大于12 h,A错误;在A点,根据牛顿第二定律有G Mm(r OA)2=ma A,在B点,根据牛顿第二定律有G Mm(r OB)2=ma B,联立解得“鹊桥二号”在A、B两点的加速度大小之比约为a A∶a B=81∶1,B正确;物体做曲线运动时速度方向沿该点的切线方向,所以“鹊桥二号”在C、D两点的速度方向不垂直于其与月心的连线,C错误;“鹊桥二号”发射后围绕月球沿椭圆轨道运动,并未脱离地球引力束缚,所以“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s,D正确.9.[2024·湖北卷] 太空碎片会对航天器带来危害.设空间站在地球附近沿逆时针方向做匀速圆周运动,如图中实线所示.为了避开碎片,空间站在P点向图中箭头所指径向方向极短时间喷射气体,使空间站获得一定的反冲速度,从而实现变轨.变轨后的轨道如图中虚线所示,其半长轴大于原轨道半径.则()A.空间站变轨前、后在P点的加速度相同B.空间站变轨后的运动周期比变轨前的小C.空间站变轨后在P点的速度比变轨前的小D.空间站变轨前的速度比变轨后在近地点的大9.A[解析] 空间站在P点变轨前、后所受到的万有引力不变,根据牛顿第二定律可知F 万=ma加,则空间站变轨前、后在P点的加速度相同,故A正确;空间站的圆轨道运动可以看作特殊的椭圆轨道运动,因为变轨后其轨道半长轴大于原轨道半径,根据开普勒第三定律可知a 2T2=k,则空间站变轨后的运动周期比变轨前的大,故B错误;变轨后在P点获得方向沿径向指向地球的反冲速度,与原来做圆周运动的速度合成,合速度大于原来的速度,故C错误;由于空间站变轨后在P点的速度比变轨前的大,但变轨后在P点的速度比同一轨道上在近地点的速度小,所以空间站变轨前的速度比变轨后在近地点的小,故D错误.10.(多选)[2024·湖南卷] 2024年5月3日,“嫦娥六号”探测器顺利进入地月转移轨道,正式开启月球之旅.相较于“嫦娥四号”和“嫦娥五号”,本次的主要任务是登陆月球背面进行月壤采集,并通过升空器将月壤转移至绕月运行的返回舱,返回舱再通过返回轨道返回地球.设返回舱绕月运行的轨道为圆轨道,半径近似为月球半径.已知月球表面重力加速度约为地球表面的16,月球半径约为地球半径的14.关于返回舱在该绕月轨道上的运动,下列说法正确的是( )A .其相对于月球的速度大于地球第一宇宙速度B .其相对于月球的速度小于地球第一宇宙速度C .其绕月飞行周期约为地球上近地圆轨道卫星周期的√23倍 D .其绕月飞行周期约为地球上近地圆轨道卫星周期的√32倍10.BD [解析] 返回舱绕月运行的轨道为圆轨道,半径近似为月球半径,则由万有引力提供向心力,有GM 月m r 月2=mv 月2r 月,根据在月球表面万有引力和重力的关系有GM 月m r 月2=mg 月,联立解得v 月=√g 月r 月,由于第一宇宙速度为近地卫星的环绕速度,同理可得v 地=√g 地r 地,则v 月v 地=√g 月g 地·r 月r 地=√16×14=√612,所以v 月<v 地,故A 错误,B 正确;根据线速度和周期的关系有T =2πv ·r ,则T 月T 地=r 月r 地·v 地v 月=14×√6=√32,故C 错误,D 正确.11.[2024·江西卷] “嫦娥六号”探测器于2024年5月8日进入环月轨道,后续经调整环月轨道高度和倾角,实施月球背面软着陆.当探测器的轨道半径从r 1调整到r 2时(两轨道均可视为圆形轨道),其动能和周期从E k1、T 1分别变为E k2、T 2.下列选项正确的是 ( )A .E k1E k2=r 2r 1,T 1T 2=√r 13√r 2B .E k1E k2=r 1r 2,T 1T 2=√r 13√r 2C .E k1E k2=r 2r 1,T 1T 2=√r 23√r 1D .E k1E k2=r 1r 2,T 1T 2=√r 23√r 1311.A [解析] 探测器环月运行,由万有引力提供向心力有G Mmr 2=m v 2r ,得v 2=GMr,其中M 为月球质量,m 为“嫦娥六号”质量,动能E k =12mv 2,则E k1E k2=r2r 1,B 、D错误;同理,由G Mm r 2=m 4π2T2r得T =√4π2r 3GM ,则T 1T 2=√r 13r 23,A 正确,C 错误.12.[2024·辽宁卷] 如图甲所示,将一弹簧振子竖直悬挂,以小球的平衡位置为坐标原点O ,竖直向上为正方向,建立x 轴.若将小球从弹簧原长处由静止释放,其在地球与某球状天体表面做简谐运动的图像如图乙所示(不考虑自转影响).设地球、该天体的平均密度分别为ρ1和ρ2,地球半径是该天体半径的n 倍,ρ1ρ2的值为 ( )A .2nB .n 2C .2n D .12n12.C [解析] 设地球表面的重力加速度为g ,球状天体表面的重力加速度为g',弹簧的劲度系数为k ,根据简谐运动的对称性有k ·4A -mg =mg ,k ·2A -mg'=mg',解得gg '=2,设球状天体的半径为R ,则地球的半径为nR ,在地球表面有G ρ1·43π(nR )3·m(nR )2=mg ,在球状天体表面有G ρ2·43πR 3·mR 2=mg',联立解得ρ1ρ2=2n,故C 正确.13.[2024·全国甲卷] 2024年5月,“嫦娥六号”探测器发射成功,开启了人类首次从月球背面采样返回之旅.将采得的样品带回地球,飞行器需经过月面起飞、环月飞行、月地转移等过程.月球表面自由落体加速度约为地球表面自由落体加速度的16.下列说法正确的是 ( )A .在环月飞行时,样品所受合力为零B .若将样品放置在月球正面,它对月球表面压力等于零C .样品在不同过程中受到的引力不同,所以质量也不同D .样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小13.D [解析] 在环月飞行时,样品所受合力提供所需的向心力,不为零,故A 错误;若将样品放置在月球正面,则它处于平衡状态,它对月球表面压力大小等于它在月球表面的重力大小,由于月球表面自由落体加速度约为地球表面自由落体加速度的16,则样品在地球表面的重力大于在月球表面的重力,所以样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小,故B 错误,D 正确;样品在不同过程中受到的引力不同,但样品的质量不变,故C 错误.14.[2024·山东卷] “鹊桥二号”中继星环绕月球运行,其24小时椭圆轨道的半长轴为a.已知地球同步卫星的轨道半径为r ,则月球与地球质量之比可表示为 ( )A .√r 3a 3 B .√a 3r3C .r 3a3 D .a 3r314.D [解析] “鹊桥二号”中继星环绕月球运动的24小时椭圆轨道的半长轴为a ,则其24小时圆轨道的半径也为a ,由万有引力提供向心力得G M 月m 中a 2=m 中(2πT )2a ,对地球同步卫星,由万有引力提供向心力得GM 地m 同r 2=m 同(2πT )2r ,联立解得M 月M 地=a 3r 3,D 正确.15.[2024·新课标卷] 天文学家发现,在太阳系外的一颗红矮星有两颗行星绕其运行,其中行星GJ1002c 的轨道近似为圆,轨道半径约为日地距离的0.07倍,周期约为0.06年,则这颗红矮星的质量约为太阳质量的 ( ) A .0.001倍 B .0.1倍 C .10倍 D .1000倍15.B [解析] 设红矮星的质量为M 1,行星GJ1002c 的质量为m 1,轨道半径为r 1,运动周期为T 1;太阳的质量为M 2,地球的质量为m 2,日地距离为r 2,地球运动的周期为T 2;根据万有引力定律提供向心力有GM 1m 1r 12=m 14π2T 12r 1,G M 2m 2r 22=m 24π2T 22r 2,联立可得M 1M 2=(r 1r 2)3·(T 2T 1)2,由于行星GJ1002c 的轨道半径约为日地距离的0.07倍,周期约为0.06年,可得M 1M 2≈0.0730.062≈0.1,选B 正确.16.[2024·浙江6月选考] 与地球公转轨道“外切”的小行星甲和“内切”的小行星乙的公转轨道如图所示,假设这些小行星与地球的公转轨道都在同一平面内,地球的公转半径为R ,小行星甲的远日点到太阳的距离为R 1,小行星乙的近日点到太阳的距离为 R 2,则 ( )A .小行星甲在远日点的速度大于近日点的速度B .小行星乙在远日点的加速度小于地球公转加速度C .小行星甲与乙的运行周期之比T1T 2=√R 13R 23D .甲、乙两行星从远日点到近日点的时间之比t 1t 2=√(R 1+R)3(R 2+R)316.D [解析] 由开普勒第二定律知小行星甲在远日点的速度小于在近日点的速度,A 错误;小行星乙在远日点到太阳的距离与地球到太阳的距离相等,由G Mmr 2=ma 可知,小行星乙在远日点的加速度和地球公转加速度大小相等,B 错误;根据开普勒第三定律有(R 1+R 2)3T 12=(R 2+R 2)3T 22,解得T 1T 2=√(R 1+R)3(R 2+R)3,C错误;甲、乙两行星从远日点到近日点的时间之比t 1t 2=T 12T 22=√(R 1+R)3(R 2+R)3,D 正确.。
第六章 万有引力与航天复习一、开普勒三定律:1、开普勒第一定律(轨道定律): ;2、开普勒第二定律(面积定律): ; 由开普勒第二定律可知,近地点速度 远地点速度;当行星由近地点向远地点运动时,行星的线速度大小 ;3、开普勒第三定律(周期定律): ; 表达式: 。
(注:k 是只与 有关的常量; 表达式的推导(以圆周运动为例): 二、万有引力定律及应用:1、 万有引力定律:(1) 内容: ; (2) 公式:(3) 万有引力常量G= ,物理意义: ;该常量是由英国的物理学家 利用 实验测出; 2、 与万有引力有关的问题的研究对象:可分为两类:一类是:地上物,包括地表物和高空物,这类物体有时除万有引力外还会受到其他的力的作用,这类物体的运动情况也比较复杂,可以是自由落体运动、竖直上抛运动、平抛运动,还可以是其他的运动,比如火箭在发射升空过程中的运动是匀加速直线运动。
对于地表物,在忽略地球自转的情况下物体的重力等于它所受的万有引力;而高空物的重力就是它所受的万有引力。
解决此类问题所用关系式就是,引mg rGMm F ==2,解题的关键一般是重力加速度r 的确定和g ,的求解,而g ,的求解一般要结合地面物体的运动规律来求。
另一类是天上星:这类问题主要研究两大系统,一类是绕太阳等恒星运行的行星系统;一类是绕地球等行星运行的卫星系统。
天上星只受万有引力的作用,所做运动一般都简化为匀速圆周运动。
求解此类问题所用的规律一般是向向引a F F m ==即 ,22222)2(mg r T m r m rv m r Mm G ====πω注:g ,就是恒星在行星的轨道处产生的重力加速度,或行星在卫星轨道处产生的重力加速度,也就是行星或卫星绕行的向心加速度。
【例1】某物体在地面上受到的重力为160 N ,将它放置在卫星中,在卫星以加速度a =0.5g 随火箭加速上升的过程中,当物体与卫星中的支持物的相互压力为90 N 时,求此时卫星距地球表面有多远?(地球半径R =6.4×103km,g 取10m/s 2) 3、 万有引力定律的应用:应用一:求解中心天体的质量(有两种方法):方法一:取地上物为研究对象,由,引mg r GMm F ==2得Gr g M 2,=,若式中g ,为地表重力加速度,则r 就是中心天体的半径;这种方法有时需要先根据地上物体的运动规律求出g ,。
万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。
其中k 值与太阳有关,与行星无关。
中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。
2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。
(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。
(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。
(4) 两个物体间的万有引力也遵循牛顿第三定律。
3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。
①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。
由以上分析可知,重力和重力加速度都随纬度的增加而增大。
(2) 物体受到的重力随地面高度的变化而变化。
在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。
考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。
《万有引力与航天》单元复习知识回顾一、行星运动的三大定律轨道定律面积定律周期定律二、万有引力定律及其应用1 万有引力定律2 应用(1)求重力加速度重力与万有引力的关系考虑地球自转时:在高空的物体:(2)估算天体的质量天体密度(3)求环绕天体的V、 、T3 宇宙速度和人造卫星(1) 第一宇宙速度是指:求V1的方法:第二宇宙速度是指:第三宇宙速度是指:(2) 卫星轨道的特点人造卫星绕地球做匀速圆周运动的圆心落在 上。
同步卫星的特点:● 定周期● 定高度● 定轨道卫星的变轨分析:抓住万有引力与向心力的大小关系去分析典型例题1 一颗质量为m 的人造卫星,在距地面高度为h 的圆轨道上运动,已知地球的质量为M ,地球半径为R ,引力常量为G ,求:(1)卫星绕地球运动的向心加速度;(2)卫星绕地球运动的周期;(3)卫星绕地球运动的动能。
2 一卫星绕某行星做匀速圆周运动,已知行星表面的重力加速度为g 行,行星的质量为M与卫星的质量m 之比m M =81,行星的半径R行与卫星的半径R卫之比卫行R R =3.6,行星与卫星之间的距离r 与行星的半径R行之比行R r =60,设卫星表面的重力加速度为g 卫,则在卫星表面有:G2r Mm =m g 卫 ......经过计算得出:卫星表面的重力加速度为行星表面的重力加速度的36001.上述结果是否正确?若正确,列式证明;若错误,求出正确结果.3 宇航员站在一个星球表面上的某高处,沿水平方向抛出一个小球,经过时间T 小球落到星球表面,测得抛出点与落地点间的距离为L .若抛出时的初速度增大到原来的2倍,则抛出点与落地点间距离为,已知两落地点在同一水平面上,该星球半径为R ,万有引力常数为C ,求该星球的质量.4 宇航员在月球表面完成下面实验:在一固定的竖直光滑圆弧轨道内部的最低点,静止一质量为m 的小球(可视为质点)如图所示,当给小球水平初速度v 0时,刚好能使小球在竖直面内做完整的圆周运动.已知圆弧轨道半径为r ,月球的半径为R ,万有引力常量为G.若在月球表面上发射一颗环月卫星,所需最小发射速度为多大?5、设想有一宇航员在某未知星球的极地地区着陆时发现,同一物体在该地区的重力是地球上的重力的0.01倍.还发现由于星球的自转,物体在该星球赤道上恰好完全失重,且该星球上一昼夜的时间与地球上相同。
专题五万有引力与航天基础篇考点一开普勒三定律1.(2022河北唐山期末,2)如图所示,八大行星沿椭圆轨道绕太阳公转,下列说法中正确的是()A.太阳处在椭圆的中心B.火星绕太阳运行过程中,速率不变C.土星比地球的公转周期大D.地球和土星分别与太阳的连线在相同时间内扫过的面积相等答案 C2.(2022广东,2,4分)“祝融号”火星车需要“休眠”以度过火星寒冷的冬季。
假设火星和地球的冬季是各自公转周期的四分之一,且火星的冬季时长约为地球的1.88倍。
火星和地球绕太阳的公转均可视为匀速圆周运动。
下列关于火星、地球公转的说法正确的是()A.火星公转的线速度比地球的大B.火星公转的角速度比地球的大C.火星公转的半径比地球的小D.火星公转的加速度比地球的小答案 D3.(2022江苏模拟预测,5)2020年7月,我国用长征运载火箭将“天问一号”探测器发射升空,探测器在星箭分离后,进入地火转移轨道,如图所示,2021年5月在火星乌托邦平原着陆。
则探测器()A.与火箭分离时的速度小于第一宇宙速度B.每次经过P点时的速度相等C.绕火星运行时在捕获轨道上的周期最大D.绕火星运行时在不同轨道上与火星的连线每秒扫过的面积相等答案 C4.(2022浙江宁波期末,3)北京冬奥会开幕式二十四节气倒计时惊艳全球,如图是地球沿椭圆轨道绕太阳运行所处不同位置对应的节气,下列说法正确的是()A.夏至时地球的运行速度最大B.从冬至到春分的运行时间为公转周期的14C.若用a代表椭圆轨道的半长轴,T代表公转周期,则a3=k,地球和火星对应的k值是不同的T2D.太阳既在地球公转轨道的焦点上,也在火星公转轨道的焦点上答案 D考点二万有引力定律1.(2022全国乙,14,6分)2022年3月,中国航天员翟志刚、王亚平、叶光富在离地球表面约400 km的“天宫二号”空间站上通过天地连线,为同学们上了一堂精彩的科学课。
通过直播画面可以看到,在近地圆轨道上飞行的“天宫二号”中,航天员可以自由地漂浮,这表明他们()A.所受地球引力的大小近似为零B.所受地球引力与飞船对其作用力两者的合力近似为零C.所受地球引力的大小与其随飞船运动所需向心力的大小近似相等D.在地球表面上所受引力的大小小于其随飞船运动所需向心力的大小答案 C2.(2021山东,5,3分)从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越。
专题: 万有引力与航天1.内容: 2.公式:F = ,其中G = N·m 2/kg 2,叫引力常量.3.适用条件:宇宙 速度 数值(km/s)意 义第一宇宙速度 7.9卫星绕地球做圆周运动的最小发射速度(最大环绕速度).若7.9 km/s ≤v <11.2 km/s ,物体绕 运行(环绕速度) gR RGMv ==1第二宇宙速度 11.2物体挣脱地球引力束缚的最小发射速度.若11.2 km/s ≤v <16.7 km/s ,物体绕 运行(脱离速度) gR RGMv v 22212===第三宇 宙速度16.7物体挣脱太阳引力束缚的最小发射速度.若v ≥16.7 km/s ,物体将脱离 在宇宙空间运行(逃逸速度)1.轨道平面一定:轨道平面与 共面.2.周期一定:与 周期相同,即T =24 h. 3.角速度一定:与 的角速度相同.4.高度一定:由G Mm (R +h )2=m 4π2T 2(R +h )得同步卫星离地面的高度h = 3GMT 24π2-R . ≈3.56×107m5.速率一定:v =GM R +h 6. 向心加速度大小一定()h R T v a n +⎪⎭⎫ ⎝⎛==22πω 万有引力定律应用的基本方法:(1)把天体的运动看成匀速圆周运动,所需向心力由万有引力提供.“万能”连等式:G Mm r 2=ma n =m v 2r =mω2r =m (2πT)2r =m (2πf )2r(2)不考虑中心天体的自转。
黄金代换式:mg R GMm=2(表面), ()/2mg h R GMm =+(h 高处) 考向一:天体的质量M 、密度ρ的估算(1)测出卫星绕中心天体做匀速圆周运动的半径r 和周期T ,由G Mm r 2=m (2πT)2r ,可得天体质量为:M =4π2r3GT2.该中心天体密度为:ρ=M V =M 43πR 3=3πr 3GT 2R 3(R 为中心天体的半径).当卫星沿中心天体表面运行时,r =R ,则ρ=3πGT2.(2)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G,天体密度ρ=M V =M 43πR 3=3g4πGR.【例4】天文学家新发现了太阳系外的一颗行星.这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G =6.67×10-11 N·m 2/kg 2,由此估算该行星的平均密度约为( )A .1.8×103 kg/m 3B .5.6×103 kg/m 3C .1.1×104 kg/m 3D .2.9×104 kg/m 3 考向二:卫星的运行和变轨问题 1.人造卫星的动力学特征万有引力提供向心力.即G Mm r 2ma ==m v 2r =mrω2=m (2πT)2r ma =2.人造卫星的运动学特征 (1)向心加速度a :由ma r Mm G=2得2rGMa =,随着轨道半径的增加,卫星的向心加速度减小。
(2)由线速度v :由G Mmr 2=m v 2r 得v =GMr ,随着轨道半径的增加,卫星的线速度减小。
(3)角速度ω:由G Mmr2=mω2r 得ω=GMr 3,随着轨道半径的增加,卫星的角速度减小。
(4)周期T :由G Mm r 2=m 4π2T2r 得T =2πr 3GM ,随着轨道半径的增加,卫星的周期增大。
【例5】如图所示,a 、b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面的高度分别是R 和2R (R 为地球半径).下列说法中正确的是( )A .a 、b 的线速度大小之比是 2∶1B .a 、b 的周期之比是1∶2 2C .a 、b 的角速度大小之比是3 6∶4D .a 、b 的向心加速度大小之比是9∶4 3.卫星的环绕速度和发射速度不同高度处的人造地球卫星在圆轨道上运行速度rGMv =,其大小随半径的增大而减小.但是,由于在人造地球卫星发射过程中火箭要克服地球引力做功,因此将卫星发射到离地球越远的轨道,在地面上所需的发射速度就越大,即v 发射>v 环绕,所以近地人造地球卫星的速度是最大环绕速度,也是人造卫星的最小发射速度. 4.人造地球卫星的超重和失重(1)人造地球卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动.这两个过程加速度方向均向上,因而都是超重状态.(2)人造地球卫星在沿圆轨道运行时,由于万有引力提供向心力,因此处于完全失重状态.在这种情况下凡是与重力有关的力学现象都不会发生.因此,在卫星上的仪器,凡是制造原理与重力有关的均不能使用.同理,与重力有关的实验也将无法进行(如:天平、水银气压计等) 5.卫星的变轨卫星做匀速圆周运动时满足:G Mm r 2=ma = m v 2r =mrω2=mr (2πT)2当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力就不再等于向心力,卫星将做变轨运行.(1)当v 增大时,所需向心力m v 2r增大,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,但卫星一旦进入新的轨道运行,由v = GMr知其运行速度要减小,但重力势能、机械能均增加.轨道Ⅰ 地球 轨道Ⅱ Q P (2)当卫星的速度突然减小时,向心力mv 2r减小,即万有引力大于卫星所需的向心力,因此卫星将做向心运动,同样会脱离原来的圆轨道,轨道半径变小,进入新轨道运行时由v = GMr知运行速度将增大,但重力势能、机械能均减少.(卫星的发射和回收就是利用了这一原理)【例6】如图4-4-2所示,a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )A .b 、c 的线速度大小相等,且大于a 的线速度B .b 、c 的向心加速度大小相等,且大于a 的向心加速度C .c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD .a 卫星由于某种原因,轨道半径缓慢减小,其线速度将变大【例7】某人造地球卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变,某次测量卫星的轨道半径为r 1,后来变为r 2(r 2<r 1),用E k1、E k2表示卫星在这两个轨道上的动能,T 1、T 2表示卫星在这两个轨道上的运行周期,则( ) A .E k2<E k1,T 2<T 1 B .E k2<E k1,T 2>T 1 C .E k2>E k1,T 2<T 1 D .E k2>E k1,T 2>T 1【例8】人造卫星首次进入的是距地面高度近地点为200km ,远地点为340km 的椭圆轨道,在飞行第五圈的时候,飞船从椭圆轨道运行到以远地点为半径的圆形轨道上,如图所示,试处理以下几个问题(地球半径R=6370km ,g=9.8m/s 2)(1)飞船在椭圆轨道1上运行,Q 为近地点,P 为远地点,当飞船运动到P 点时点火,使飞船沿圆轨道2运行,以下说法正确的是( )A .飞船在Q 点的万有引力大于该点所需的向心力B .飞船在P 点的万有引力大于该点所需的向心力C .飞船在轨道Ⅰ上P 点的速度小于轨道Ⅱ上P 的速度D 、飞船在轨道Ⅰ上P 点的加速度小于轨道Ⅱ上P 的加速度(2)假设由于飞船的特殊需要,中国的一艘原本在圆轨道运行的飞船前往与之对接,则飞船一定是( )A .从较低轨道上加速 B. 从较高轨道上加速 C. 从同一轨道上加速 D. 从任意轨道上加速 考向三:“双星模型”问题在天体模型中,将两颗彼此距离较近的恒星称为双星,它们在相互之间的万有引力作用下,绕两球连线上某点做周期相同的匀速圆周运动.如图(1)双星夹圆心,且始终在同一直线上,靠彼此间的万有引力提供向心力 (2)具有相同的周期T 和角速度ω(3)轨道半径和质量成反比L m m m r L m m m r 21122121,+=+= (4)双星总质量2324M GT L π=总(其中L 为双星间距,T 为周期) 【例9】如图4-4-6,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间的距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧.引力常量为G . (1)求两星球做圆周运动的周期;(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期记为T 1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T 2.已知地球和月球的质量分别为5.98×1024kg 和7.35×1022kg.求T 2与T 1两者平方之比.(结果保留3位小数)m 1m 2r 1 r 2 O ω考向四:环绕同一中心天体的星际相距最远和最近问题1、从相距最近(两星在中心天体的同侧且三星共线)到再次相距最近所需最短时间: 据()πωω2t -=小大则小大ωωπ-=2t ,而T πω2=则小大小大T T T T t -= 2、从相距最近(两星在中心天体的同侧且三星共线)到相距最远(两星在中心天体的两侧且三星共线)所需最短时间: 据()πωω=t -小大则小大ωωπ-=t ,而T πω2=则()小大小大T T T T t -=2 【例10】两颗卫星在同一轨道平面绕地球做匀速圆周运动,地球半径为R ,a 卫星离地面高度为3R ,则:(1)a 、b 两卫星周期之比T a ∶T b 是多少?(2)若某时刻两卫星正好通过地面同一点的正上方,则a 至少经过多少个周期两卫星相距最远?考向五:天体的不瓦解问题在赤道处的物体最容易脱离天体:R m F RMm GN 22自ω=-(当F N =0将瓦解) 而,343R M πρ=自自ωπ2=T .故不瓦解的条件是23自GT πρ≥ 【例10】中子星是恒星演化过程中的一种可能结果,它的密度很大.现有一中子星,观测到它的自转周期为T =130s .问该中子星的最小密度应是多少才能维持该星体的稳定,不致因自转而瓦解?(计算时星体可视为均匀球体,万有引力常量G =6.67×10-11m 3/kg ·s 2)角速度 周期 线速度 向心加速度 向心力赤道上 自ωω=1 自T T =1 R v 11ω= R a 211ω=11ma F = 近地卫星上 32RGM=ω GMR T 3224π=12宇v RGM ==νg 22==R GM a mg ma F ==22同步卫星上 自ωω=3 33h)(+=R GMω自T T =3GMR T 323)h (4+=π)(33h R v +=ω h R GM+=3ν )(233h R a +=ω23)(h R GM a += 33ma F =同物比较231ωωω<= 231T T T >= 1231宇v v v v =<<ga a a =<<231mgF F F =<<231【例11】如图,地球赤道上的山丘e ,近地资源卫星p 和同步通信卫星q 均在赤道平面上绕地心做匀速圆周运动.设e、p、q的圆周运动速率分别为v1、v2、v3,向心加速度分别为a1、a2、a3,则( )A.v1>v2>v3B.v1<v2<v3 C.a1>a2>a3D.a1<a3<a2考向七:万有引力与抛体运动的综合(万有引力与牛顿运动定律的综合)关键是:重力加速度g(1)由黄金代换得g (2)由抛体运动或牛顿运动定律得g我国在2010年实现探月计划——“嫦娥工程”.同学们也对月球有了更多的关注.(1)若已知地球半径为R,地球表面的重力加速度为g,月球绕地球运动的周期为T,月球绕地球的运动近似看成匀速圆周运动,试求出月球绕地球运动的轨道半径.(2)若宇航员随登月飞船登陆月球后,在月球表面某处以速度v0竖直向上抛出一个小球,经过时间t,小球落回抛出点.已知月球半径为r,万有引力常量为G,试求出月球的质量M月.。