2017-2018学年高中数学考点11定积分的概念与微积分基本定理、定积分的简单应用1
- 格式:doc
- 大小:147.52 KB
- 文档页数:2
定积分与微积分基本定理一、知识梳理 1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1b -anf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛ab f (x )d x ,即⎠⎛ab f (x )d x =lim n →∞∑ni =1b -anf (ξi ). 在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质(1)⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数).(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x .(3)⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿——莱布尼茨公式.为了方便,常把F (b )-F (a )记作F (x )⎪⎪⎪b a ,即⎠⎛ab f (x )d x =F (x )⎪⎪⎪ba =F (b )-F (a ).常用结论1.定积分应用的常用结论当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零.2.若函数f (x )在闭区间[-a ,a ]上连续,则有 (1)若f (x )为偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x .(2)若f (x )为奇函数,则⎠⎛-aa f (x )d x =0. 二、习题改编1.(选修2-2P66T14改编)设f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,2x ,x <0,则⎠⎛-11f (x )d x 的值是( )A.⎠⎛-11x 2d xB .⎠⎛-112x d xC.⎠⎛-10x 2d x +⎠⎛012x d xD .⎠⎛-102x d x +⎠⎛01x 2d x解析:选D.由分段函数的定义及定积分运算性质, 得⎠⎛-11f (x )d x =⎠⎛-102x d x +⎠⎛01x 2d x .故选D.2.(选修2-2P66A 组T14改编)⎠⎛2e +11x -1d x =________. 解析:⎠⎛2e +11x -1d x =ln(x -1)|e +12=ln e -ln 1=1.答案:13.(选修2-2P55A 组T1改编)若⎠⎛0π2(sin x -a cos x )d x =2,则实数a 等于________.解析:由题意知(-cos x -a sin x )⎪⎪⎪π20=1-a =2,a =-1. 答案:-14.(选修2-2P60A 组T6改编)汽车以v =(3t +2)m/s 作变速直线运动时,在第1 s 至第2 s 间的1 s 内经过的位移是________m.解析:s =⎠⎛12(3t +2)d t =⎪⎪⎝⎛⎭⎫32t 2+2t 21 =32×4+4-⎝⎛⎭⎫32+2=10-72=132(m). 答案:132一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)设函数y =f (x )在区间[a ,b ]上连续,则⎠⎛a b f (x )d x =⎠⎛ab f (t )d t .( )(2)若f (x )是偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x .( )(3)若f (x )是奇函数,则⎠⎛-aa f (x )d x =0.( )(4)曲线y =x 2与直线y =x 所围成的区域面积是⎠⎛01(x 2-x )d x .( )答案:(1)√ (2)√ (3)√ (4)×二、易错纠偏常见误区|K(1)误解积分变量致误; (2)不会利用定积分的几何意义求定积分;(3)f (x ),g (x )的图象与直线x =a ,x =b 所围成的曲边图形的面积的表达式不清致错. 1.定积分⎠⎛-12(t 2+1)d x =________.解析:⎠⎛-12(t 2+1)d x =(t 2+1)x |2-1=2(t 2+1)+(t 2+1)=3t 2+3. 答案:3t 2+3 2.⎠⎛22-x 2d x =________解析:⎠⎛022-x 2d x 表示以原点为圆心,2为半径的14圆的面积,故⎠⎛022-x 2d x =14π×(2)2=π2.答案:π23.如图,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是________.解析:由⎩⎪⎨⎪⎧y =-x 2+2x +1,y =1,得x 1=0,x 2=2.所以S =⎠⎛02(-x 2+2x +1-1)d x =⎠⎛02(-x 2+2x )d x =⎝⎛⎭⎫-x 33+x 2⎪⎪⎪20=-83+4=43.答案:43[学生用书P53]定积分的计算(多维探究) 角度一 利用微积分基本定理求定积分计算下列定积分:(1)⎠⎛122x d x ;(2)⎠⎛0πcos x d x ;(3)⎠⎛13⎝⎛⎭⎫2x -1x 2d x . 【解】 (1)因为(ln x )′=1x ,所以⎠⎛122x d x =2⎠⎛121xd x =2ln x ⎪⎪⎪21=2(ln 2-ln 1)=2ln 2.(2)因为(sin x )′=cos x ,所以⎠⎛0πcos x d x =sin x ⎪⎪⎪π0=sin π-sin 0=0.(3)因为(x 2)′=2x ,⎝⎛⎭⎫1x ′=-1x 2,所以⎠⎛13⎝⎛⎭⎫2x -1x 2d x =⎠⎛132x d x +⎠⎛13⎝⎛⎭⎫-1x 2d x =x 2⎪⎪⎪31+1x ⎪⎪⎪31=223. 角度二 利用定积分的几何意义求定积分计算下列定积分:(1)⎠⎛011-(x -1)2d x ;(2)⎠⎛-55(3x 3+4sin x )d x .【解】 (1)根据定积分的几何意义,可知⎠⎛011-(x -1)2d x 表示的是圆(x -1)2+y 2=1的面积的14(如图中阴影部分).故⎠⎛011-(x -1)2d x =π4.(2)设y =f (x )=3x 3+4sin x ,则f (-x )=3(-x )3+4sin(-x )=-(3x 3+4sin x )=-f (x ), 所以f (x )=3x 3+4sin x 在[-5,5]上是奇函数. 所以⎠⎛-50(3x 3+4sin x )d x =-⎠⎛05(3x 3+4sin x )d x .所以⎠⎛-55(3x 3+4sin x )d x =⎠⎛-50(3x 3+4sin x )d x +⎠⎛05(3x 3+4sin x )d x =0.计算定积分的解题步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差. (2)把定积分变形为求被积函数为上述函数的定积分. (3)分别用求导公式的逆运算找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值,然后求其代数和.[提醒] 当被积函数的原函数不易求,而被积函数的图象与直线x =a ,x =b ,y =0所围成的曲边梯形的面积易求时,可利用定积分的几何意义求定积分.1.⎠⎛-11e |x |d x 的值为( )A .2B .2eC .2e -2D .2e +2解析:选C.⎠⎛-11e |x |d x =⎠⎛-10e -x d x +⎠⎛01e x d x=-e -x ⎪⎪⎪⎪1-1+e x ⎪⎪⎪⎪1=[-e 0-(-e)]+(e -e 0) =-1+e +e -1=2e -2,故选C. 2.⎠⎛01⎝⎛⎭⎫1-x 2+12x d x =________. 解析:⎠⎛01⎝⎛⎭⎫1-x 2+12x d x =⎠⎛011-x 2d x +⎠⎛0112x d x ,⎠⎛0112x d x =14,⎠⎛011-x 2d x 表示四分之一单位圆的面积,为π4,所以结果是π+14.答案:π+14利用定积分求平面图形的面积(师生共研)(一题多解)求由抛物线y 2=2x 与直线y =x -4围成的平面图形的面积. 【解】如图所示,解方程组⎩⎪⎨⎪⎧y 2=2x ,y =x -4,得两交点的坐标分别为(2,-2),(8,4).法一:选取横坐标x 为积分变量,则图中阴影部分的面积S 可看作两部分面积之和, 即S =2⎠⎛022x d x +⎠⎛28(2x -x +4)d x =18.法二:选取纵坐标y 为积分变量,则图中阴影部分的面积S =⎠⎛-24⎝⎛⎭⎫y +4-12y 2d y =18.设阴影部分的面积为S ,则对如图所示的四种情况分别有:(1)S =⎠⎛ab f (x )d x .(2)S =-⎠⎛ab f (x )d x .(3)S =⎠⎛a c f (x )d x -⎠⎛cb f (x )d x .(4)S =⎠⎛ab f (x )d x -⎠⎛a b g (x )d x =⎠⎛ab [f (x )-g (x )]d x .1.已知曲线C :y =x 2+2x 在点(0,0)处的切线为l ,则由C ,l 以及直线x =1围成的区域的面积等于________.解析:因为y ′=2x +2,所以曲线C :y =x 2+2x 在点(0,0)处的切线的斜率k =y ′|x =0=2,所以切线方程为y =2x ,所以由C ,l 以及直线x =1围成的区域如图中阴影部分所示,其面积S =⎠⎛1(x 2+2x -2x )d x =⎠⎛01x 2d x =x 33⎪⎪⎪10=13.答案:132.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,则a 的值为________.解析:f ′(x )=-3x 2+2ax +b ,因为f ′(0)=0,所以b =0,所以f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0).S 阴影=-⎠⎛a0(-x 3+ax 2)d x =112a 4=112,所以a =-1. 答案:-1定积分在物理中的应用(师生共研)(1)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( ) A .1+25ln 5 B .8+25ln113C .4+25ln 5D .4+50ln 2(2)一物体在力F (x )=⎩⎪⎨⎪⎧5,0≤x ≤2,3x +4,x >2(单位:N)的作用下沿与力F 相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )做的功为________J.【解析】 (1)令v (t )=0得,3t 2-4t -32=0, 解得t =4⎝⎛⎭⎫t =-83舍去. 汽车的刹车距离是⎠⎛04⎝⎛⎭⎫7-3t +251+t d t =[7t -32t 2+25ln(t +1)]⎪⎪⎪40 =4+25ln 5.(2)由题意知,力F (x )所做的功为W =⎠⎛04F (x )d x =⎠⎛025d x +⎠⎛24(3x +4)d x =5×2+⎝⎛⎭⎫32x 2+4x ⎪⎪⎪42 =10+⎣⎡⎦⎤32×42+4×4-⎝⎛⎭⎫32×22+4×2=36(J).【答案】 (1)C (2)36定积分在物理中的两个应用(1)求物体做变速直线运动的路程,如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功,一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .1.物体A 以v =3t 2+1(m/s)的速度在一直线l 上运动,物体B 在直线l 上,且在物体A 的正前方5 m 处,同时以v =10t (m/s)的速度与A 同向运动,出发后,物体A 追上物体B 所用的时间t (s)为( )A .3B .4C .5D .6解析:选C.因为物体A 在t 秒内行驶的路程为⎠⎛0t (3t 2+1)d t ,物体B 在t 秒内行驶的路程为⎠⎛0t 10t d t ,因为(t 3+t -5t 2)′=3t 2+1-10t ,所以⎠⎛0t (3t 2+1-10t )d t =(t 3+t -5t 2)⎪⎪⎪t0=t 3+t-5t 2=5,整理得(t -5)(t 2+1)=0,解得t =5.2.设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________J(x 的单位:m ;力的单位: N).解析:变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )d x =⎠⎛110(x 2+1)d x ,因为⎝⎛⎭⎫13x 3+x ′=x 2+1,所以原式=342(J).答案:342[学生用书P274(单独成册)][基础题组练]1.定积分⎠⎛01(3x +e x )d x 的值为( )A .e +1B .eC .e -12D .e +12解析:选D.⎠⎛01(3x +e x )d x =⎝⎛⎭⎫32x 2+e x ⎪⎪⎪10=32+e -1=12+e. 2.若f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,f (f (1))=1,则a 的值为( )A .1B .2C .-1D .-2解析:选A.因为f (1)=lg 1=0,f (0)=⎠⎛0a 3t 2d t =t 3⎪⎪⎪a 0=a 3,所以由f (f (1))=1得a 3=1,所以a =1.3.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B.因为f (x )=x 2+2⎠⎛01f (x )d x ,所以⎠⎛01f (x )d x =⎝⎛⎭⎫13x 3+2x ⎠⎛01f (x )d x |1=13+2⎠⎛01f (x )d x ,所以⎠⎛01f (x )d x =-13. 4.设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1],x 2-1,x ∈(1,2],则⎠⎛-12f (x )d x 的值为( )A.π2+43 B .π2+3C.π4+43D .π4+3解析:选A.⎠⎛-12f (x )d x =⎠⎛-111-x 2d x +⎠⎛12(x 2-1)d x =12π×12+⎝⎛⎭⎫13x 3-x ⎪⎪⎪21=π2+43,故选A.5.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( ) A.13 B .310C.14D .15解析:选A.由⎩⎨⎧y =x 2,y =x ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,所以阴影部分的面积为⎠⎛01(x -x 2)d x =13.故选A.6.定积分⎠⎛-11(x 2+sin x )d x =________.解析:⎠⎛-11(x 2+sin x )d x=⎠⎛-11x 2d x +⎠⎛-11sin x d x=2⎠⎛1x 2d x =2·x 33⎪⎪⎪10=23.答案:237.⎠⎛-11(x 2tan x +x 3+1)d x =________.解析:因为x 2tan x +x 3是奇函数.所以⎠⎛-11(x 2tan x +x 3+1)d x =⎠⎛-111d x =x |1-1=2.答案:28.一物体受到与它运动方向相反的力:F (x )=110e x +x 的作用,则它从x =0运动到x=1时F (x )所做的功等于________.解析:由题意知W =-⎠⎛01⎝⎛⎭⎫110e x +x d x=-⎝⎛⎭⎫110e x +12x 2⎪⎪⎪10=-e 10-25. 答案:-e 10-259.求下列定积分: (1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x ; (2)⎠⎛-π0(cos x +e x )d x .解:(1)⎠⎛12⎝⎛⎭⎫x -x 2+1x d x =⎠⎛12x d x -⎠⎛12x 2d x +⎠⎛121xd x =x 22⎪⎪⎪21-x 33⎪⎪⎪21+ln x ⎪⎪⎪21=32-73+ln 2=ln 2-56. (2)⎠⎛-π0(cos x +e x )d x =⎠⎛-π0cos x d x +⎠⎛-π0e x d x=sin x ⎪⎪⎪0-π+e x ⎪⎪⎪-π=1-1e π.10.已知函数f (x )=x 3-x 2+x +1,求其在点(1,2)处的切线与函数g (x )=x 2围成的图形的面积.解:因为(1,2)为曲线f (x )=x 3-x 2+x +1上的点,设过点(1,2)处的切线的斜率为k ,则k =f ′(1)=(3x 2-2x +1)|x =1=2,所以过点(1,2)处的切线方程为y -2=2(x -1),即y =2x .y =2x 与函数g (x )=x 2围成的图形如图中阴影部分所示,由⎩⎪⎨⎪⎧y =x 2,y =2x 可得交点A (2,4),O (0,0),故y =2x 与函数g (x )=x 2围成的图形的面积S =⎠⎛02(2x -x 2)d x =⎝⎛⎭⎫x 2-13x 3⎪⎪⎪20=4-83=43. [综合题组练]1.由曲线xy =1,直线y =x ,x =3所围成的封闭平面图形的面积为( )A.329B .4-ln 3C .4+ln 3D .2-ln 3解析:选B.画出平面图形,根据图形确定积分的上、下限及被积函数.由曲线xy =1,直线y =x ,x =3所围成的封闭的平面图形如图所示:由⎩⎪⎨⎪⎧xy =1,y =x ,得⎩⎪⎨⎪⎧x =1,y =1 或⎩⎪⎨⎪⎧x =-1,y =-1.(舍) 由⎩⎪⎨⎪⎧y =x ,x =3,得⎩⎪⎨⎪⎧x =3,y =3.故阴影部分的面积为⎠⎛13⎝⎛⎭⎫x -1x d x = ⎝⎛⎭⎫12x 2-ln x ⎪⎪⎪31=4-ln 3. 2.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________. 解析:⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =⎝⎛⎭⎫13ax 3+cx ⎪⎪⎪10=13a +c =f (x 0)=ax 20+c , 所以x 20=13,x 0=±33. 又因为0≤x 0≤1,所以x 0=33. 答案:33 3.⎠⎛-11(1-x 2+e x -1)d x =________. 解析:⎠⎛-11(1-x 2+e x -1)d x =⎠⎛-111-x 2d x +⎠⎛-11(e x -1)d x . 因为⎠⎛-111-x 2d x 表示单位圆的上半部分的面积, 所以⎠⎛-111-x 2d x =π2. 而⎠⎛-11(e x -1)d x =(e x -x )⎪⎪⎪1-1 =(e 1-1)-(e -1+1)=e -1e-2, 所以⎠⎛-11(1-x 2+e x -1)d x =π2+e -1e -2. 答案:π2+e -1e-2 4.若函数f (x )在R 上可导,f(x)=x 3+x 2f ′(1),则⎠⎛02f (x )d x =________. 解析:因为f (x )=x 3+x 2f ′(1),所以f ′(x )=3x 2+2xf ′(1).所以f ′(1)=3+2f ′(1),解得f ′(1)=-3.所以f (x )=x 3-3x 2.故⎠⎛02f (x )d x =⎠⎛02(x 3-3x 2)d x =⎝⎛⎭⎫x 44-x 3⎪⎪⎪20=-4. 答案:-45.如图,在曲线C :y =x 2,x ∈[0,1]上取点P (t ,t 2),过点P 作x 轴的平行线l .曲线C 与直线x =0,x =1及直线l 围成的图形包括两部分,面积分别记为S 1,S 2.当S 1=S 2时,求t 的值.解:根据题意,直线l 的方程是y =t 2,且0<t <1.结合题图,得交点坐标分别是A (0,0),P (t ,t 2),B (1,1).所以S 1=⎠⎛0t (t 2-x 2)d x =⎝⎛⎭⎫t 2x -13x 3⎪⎪⎪t 0 =t 3-13t 3=23t 3,0<t <1. S 2=⎠⎛t 1(x 2-t 2)d x =⎝⎛⎭⎫13x 3-t 2x ⎪⎪⎪1t=⎝⎛⎭⎫13-t 2-⎝⎛⎭⎫13t 3-t 3=23t 3-t 2+13,0<t <1. 由S 1=S 2,得23t 3=23t 3-t 2+13, 所以t 2=13.又0<t <1,所以t =33. 所以当S 1=S 2时,t =33.。
定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。
定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。
定积分的符号表示为∫。
对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。
定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。
二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。
这就是定积分的计算方法。
在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。
这就是黎曼和的基本思想。
2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。
对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。
这个面积就是曲线下的面积。
如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。
3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。
在物理学中,可以用定积分来计算物体的质量、质心等物理量。
对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。
其中c1、c2为常数,f1(x)、f2(x)为函数。
定积分与微积分基本定理1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1b -a nf (ξi ),当n →∞时,上述和式无限接近某个□01常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f (x )d x ,即⎠⎛a b f (x )dx =limn →∞∑n i =1b -an f (ξi ).其中f (x )称为□02被积函数,a 称为积分□03下限,b 称为积分□04上限.2.定积分的几何意义3.定积分的性质性质1:⎠⎛a b kf (x )d x =□01k ⎠⎛ab f (x )d x (k 为常数).性质2:⎠⎛a b [f (x )±g (x )]d x =□02⎠⎛a b f (x )d x ±⎠⎛abg (x )d x .性质3:⎠⎛a b f (x )d x =⎠⎛a c f (x )d x +□03⎠⎛c b f (x )d x . 4.微积分基本定理一般地,如果f (x )是在区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛a b f (x )d x=□01F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把F (b )-F (a )记为F (x )|b a ,即⎠⎛ab f (x )dx =F (x )|b a =□02F (b )-F (a ). 5.定积分与曲边梯形面积的关系设阴影部分的面积为S. (1)S =⎠⎛ab f (x )d x ;(2)S =□01-⎠⎛ab f (x )d x ;(3)S =□02⎠⎛a c f (x )d x -⎠⎛cb f (x )d x ;(4)S =⎠⎛a b f (x )d x -⎠⎛a b g (x )d x =⎠⎛a b [f (x )-g (x )]d x . 6.函数f (x )在闭区间[-a ,a ]上连续,则有: (1)若f (x )为偶函数,则⎠⎜⎛-aaf (x )d x =2⎠⎛0a f (x )d x .(2)设f (x )为奇函数,则⎠⎜⎛-aaf (x )d x =0.1.概念辨析(1)在区间[a ,b ]上连续的曲线y =f (x )和直线x =a ,x =b (a ≠b ),y =0所围成的曲边梯形的面积S =⎠⎛ab |f (x )|d x .( )(2)若⎠⎛a b f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x轴下方.( )(3)已知质点的速度v =mt (m >0),则从t =0到t =t 0质点所经过的路程是⎠⎛0to mt d t=mt 202.( )答案 (1)√ (2)× (3)√2.小题热身(1)如图,指数函数的图象过点E (2,9),则图中阴影部分的面积等于()A.8ln 3 B .8 C.9ln 3 D .9答案A答案B(3) ⎠⎛-12|x |d x =________.答案 52解析 ⎠⎛-12|x |d x 的几何意义是函数y =|x |的图象与x 轴围成的图形(如图阴影所示)的面积,所以⎠⎛-12|x |d x =12×1×1+12×2×2=52.(4)若⎠⎛0t x 2d x =9,则常数t 的值为________.答案 3解析 ⎠⎛0t x 2d x =x 33|t 0=t 33=9,解得t =3.题型 一 定积分的计算答案 C 解析。
1.定积分(1)定积分的相关概念在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.(2)定积分的几何意义①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分).②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数.(3)定积分的基本性质①∫b a kf(x)d x=k∫b a f(x)d x.②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x.③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x.[探究] 1.若积分变量为t,则∫b a f(x)d x与∫b a f(t)d t是否相等?提示:相等.2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗?提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算.3.定积分∫b a[f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么?提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积.2.微积分基本定理如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F(b)-F(a)记成F(x)|b a,即∫baf(x)d x=F(x)|b a=F(b)-F(a).[自测·牛刀小试]1.∫421x d x等于()A.2ln 2B.-2ln 2 C.-ln 2 D.ln 2解析:选D ∫421xd x =ln x |42=ln 4-ln 2=ln 2. 2.(教材习题改编)一质点运动时速度和时间的关系为V (t )=t 2-t +2,质点作直线运动,则此物体在时间[1,2]内的位移为( )A.176B.143C.136D.116解析:选A S =∫21(t 2-t +2)d t =⎝⎛⎪⎪⎭⎫13t 3-12t 2+2t 21=176. 3.(教材习题改编)直线x =0,x =2,y =0与曲线y =x 2所围成的曲边梯形的面积为________. 解析:∫20x 2d x =13x 3 |20=83. 答案:834.(教材改编题)∫101-x 2d x =________.解析:由定积分的几何意义可知,∫101-x 2d x 表示单位圆x 2+y 2=1在第一象限内部分的面积,所以∫101-x 2d x =14π. 答案:14π5.由曲线y =1x ,直线y =-x +52所围成的封闭图形的面积为________.解析:作出图象如图所示.解方程组可得交点为A ⎝⎛⎭⎫12,2,B ⎝⎛⎭⎫2,12,所以阴影部分的面积, 212⎰⎝⎛ -x +52-⎭⎫1x d x =⎝⎛⎭⎫-12x 2+52x -ln x 212=158-2ln 2. 答案:158-2ln 2[例1] 利用微积分基本定理求下列定积分:(1)∫21(x 2+2x +1)d x ;(2)∫π0(sin x -cos x )d x ;(3)∫20x (x +1)d x ;(4)∫21⎝⎛⎭⎫e 2x +1x d x ; (5)20π⎰sin 2x 2d x .[自主解答](1)∫21(x 2+2x +1)d x =∫21x 2d x +∫212x d x +∫211d x =x 33|21+x 2 |21+x |21=193. (2)∫π0(sin x -cos x )d x=∫π0sin x d x -∫π0cos x d x =(-cos x ) |π0-sin x |π0=2. (3)∫20x (x +1)d x =∫20(x 2+x )d x=∫20x 2d x +∫2x d x =13x 3 |20+12x 2 |20 =⎝⎛⎭⎫13×23-0+⎝⎛⎭⎫12×22-0=143. (4)∫21⎝⎛⎭⎫e 2x +1x d x =∫21e 2x d x +∫211x d x =12e 2x |21+ln x |21=12e 4-12e 2+ln 2-ln 1 =12e 4-12e 2+ln 2. (5)20π⎰ sin 2x 2d x =20π⎰⎝⎛⎭⎫12-12cos x d x =20π⎰12d x -1220π⎰cos x d x =12x 20π-12sin x 20π=π4-12=π-24. ———————————————————求定积分的一般步骤计算一些简单的定积分,解题的步骤是:(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差; (2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数; (4)利用牛顿—莱布尼兹公式求出各个定积分的值; (5)计算原始定积分的值.1.求下列定积分: (1)∫20|x -1|d x ; (2)20π⎰1-sin 2x d x .解:(1)|x -1|=⎩⎪⎨⎪⎧1-x , x ∈[0,1)x -1, x ∈[1,2]故∫20|x -1|d x =∫10(1-x )d x +∫21(x -1)d x=⎝⎛⎭⎫x -x 22 |10+⎝⎛⎭⎫x 22-x |21=12+12=1.(2) 20π⎰1-sin 2x d x=20π⎰|sin x -cos x |d x =40π⎰(cos x -sin x )d x +24ππ⎰(sin x -cos x )d x=(sin x +cos x )40π+(-cos x -sin x ) 24ππ=2-1+(-1+2)=22-2.[例2] ∫10-x 2+2x d x =________.[自主解答] ∫10-x 2+2x d x 表示y =-x 2+2x 与x =0,x =1及y =0所围成的图形的面积.由y =-x 2+2x 得(x -1)2+y 2=1(y ≥0), 又∵0≤x ≤1,∴y =-x 2+2x 与x =0,x =1及y =0所围成的图形为14个圆,其面积为π4.∴∫10-x 2+2x d x =π4.在本例中,改变积分上限,求∫20-x 2+2x d x 的值.解:∫20-x 2+2x d x 表示圆(x -1)2+y 2=1在第一象限内部分的面积,即半圆的面积,所以∫20-x 2+2x d x =π2.———————————————————利用几何意义求定积分的方法(1)当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分. (2)利用定积分的几何意义,可通过图形中面积的大小关系来比较定积分值的大小.2.(2013·福建模拟)已知函数f (x )=∫x 0(cos t -sin t )d t (x >0),则f (x )的最大值为________.解析:因为f (x )=∫x 02sin ⎝⎛⎭⎫π4-t d t =2cos ⎝⎛⎭⎫π4-t |x 0=2cos ⎝⎛⎭⎫π4-x -2cos π4 =sin x +cos x -1=2sin ⎝⎛⎭⎫x +π4-1≤2-1, 当且仅当sin ⎝⎛⎭⎫x +π4=1时,等号成立.[例3] (2012·山东高考)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( ) A.103 B .4 C.163D .6[自主解答] 由y =x 及y =x -2可得,x =4,即两曲线交于点(4,2).由定积分的几何意义可知,由y =x 及y =x -2及y 轴所围成的封闭图形面积为∫40(x -x +2)d x =⎝⎛⎭⎫23x 32-12x 2+2x |40=163. [答案] C若将“y =x -2”改为“y =-x +2”,将“y 轴”改为“x 轴”,如何求解?解:如图所示,由y =x 及y =-x +2可得x =1.由定积分的几何意义可知,由y =x ,y =-x +2及x 轴所围成的封闭图形的面积为∫20f (x )d x =∫1x d x +∫21(-x +2)d x =23x32 |10+⎝⎛⎭⎫2x -x 22 |21 =76.———————————————————利用定积分求曲边梯形面积的步骤(1)画出曲线的草图.(2)借助图形,确定被积函数,求出交点坐标,确定积分的上、下限. (3)将“曲边梯形”的面积表示成若干个定积分的和或差. (4)计算定积分,写出答案.3.(2013·郑州模拟)如图,曲线y =x 2和直线x =0,x =1,y =14所围成的图形(阴影部分)的面积为( )A.23 B.13 C.12D.14解析:选D 由⎩⎪⎨⎪⎧y =14,y =x 2⇒x =12或x =-12(舍),所以阴影部分面积S =120⎰⎝⎛⎭⎫14-x 2d x +112⎰⎝⎛⎭⎫x 2-14d x=⎝⎛⎭⎫14x -13x 3120+⎝⎛⎭⎫13x 3-14x 112=14.[例4] 列车以72 km/h 的速度行驶,当制动时列车获得加速度a =-0.4 m/s 2,问列车应在进站前多长时间,以及离车站多远处开始制动?[自主解答] a =-0.4 m/s 2,v 0=72 km/h =20 m/s. 设t s 后的速度为v ,则v =20-0.4t . 令v =0,即20-0.4 t =0得t =50 (s). 设列车由开始制动到停止所走过的路程为s ,则s =∫500v d t =∫500(20-0.4t )d t=(20t -0.2t 2) |500=20×50-0.2×502=500(m),即列车应在进站前50 s 和进站前500 m 处开始制动. ———————————————————1.变速直线运动问题如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≥0),那么物体从时刻t =a 到t =b 所经过的路程为∫b a v (t )d t ;如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≤0),那么物体从时刻t =a 到t =b 所经过的路程为-∫b a v (t )d t .2.变力做功问题物体在变力F (x )的作用下,沿与力F (x )相同方向从x =a 到x =b 所做的功为∫b a F (x )d x .4.一物体在力F (x )=⎩⎪⎨⎪⎧10 (0≤x ≤2)3x +4 (x >2)(单位:N)的作用下沿与力F (x )相同的方向运动了4米,力F (x )做功为( )A .44 JB .46 JC .48 JD .50 J解析:选B 力F (x )做功为∫2010d x +∫42(3x +4)d x=10x |20+⎝⎛⎪⎪⎭⎫32x 2+4x 42=20+26=46.1个定理——微积分基本定理由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算. 3条性质——定积分的性质 (1)常数可提到积分号外; (2)和差的积分等于积分的和差; (3)积分可分段进行.3个注意——定积分的计算应注意的问题(1)若积分式子中有几个不同的参数,则必须分清谁是积分变量; (2)定积分式子中隐含的条件是积分上限不小于积分下限; (3)面积非负, 而定积分的结果可以为负.易误警示——利用定积分求平面图形的面积的易错点[典例] (2012·上海高考)已知函数y =f (x )的图象是折线段ABC ,其中A (0,0),B ⎝⎛⎭⎫12,5,C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.[解析] 由题意可得f (x )=⎩⎨⎧10x ,0≤x ≤12,10-10x ,12<x ≤1,所以y =xf (x )=⎩⎨⎧10x 2,0≤x ≤12,10x -10x 2,12<x ≤1,与x 轴围成图形的面积为120⎰10x 2d x +112⎰(10x -10x 2)d x =103x 3120+⎝⎛⎭⎫5x 2-103x 3112=54. [答案] 54[易误辨析]1.本题易写错图形面积与定积分间的关系而导致解题错误.2.本题易弄错积分上、下限而导致解题错误,实质是解析几何的相关知识和运算能力不够致错. 3.解决利用定积分求平面图形的面积问题时,应处理好以下两个问题: (1)熟悉常见曲线,能够正确作出图形,求出曲线交点,必要时能正确分割图形; (2)准确确定被积函数和积分变量. [变式训练]1.由曲线y =x 2,y =x 3围成的封闭图形面积为( )A.112 B.14 C.13D.712解析:选A 由⎩⎪⎨⎪⎧y =x 2,y =x 3,得x =0或x =1,由图易知封闭图形的面积=∫10(x 2-x 3)d x =13-14=112.2.(2012·山东高考)设a >0.若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.解析:由题意∫a 0x d x =a 2.又⎝ ⎛⎭⎪⎫23x 32′=x ,即23x 32 |a 0=a 2, 即23a 32=a 2.所以a =49. 答案:49一、选择题(本大题共6小题,每小题5分,共30分) 1.∫e 11+ln x x d x =( ) A .ln x +12ln 2xB.2e -1 C.32 D.12解析:选C∫e 11+ln x xd x =⎝⎛⎭⎫ln x +ln 2x 2e 1=32. 2.(2012·湖北高考)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( )A.2π5 B.43 C.32D.π2解析:选B 由题中图象易知f (x )=-x 2+1,则所求面积为2∫10(-x 2+1)d x =2⎝⎛⎭⎫-x 33+x 1=43.3.设函数f (x )=ax 2+b (a ≠0),若∫30f (x )d x =3f (x 0),则x 0等于( ) A .±1 B. 2 C .±3D .2解析:选C ∫30f (x )d x =∫30(ax 2+b )d x =⎝⎛⎭⎫13ax 3+bx 30=9a +3b , 则9a +3b =3(ax 20+b ), 即x 20=3,x 0=±3.4.设f (x )=⎩⎪⎨⎪⎧x 2, x ∈[0,1],2-x , x ∈(1,2],则∫20f (x )d x =( )A.34 B.45 C.56D .不存在解析:选C 如图.∫20f (x )d x =∫10x 2d x +∫21(2-x )d x=13x 3 |10+⎝⎛⎭⎫2x -12x 2 |21 =13+⎝⎛⎭⎫4-2-2+12 =56. 5.以初速度40 m/s 竖直向上抛一物体,t 秒时刻的速度v =40-10t 2,则此物体达到最高时的高度为( ) A.1603 m B.803 mC.403 m D.203m 解析:选A v =40-10t 2=0,t =2,∫20(40-10t 2)d t=⎝⎛⎭⎫40t -103t 3 |20=40×2-103×8=1603(m). 6.(2013·青岛模拟)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C.32D. 3解析:选D 结合函数图象可得所求的面积是定积分33ππ-⎰cos x d x =sin x33ππ-=32-⎝⎛⎭⎫-32= 3. 二、填空题(本大题共3小题,每小题5分,共15分)7.设a =∫π0sin x d x ,则曲线y =f (x )=xa x +ax -2在点(1,f (1))处的切线的斜率为________.解析:∵a =∫π0sin x d x =(-cos x ) |π0=2,∴y =x ·2x +2x -2. ∴y ′=2x +x ·2x ln 2+2.∴曲线在点(1,f (1))处的切线的斜率k =y ′|x =1=4+2ln 2. 答案:4+2ln 28.在等比数列{a n }中,首项a 1=23,a 4=∫41(1+2x )d x ,则该数列的前5项之和S 5等于________. 解析:a 4=∫41(1+2x )d x =(x +x 2) |41=18,因为数列{a n }是等比数列,故18=23q 3,解得q =3,所以S 5=23(1-35)1-3=2423. 答案:24239.(2013·孝感模拟)已知a ∈⎣⎡⎦⎤0,π2,则当∫a 0(cos x -sin x )d x 取最大值时,a =________. 解析:∫a 0(cos x -sin x )d x =(sin x +cos x ) |a=sin a +cos a -1 =2sin ⎝⎛⎭⎫a +π4-1, ∵a ∈⎣⎡⎦⎤0,π2,∴当a =π4时,2sin ⎝⎛⎭⎫a +π4-1取最大值. 答案:π4三、解答题(本大题共3小题,每小题12分,共36分) 10.计算下列定积分: (1)20π⎰sin 2x d x ;(2)∫32⎝⎛⎭⎫x +1x 2d x ; (3)120⎰e 2x d x .解:(1)20π⎰sin 2x d x =20π⎰1-cos 2x2d x =⎝⎛⎭⎫12x -14sin 2x 20π=⎝⎛⎭⎫π4-14sin π-0=π4. (2)∫32⎝⎛⎭⎫x +1x 2d x =∫32⎝⎛⎭⎫x +1x +2d x=⎝⎛⎭⎫12x 2+2x +ln x |32=⎝⎛⎭⎫92+6+ln 3-(2+4+ln 2)=92+ln 3-ln 2=92+ln 32. (3) 120⎰e 2x d x =12e 2x 120=12e -12. 11.如图所示,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解:抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与x 轴所围图形的面积S =∫10(x -x 2)d x =⎝⎛⎭⎫x 22-13x 3 |10=16. 又⎩⎪⎨⎪⎧y =x -x 2,y =kx , 由此可得,抛物线y =x -x 2与y =kx 两交点的横坐标为x 3=0,x 4=1-k ,所以,S 2=∫1-k 0(x -x 2-kx )d x =⎝⎛⎭⎫1-k 2x 2-13x 3 |1-k 0=16(1-k )3. 又知S =16,所以(1-k )3=12, 于是k =1- 312=1-342. 12.如图,设点P 从原点沿曲线y =x 2向点A (2,4)移动,直线OP 与曲线y =x 2围成图形的面积为S 1,直线OP 与曲线y =x 2及直线x =2围成图形的面积为S 2,若S 1=S 2,求点P 的坐标.解:设直线OP 的方程为y =kx ,点P 的坐标为(x ,y ),则∫x 0(kx -x 2)d x =∫2x (x 2-kx )d x ,即⎝⎛⎭⎫12kx 2-13x 3 |x 0=⎝⎛⎭⎫13x 3-12kx 2 |2x, 解得12kx 2-13x 3=83-2k -⎝⎛⎭⎫13x 3-12kx 2, 解得k =43,即直线OP 的方程为y =43x ,所以点P 的坐标为⎝⎛⎭⎫43,169. 1.一物体做变速直线运动,其v -t 曲线如图所示,则该物体在12s ~6 s 间的运动路程为________.解析:由题图可知,v (t )=⎩⎪⎨⎪⎧ 2t (0≤t ≤1),2 (1≤t ≤3),13t +1 (3≤t ≤6),因此该物体在12s ~6 s 间运动的路程为 s =612⎰v (t )d t =112⎰2t d t +∫312d t +∫63⎝⎛⎭⎫13t +1d t =t 2112+2t |31+⎝⎛⎭⎫16t 2+t |63=494(m). 答案:494m 2.计算下列定积分:(1)31-⎰ (3x 2-2x +1)d x ;(2)∫e 1⎝⎛⎭⎫x +1x +1x 2d x . 解:(1) 31-⎰ (3x 2-2x +1)d x =(x 3-x 2+x ) 31-=24.(2)∫e 1⎝⎛⎭⎫x +1x +1x 2d x =∫e 1x d x +∫e 11x d x +∫e 11x 2d x =12x 2 |e 1+ln x |e 1-1x|e 1 =12(e 2-1)+(ln e -ln 1)-⎝⎛⎭⎫1e -11 =12e 2-1e +32. 3.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积. 解:由⎩⎨⎧ y =x ,y =2-x ,得交点A (1,1);由⎩⎪⎨⎪⎧y =2-x ,y =-13x ,得交点B (3,-1).故所求面积S =∫10⎝⎛⎭⎫x +13x d x +∫31⎝⎛⎭⎫2-x +13x d x =⎝ ⎛⎭⎪⎫23x 32+16x 2 |10+⎝⎛⎭⎫2x -13x 2 |31 =23+16+43=136. 4.某技术监督局对一家颗粒输送仪生产厂进行产品质量检测时,得到了下面的资料:这家颗粒输送仪生产厂生产的颗粒输送仪,其运动规律属于变速直线运动,且速度v (单位:m/s)与时间t (单位:s)满足函数关系式v (t )=⎩⎪⎨⎪⎧ t 2 (0≤t ≤10),4t +60 (10<t ≤20),140 (20<t ≤60).某公司拟购买一台颗粒输送仪,要求1 min 行驶的路程超过7 673 m ,问这家颗粒输送仪生产厂生产的颗粒输送仪能否被列入拟挑选的对象之一?解:由变速直线运动的路程公式,可得s =∫100t 2d t +∫2010(4t +60)d t +∫6020140d t=13t 3 |100+(2t 2+60t ) |2010+140t |6020 =7 133 13(m)<7 676(m). ∴这家颗粒输送仪生产厂生产的颗粒输送仪不能被列入拟挑选的对象之一.。
定积分与微积分基本定理1.定积分的概念在⎠⎛ab f (x )dx 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )dx 叫做被积式. 2.定积分的几何意义设函数y =f (x )在区间[a ,b ]上连续且恒有f (x )≥0,则定积分⎠⎛ab f (x )dx表示由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积. 3.定积分的性质(1)⎠⎛a b kf (x )dx =k ⎠⎛ab f (x )dx (k 为常数);(2)⎠⎛a b [f 1(x )±f 2(x )]dx =⎠⎛ab f 1(x )dx ±⎠⎛ab f 2(x )dx ;(3)⎠⎛ab f (x )dx =⎠⎛ac f (x )dx +⎠⎛cb f (x )dx (其中a <c <b ).4.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛ab f (x )dx =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿莱布尼茨公式.其中F (x )叫做f (x )的一个原函数.为了方便,常把F (b )-F (a )记作F (x )⎪⎪⎪ba ,即⎠⎛abf (x )dx =F (x )⎪⎪⎪ba =F (b )-F (a ).判断正误(正确的打“√”,错误的打“×”)(1)设函数y =f (x )在区间[a ,b ]上连续,则⎠⎛ab f (x )dx =⎠⎛ab f (t )dt .( )(2)若f (x )是偶函数,则⎠⎛-a a f (x )dx =2⎠⎛0a f (x )dx .( )(3)若f (x )是奇函数,则⎠⎛-aa f (x )dx =0.( )(4)曲线y =x 2与直线y =x 所围成的区域面积是⎠⎛01(x 2-x )dx .( )答案:(1)√ (2)√ (3)√ (4)×⎠⎛01e x dx 的值等于( )A .eB .1-eC .e -1 D.12(e -1)解析:选C.⎠⎛01e x dx =e x |10=e 1-e 0=e -1.如图,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是()A .1 B.43 C. 3 D .2解析:选B .由⎩⎨⎧y =-x 2+2x +1,y =1,得x 1=0,x 2=2.所以S =⎠⎛02(-x 2+2x +1-1)dx =⎠⎛02(-x 2+2x )dx =⎝ ⎛⎭⎪⎫-x 33+x 2|20=-83+4=43.若∫π20(sin x -a cos x )dx =2,则实数a 等于________.解析:由题意知(-cos x -a sin x )|π20=1-a =2,a =-1. 答案:-1设f (x )=⎩⎨⎧x 2,x ∈[0,1],1x ,x ∈(1,e ](e 为自然对数的底数),则⎠⎛0e f (x )dx 的值为________.解析:因为f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e ],所以⎠⎛0e f (x )dx =⎠⎛01x 2dx +⎠⎛1e 1x dx=13x 3⎪⎪⎪10+ln x ⎪⎪⎪e 1=13+ln e =43.答案:43定积分的计算[典例引领]利用微积分基本定理求下列定积分: (1)⎠⎛12(x 2+2x +1)dx ;(2)⎠⎛0π(sin x -cos x )dx ; (3)⎠⎛02|1-x |dx ;(4)⎠⎛12⎝ ⎛⎭⎪⎫e 2x +1x dx . 【解】 (1)⎠⎛12(x 2+2x +1)dx=⎠⎛12x 2dx +⎠⎛122xdx +⎠⎛121dx=x 33⎪⎪⎪21+x 2⎪⎪⎪21+x ⎪⎪⎪21=193. (2)⎠⎜⎛π(sin x -cos x )dx=⎠⎜⎛0πsin xdx -⎠⎜⎛0πcos xdx =(-cos x )⎪⎪⎪⎪π0-sin x ⎪⎪⎪⎪π0=2. (3)⎠⎛02|1-x |dx =⎠⎛01(1-x )dx +⎠⎛12(x -1)dx=⎝ ⎛⎭⎪⎫x -12x 2|10+⎝ ⎛⎭⎪⎫12x 2-x |21 =⎝ ⎛⎭⎪⎫1-12-0+⎝ ⎛⎭⎪⎫12×22-2-⎝ ⎛⎭⎪⎫12×12-1=1. (4)⎠⎛12⎝⎛⎭⎪⎫e 2x +1x dx =⎠⎛12e 2x dx +⎠⎛121x dx=12e 2x ⎪⎪⎪21+ln x ⎪⎪⎪21=12e 4-12e 2+ln 2-ln 1=12e 4-12e 2+ln 2.若本例(3)变为“⎠⎛03|x 2-1|dx ”,试求之.解:⎠⎛03|x 2-1|dx=⎠⎛01(1-x 2)dx +⎠⎛13(x 2-1)dx=⎝ ⎛⎭⎪⎫x -13x 3⎪⎪⎪10+⎝ ⎛⎭⎪⎫13x 3-x ⎪⎪⎪31 =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫6+23=223.计算定积分的解题步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差.(2)把定积分变形为求被积函数为上述函数的定积分. (3)分别用求导公式的逆运算找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值,然后求其代数和.[通关练习]1.⎠⎛-11e |x |dx 的值为( )A .2B .2eC .2e -2D .2e +2解析:选C.⎠⎜⎛-11e |x |dx =⎠⎜⎛-1e -x dx +⎠⎛01e x dx =-e -x |0-1+e x |10=[-e 0-(-e)]+(e -e 0)=-1+e +e -1=2e -2,故选C .2.若⎠⎛01(x +mx )dx =0,则实数m 的值为( )A .-13B .-23C .-1D .-2解析:选B.由题意知⎠⎛01(x 2+mx )dx =⎝ ⎛⎭⎪⎫x 33+m x 22|10=13+m2=0,得m =-23.3.(优质试题·泉州模拟)⎠⎛01⎝⎛⎭⎪⎫1-x 2+12x dx =________.解析:⎠⎛01⎝⎛⎭⎪⎫1-x 2+12x dx =⎠⎛011-x 2dx +⎠⎛0112xdx ,⎠⎛0112xdx =14,⎠⎛011-x 2dx 表示四分之一单位圆的面积,为π4,所以结果是π+14.答案:π+14利用定积分计算平面图形的面积(高频考点)利用定积分计算平面图形的面积是近几年高考考查定积分的一个重要考向;主要以选择题、填空题的形式出现,一般难度较小.高考对定积分求平面图形的面积的考查有以下两个命题角度: (1)根据条件求平面图形的面积;(2)利用平面图形的面积求参数.[典例引领]角度一 根据条件求平面图形的面积(优质试题·新疆第二次适应性检测)由曲线y =x 2+1,直线y =-x +3,x 轴正半轴与y 轴正半轴所围成图形的面积为( ) A .3 B.103 C.73D.83【解析】 由题可知题中所围成的图形如图中阴影部分所示,由⎩⎨⎧y =x 2+1y =-x +3,解得⎩⎨⎧x =-2y =5(舍去)或⎩⎨⎧x =1,y =2,即A (1,2),结合图形可知,所求的面积为⎠⎛01(x 2+1)dx +12×22=⎝ ⎛⎭⎪⎫13x 3+x |10+2=103,选B .【答案】B角度二 利用平面图形的面积求参数已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,则a 的值为________.【解析】 f ′(x )=-3x 2+2ax +b ,因为f ′(0)=0,所以b =0,所以f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0).S 阴影=-⎠⎛a0(-x 3+ax 2)dx =112a 4=112,所以a =-1. 【答案】 -1用定积分求平面图形面积的四个步骤(优质试题·山西大学附中第二次模拟)曲线y =2sinx (0≤x ≤π)与直线y =1围成的封闭图形的面积为________. 解析:令2sin x =1,得sin x =12, 当x ∈[0,π]时,得x =π6或x =5π6,所以所求面积S =⎠⎜⎛π65π6 (2sin x -1)dx =(-2cos x -x ) ⎪⎪⎪5π6π6=23-2π3.答案:23-2π3定积分在物理中的应用[典例引领]设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________J (x 的单位:m ;力的单位:N ).【解析】 变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )dx =⎠⎛110(x 2+1)dx=⎝ ⎛⎭⎪⎫13x 3+x ⎪⎪⎪101=342(J ). 【答案】342定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )dt .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )dx .以初速40 m /s 竖直向上抛一物体,t s 时刻的速度v =40-10t 2,则此物体达到最高时的高度为( ) A.1603 m B.803 m C.403 mD.203 m解析:选A.由v =40-10t 2=0, 得t 2=4,t =2.所以h =⎠⎛02(40-10t 2)dt =⎝ ⎛⎭⎪⎫40t -103t 3⎪⎪⎪20=80-803=1603(m).求定积分的方法(1)利用微积分基本定理求定积分步骤如下: ①求被积函数f (x )的一个原函数F (x ); ②计算F (b )-F (a ).(2)利用定积分的几何意义求定积分.求曲边多边形面积的步骤(1)画出草图,在直角坐标系中画出曲线或直线的大致图形. (2)借助图形确定被积函数,求出交点坐标,确定积分的上限、下限. (3)将曲边梯形的面积表示为若干个定积分之和. (4)计算定积分.易错防范(1)若积分式子中有几个不同的参数,则必须先分清谁是积分变量. (2)定积分式子中隐含的条件是积分上限大于积分下限.(3)定积分的几何意义是曲边梯形的面积,但要注意:面积为正,而定积分的结果可以为负.1.定积分⎠⎛01(3x +e x )dx 的值为( )A .e +1B .eC .e -12D .e +12。
定积分、微积分基本定理1.定积分、微积分基本定理【定积分】定积分就是求函数在区间中图线下包围的面积.即由所围成图(f X)[a,b] y=0,x=a,x=b,y=(f X)形的面积.这个图形称为曲边梯形,特例是曲边三角形,表示的是一个面积,是一个数.定积分的求法:求定积分首先要确定定义域的范围,其次确定积分函数,最后找出积分的原函数然后求解,这里以例题为例.【微积分基本定理】在高等数学中对函数的微分、积分的研究和对相关概念及用途的数学称作微积分.积分学、极限、微分学及其应用是微积分的主要内容.微积分也称为数学分析,用以研究事物运动时的变化和规律.在高等数学学科中,微积分是一个基础学科.其中,微积分的核心(基本)定理是푏푎F(x)=(f x)(f x)푓(푥)푑푥= 퐹(푏)―퐹(푎),其中,而必须在区间(a,b)内连续.2例 1:定积分|3 ―2푥|푑푥=1解:1 | 3﹣2x | dx2=321(3 ―2푥)푑푥+232(2푥―3)푑푥3=(﹣2)1 +(x2﹣3x)|233x x |221/ 2=12通过这个习题我们发现,第一的,定积分的表示方法,后面一定要有;第二,每一段对应的被积分函数的表dx达式要与定义域相对应;第三,求出原函数代入求解.例 2:用定积分的几何意义,则39 ―푥2푑푥.―3解:根据定积分的几何意义,则39 ―푥2푑푥表示圆心在原点,半径为3的圆的上半圆的面积,―3故3―39 ―푥2푑푥=12 × 휋× 32 =9휋.2这里面用到的就是定积分表示的一个面积,通过对被积分函数的分析,我们发现它是个半圆,所以可以直接求他的面积.【考查】定积分相对来说比较容易,一般以选择、填空题的形式出现,这里要熟悉定积分的求法,知道定积分的含义,上面两个题代表了两种解题思路,也是一般思路,希望同学们掌握.2/ 2。
1.定积分的概念在ʃb a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.2.定积分的性质(1)ʃb a kf(x)d x=kʃb a f(x)d x(k为常数);(2)ʃb a[f1(x)±f2(x)]d x=ʃb a f1(x)d x±ʃb a f2(x)d x;(3)ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b).3.微积分基本定理一般地,如果f(x)是区间[a,b]上的连续函数,且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,常把F(b)-F(a)F(x)|b a,即ʃb a f(x)d x=F(x)|b a=F(b)-F(a).【知识拓展】1.定积分应用的常用结论当曲边梯形位于x轴上方时,定积分的值为正;当曲边梯形位于x轴下方时,定积分的值为负;当位于x轴上方的曲边梯形与位于x轴下方的曲边梯形面积相等时,定积分的值为零.2.函数f(x)在闭区间[-a,a]上连续,则有(1)若f(x)为偶函数,则ʃa-a f(x)d x=2ʃa0f(x)d x.(2)若f(x)为奇函数,则ʃa-a f(x)d x=0.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)设函数y=f(x)在区间[a,b]上连续,则ʃb a f(x)d x=ʃb a f(t)d t.(√)(2)若函数y=f(x)在区间[a,b]上连续且恒正,则ʃb a f(x)d x>0.(√)(3)若ʃb a f(x)d x<0,那么由y=f(x),x=a,x=b以及x轴所围成的图形一定在x轴下方.(×)(4)微积分基本定理中的F(x)是唯一的.(×)(5)曲线y=x2与y=x所围成图形的面积是ʃ10(x2-x)d x.(×)。
考点11 定积分的概念与微积分基本定理、定积分的简单应用 填空题
1 .(2015·天津高考理科·T11)曲线y=x 2
与直线y=x 所围成的封闭图形的面积为 .
【解析】两曲线的交点坐标为(0,0),(1,1),所以它们所围成的封闭图形的面积 ()1
122300111236S x x dx x x ⎛⎫=-=-= ⎪⎝⎭⎰ 答案:
2.(2015·山东高考理科·T13)执行如图所示的程序框图,输出的T 的值为
.
【解题指南】本题将定积分和程序框图相结合很有新意.
【解析】因为10d n T T x x =+⎰,其中1
11001d 11n n x x x n n +==++⎰,所以1111,1;2,1;3223n T n T n ==+==++=时,输出116
T =. 答案:116
. 3.(2015·陕西高考理科·T16)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为
.
【解题指南】建立直角坐标系,求出抛物线方程,然后利用定积分求出泥沙沉积的横截面面积,求出梯形面积,即可推出结果.
【解析】如图:
建立平面直角坐标系,设抛物线方程为:y=ax2,因为抛物线经过(5,2),可得a=, 所以抛物线方程:y=x2,
横截面为等腰梯形的水渠,泥沙沉积的横截面的面积为:
2(x2-×2×2)=2(x3|-2)=,
等腰梯形的面积为:×2=16,当前最大流量的横截面的面积为16-,
原始的最大流量与当前最大流量的比值为:=1.2.
答案:1.2。