高中数学人教版选修2-2导数及其应用(定积分)知识点总结
- 格式:doc
- 大小:202.18 KB
- 文档页数:3
庖丁巧解牛知识·巧学一、定积分在几何中的应用定积分可以用来计算曲边梯形的面积,某些曲面面积可以表示成几个曲边梯形面积的和或差的形式,因此也可以用定积分来计算.知识拓展 求面积的解题步骤:①画出图形; ②确定图形范围,定出积分的上、下限;③确定被积函数,注意分清被积函数的上、下位置; ④写出平面图形面积的定积分表达式;⑤运用微积分基本公式计算定积分,求出平面图形的面积. 二、定积分在物理中的应用 1.变速直线运动的路程物体做变速直线运动经过的路程s,等于其速度函数v=v(t)〔v(t)≥0〕在时间区间[a,b ]上的定积分,即s=⎰badt t v )(.方法点拨 变速直线运动的速度函数往往是分段函数.所以求积分时要利用定积分的性质将其分成几段积分的和. 2.变力做功如果力是变力F(x)(F 是x 的函数),那么,物体沿着与F 相同的方向从x=a 移动到x=b 时,力F 做的功W=⎰badx x F )(.深化升华 只有当物体沿着与F 相同的方向从x=a 移动到x=b 时,力F 做的功才是W=⎰badx x F )(.当方向不同时,算法不同.问题·探究问题1 被积函数f(x)在区间[a,b ]上恒为正值时(如图1-7-2),定积分⎰badx x f )(表示什么呢?图1-7-2思路:本题考查定积分的几何意义,可以利用定积分来表示曲边梯形的面积. 探究:表示曲边梯形AMNB 的面积. 问题2 计算下列定积分:⎰⎰⎰ππππ2020sin ,sin ,sin xdx xdx xdx ,由计算结果你能发现什么结论?思路:利用微积分基本定理,计算曲边梯形的面积,从中发现结论. 探究:因为(-cosx)′=sinx, 所以⎰πsin xdx =(-cosx)π0=(-cosπ)-(-cos0)=2;⎰ππ2sin xdx =(-cosx)π20=(-cos2π)-(-cosπ)=-2;⎰π20sin xdx =(-cosx)π20=(-cos2π)-(-cos0)=0.由以上结果可以发现,定积分的值可能取正值,可能取负值,也可能取0.(1)当对应的曲边梯形位于x 轴上方时,定积分的值取正值,且等于曲边梯形的面积;(2)当对应的曲边梯形位于x 轴下方时,定积分的值取负值,且等于曲边梯形的面积的相反数; (3)当位于x 轴上方的曲边梯形面积等于位于x 轴下方的曲边梯形面积时,定积分的值为0. 典题·热题例1如图1-7-3,求直线y=2x+3与抛物线y=x 2所围成的图形的面积.图1-7-3思路分析:从图形可以看出,所求图形的面积可以转化为一个梯形与一个曲边梯形面积的差,进而可以用定积分求出面积.为了确定被积函数和积分的上,下限,我们需要求出两条曲线交点的横坐标.解:由方程组⎩⎨⎧=+=2,32xy x y 2可得x 1=-1,x 2=3. 故所求图形的面积为S=33231)3()32(31331231231=-+=-+----⎰⎰x x x dx x dx x . 深化升华 求平面图形面积的一般步骤是: ①画图,并将图形分割成若干曲边梯形;②对每个曲边梯形确定其存在的范围,从而确定积分上限和下限; ③确定被积函数;④求出各曲边梯形的面积和,即各积分的绝对值之和. 拓展延伸 求由曲线y 2=x 和y=x 2所围成图形的面积.解:如图1-7-4,为了确定图形的范围,先求出这两条曲线的交点的横坐标.由⎪⎩⎪⎨⎧==22,xy x y 得出交点的横坐标为x=0及x=1.图1-7-4所以所求图形的面积为S=313132)3132(103231021=-=-=-⎰⎰x x dx x dx x . 例2求椭圆⎩⎨⎧==tb y t a x sin ,cos (0≤t≤2π)的面积.思路分析:椭圆是中心对称图形,故只需算出第一象限内的面积,再乘以4就是椭圆的面积. 解:如图1-7-5所示,椭圆在第一象限的面积图1-7-5P=4)22sin (2sin )sin (sin )cos (sin 022020220abt t ab tdt ab dt t a t b t a td b ydx aπππππ=-==-∙==⎰⎰⎰⎰所以S=4P=πab.例3一辆汽车的速度—时间曲线图如图1-7-6所示,求此汽车在这1 min 内行驶的路程.图1-7-6思路分析:由速度—时间曲线图可写出速度函数的表达式,进而运用公式可求得路程s. 解:由速度—时间曲线易知,v(t)=⎪⎩⎪⎨⎧∈+-∈∈].0640[,905.1]4010[,30]101[,3,;,,;,t t t t t 由变速直线运动的路程公式可得s=dt t dt tdt ⎰⎰⎰+-++6040401010)905.1(303604024010100)9043(3023t t t +-++==1 350(m).答:此汽车在这1 min 内行驶的路程是1 350 m. 方法归纳 ①由定积分的几何意义知,⎰badt t v )(表示由曲线v=v(t),直线t=a,t=b 及v=0围成图形的面积.故有以下解法:由定积分的几何意义知,此汽车在这1 min 行驶的路程s 等于梯形OABC 的面积, 即s=S 梯形OABC =230)6030(⨯+=1 350(m).②变速直线运动的路程:物体做变速直线运动经过的路程s,等于其速度函数v=v(t)〔v(t)≥0〕在时间区间[a,b ]上的定积分,即s=⎰badt t v )(.拓展延伸 某技术监督局对一家颗粒输送仪生产厂进行产品质量检测时,发现该厂生产的颗粒输送仪,其运动规律属于变速直线运动,且速度v(单位:m/s)与时间t(单位:s)满足函数关系:v(t)=⎪⎩⎪⎨⎧≤≤≤≤+≤≤.6020,140,2010,604,100,2t t t t t 某公司拟购买一台颗粒输送仪,要求1 min 行驶的路程超过7673 m,问该厂生产的颗粒输送仪能否被列入拟挑选的对象之一?思路分析:必须首先利用定积分将这家生产厂生产的颗粒输送仪1 min 行驶的路程计算出来,再与7 673作比较得出结论.解:由变速直线运动的路程公式有s=x t t t t dt dt t dt t 6020201021003602020101002140)602(31140)604(+++=+++⎰⎰⎰=7 13331(m)<7 673(m).答:不可以列入.例4一物体在力F(x)=2 004x+1(单位:N)的作用下,沿与力F 相同的方向,从x=1处运动到x=2处,求力F 做的功. 思路分析:力F 做的功就是⎰21)(dx x F解:W=⎰+21)12004(dx x =(1 002x 2+x)21=3 007(J).答:力F 所做的功为3 007 J.深化升华 应用问题最后要还原到题目中去用文字作答.例5设有一长为25 cm 的弹簧,若加以100 N 的力,则弹簧伸长到30 cm,求使弹簧伸长到40 cm 所做的功.思路分析:因为弹簧的力是一个变力,所以不能用常规方法解,要用定积分去求解. 解:设x 表示弹簧伸长的厘米数,F(x)表示加在弹簧上的力,则F(x)=kx. 依题意,使弹簧伸长5 cm,需要的力是100 N, 即100=5k,k=20,于是F(x)=20x. 现在需计算由x=0到x=15所做的功:W=1502151020x xdx =⎰2 250(N·cm).深化升华 本题考的是求变力所做的功:一物体在力F 的作用下,沿着与力F 相同的方向移动了s,则F 所做的功为W=Fs.如果力是变力F(x),由定积分的定义,物体沿与F 相同的方向从x=a 移到x=b 时,则力F 所做的功是W=⎰badx x F )(.例6列车以72 km/h 的速度行驶,当制动时列车获得加速度a=-0.4 m/s 2,问列车应在进站前多长时间以及离车站多远处开始制动?思路分析:因列车停在车站时,速度为0,故应先求速度的表达式,之后令v=0,求出t,再据v 和t 应用定积分计算出路程.解:已知列车的速度v 0=72 km/h=20 m/s,列车制动时获得的加速度a=-0.4 m/s 2.设列车由开始制动到经过t 秒后的速度为v,则v=v 0+⎰tadt 0=20-⎰tdt 04.0=20-0.4t.令v=0得t=50(s).设列车由开始制动到停止所走过的路程为s, 则有s=⎰⎰-=5050)4.020(t vdt dt=500(m).答:列车应在到站前50 s,离车站500 m处开始制动.。
1.7.2 定积分在物理中的应用1.通过具体实例了解定积分在物理中的应用.2.会求变速直线运动的路程、位移和变力做功问题.利用定积分求变速直线运动的路程和位移时,应如何区分路程和位移?【做一做1】 已知自由下落物体的速度为v =gt ,则物体从t =0到t =t 0所走过的路程为( )A.13gt 20B .gt 20 C.12gt 20 D.14gt 20【做一做2】 一物体在F (x )=5x +3(单位:N)的作用下,沿与力F 相同的方向,从x =0处运动到x =5(单位:m)处,则F (x )做的功等于( )A .75 JB .77.5 JC .79.5 JD .80 J答案:s =∫b a v (t )d t W =∫b a F (x )d x思考探究提示:分清运动过程中物体运动的变化情况,即找出v (t )≥0的时间段及v (t )<0的时间段,然后分别求积分即求各段上的位移.而路程是各段位移的绝对值之和.【做一做1】 C s =00220001d 22t t t gt t g gt ⎛⎫=⋅= ⎪⎝⎭⎰.故选C. 【做一做2】 B W =∫50F (x )d x =∫50(5x +3)d x=⎝⎛⎭⎫5x 22+3x |50=1252+15=77.5(J).故选B.1.在变速直线运动中,如何求路程、位移?剖析:用定积分解决变速直线运动的位移与路程的问题时,分清运动过程中的变化情况是解题的关键,做变速直线运动的物体所经过的路程是位移的绝对值之和,从时刻t =a 到时刻t =b 所经过的路程s 和位移s 1分别为(1)若v(t)≥0(a≤t≤b),则s=∫b a v(t)d t,s1=∫b a v(t)d t.(2)若v(t)≤0(a≤t≤b),则s=-∫b a v(t)d t,s1=∫b a v(t)d t.(3)在区间[a,c]上v(t)≥0,在区间[c,b]上v(t)<0,则s=∫c a v(t)d t-∫b c v(t)d t,s1=∫b a v(t)d t.对于给出速度—时间曲线的问题,关键是由图象得到速度的解析式及积分的上、下限,需要注意是分段函数的要分段求路程,然后求和.2.如何求变力做功?剖析:(1)求变力做功,要根据物理学的实际意义,求出变力F的表达式,这是求功的关键.(2)由功的物理意义,已知物体在变力F(x)的作用下,沿力F(x)的方向做直线运动,使物体从x=a移到x=b(a<b).因此,求功之前还应求出位移的起始位置与终止位置.(3)根据变力做功公式W=∫b a F(x)d x即可求出变力F(x)所做的功.求变力做功时,要注意单位,F(x)的单位为N,x的单位为m.题型一求变速直线运动的路程、位移【例题1】有一动点P沿x轴运动,在时间t时的速度为v(t)=8t-2t2(速度的正方向与x轴正方向一致).求:(1)点P从原点出发,当t=6时,求点P离开原点的路程和位移;(2)点P从原点出发,经过时间t后又返回原点时的t值.分析:(1)解不等式v(t)>0或v(t)<0→确定积分区间→求t=6时的路程以及位移(2)求定积分∫t0v(t)d t→令∫t0v(t)d t=0,求t反思:(1)用定积分解决变速直线运动的位移和路程问题时,将物理问题转化为数学问题是关键.(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间,然后分别计算,否则会出现计算失误.如本例第(1)小题求解时,易出现路程和位移相同的错误.题型二求变力所做的功【例题2】设有一长25 cm的弹簧,若加以100 N的力,则弹簧伸长到30 cm,又已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求使弹簧由25 cm伸长到40 cm所做的功.分析:先根据拉长弹簧所用的力与其伸长的长度成正比求拉力F(x)的表达式,然后用积分求变力做功.反思:解决变力做功注意以下两个方面:①首先要将变力用其方向上的位移表示出来,这是关键的一步.②根据变力做功的公式将其转化为求定积分的问题.题型三利用定积分求解其他物理问题【例题3】A,B两站相距7.2 km,一辆电车从A站开往B站,电车开出t s后到达途中C点,这一段速度为1.2t(m/s),到C点速度达24 m/s,从C点到B站前的D点也以1.2 t(m/s)的速度行驶,从D点开始刹车,经t s后,速度为(24-1.2t)m/s.在B点恰好停车,试求:(1)A ,C 间的距离;(2)B ,D 间的距离;(3)电车从A 站到B 站所需的时间.分析:做变速运动的物体所经过的路程s ,等于其速度函数v =v (t ),v (t )≥0在时间区间[a ,b ]上的积分,即s =∫b a v (t )d t .需根据题意写出函数v =v (t ),确定时间区间,用定积分求解.反思:本题是利用定积分解决物理问题,分清运动过程中的变化情况是解题的关键.答案:【例题1】 解:(1)由v (t )=8t -2t 2≥0,得0≤t ≤4,即当0≤t ≤4时,P 点向x 轴正方向运动,当t >4时,P 点向x 轴负方向运动.故t =6时,点P 离开原点的路程为s 1=∫40(8t -2t 2)d t -∫64(8t -2t 2)d t=⎝⎛⎭⎫4t 2-23t 3|40-⎝⎛⎭⎫4t 2-23t 3|64=1283. 当t =6时,点P 的位移为∫60(8t -2t 2)d t =⎝⎛⎭⎫4t 2-23t 3|60=0. (2)依题意∫t 0(8t -2t 2)d t =0,即4t 2-23t 3=0,解得t =0或t =6, t =0对应于P 点刚开始从原点出发的情况,t =6是所求的值.【例题2】 解:设x 表示弹簧伸长的量(单位:m),F (x )表示加在弹簧上的力(单位:N). 由题意,得F (x )=kx ,且当x =0.05 m 时,F (0.05)=100 N ,即0.05k =100,∴k =2 000.∴F (x )=2 000x .∴将弹簧由25 cm 伸长到40 cm 时所做的功为W =∫0.150 2 000x d x =1 000x 2|0.150=22.5(J).【例题3】 解:设A 到C 经过t 1 s ,由1.2t =24得t 1=20(s),∴AC =∫2001.2t d t =0.6t 2|200=240(m).(2)设从D →B 经过t 2 s ,由24-1.2t 2=0得t 2=20(s),∴DB =∫200(24-1.2t )d t =240(m).(3)CD =7 200-2×240=6 720(m).从C 到D 的时间为t 3=6 72024=280(s). 于是所求时间为20+280+20=320(s).1一质点沿直线以v =3t +2(t 的单位:s ,v 的单位:m/s)的速度运动,则该质点在第3 s 到第6 s 间的运动路程为( )A .46 mB .46.5 mC .87 mD .47 m2一物体在力F (x )=3x 2-2x +5(力的单位:N ,位移的单位:m)作用下沿与力F (x )相同的方向由x =5 m 直线运动到x =10 m 处,作用力F (x )所做的功为( )A .925 JB .850 JC .825 JD .800 J3一物体在力F (x )=15-3x 2(力的单位:N ,位移的单位:m)作用下沿与力F (x )成30°角的方向由x =1直线运动到x =2处,作用力F (x )所做的功为( )B. C.D.J 24一物体以v (t )=t 2-3t +8(m/s)的速度运动,则其在前30 s 内的平均速度为________.5一物体在力F (x )(单位:N)的作用下沿与力F 相同的方向运动,力—位移曲线如图所示.求该物体从x =0处运动到x =4(单位:m)处,力F (x )做的功.答案:1.B S =66263333d (32)d 22v t t t t t ⎛⎫=+=+ ⎪⎝⎭⎰⎰ =223362632322⎛⎫⎛⎫⨯+⨯-⨯+⨯ ⎪ ⎪⎝⎭⎝⎭=46.5(m).2.C W =105()d F x x ⎰=102321055(325)(5)x x x x x -+=-+⎰=(103-102+5×10)-(53-52+5×5)=825(J).3.C W=22232111()cos30d (153)d )F x x x x x x ︒=-=-⎰=[(30-8)-(15-1)]=.4.263 m/s 由定积分的物理意义,得s =30232300013(38)d 832t t t t t t ⎛⎫-+=-+ ⎪⎝⎭⎰ =7 890(m),789030s v t ===263(m/s). 5.分析:先根据图象确定力关于位移的函数关系式,再利用定积分求解.解:由力—位移曲线可知F (x )=1023424x x x ⎧⎨+<⎩≤≤≤﹐0﹐﹐﹐因此该物体从x =0处运动到x =4处力F (x )做的功为242240202310d (34)d 10446(J)2x x x x x x ⎛⎫++=++= ⎪⎝⎭⎰⎰.。
定积分的概念及其简单应用知识集结知识元定积分的应用知识讲解1.定积分的应用【应用概述】正如前面定积分的概念哪里所说,定积分表示的是一个面积,是一个大于零的数.那么它在实际当中的应用也就和求面积相关.例1:定积分|sin x|dx的值是.解:|sin x|dx==﹣cos x+cos x=1+1+0﹣(﹣1)=3.这个题如果这样子出,|sin x|在区间(0,)上与x轴所围成的面积,那么就成了一个应用题.如何解这类应用题呢?其实就是构建一个定积分,找到区间和要积分的函数即可.【定积分在求面积中的应用】1、直角坐标系下平面图形的面积2、极坐标系下平面图形的面积由连续曲线r=r(θ)及射线θ=α,θ=β所围成的平面图形的面积(图6)为3、用定积分求平面图形的面积的步骤a)根据已知条件,作出平面图形的草图;根据图形特点,恰当选取计算公式;b)解方程组求出每两条曲线的交点,以确定积分的上、下限;c)具体计算定积分,求出图形的面积.例题精讲定积分的应用例1.直线x=1,x=e与曲线y=围成的面积是()A.B.C.D.例2.由曲线,直线y=x所围成的封闭图形的面积是()A.B.C.D.1例3.抛物线y=x2-1与直线y=x+1所围成的平面图形的面积是()A.B.C.5D.用定积分研究简单几何体的体积知识讲解1.用定积分求简单几何体的体积【知识点的知识】1、已知平行截面面积的立体的体积2、旋转体的体积例题精讲用定积分研究简单几何体的体积例1.祖暅原理也称祖氏原理,是我国数学家祖暅提出的一个设计集合求积的著名命题:“幂势既同,则积不容异”,“幂”是截面积,“势”是几何体的高,意思是两个同高的立体,如在等高处截面积相等,则体积相等.由曲线x2=4y,x2=-4y,x=4,x=-4围成图形绕y轴旋转一周所得为旋转体的体积为V1:满足x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的点(x,y)组成的图形绕y轴旋转一周所得旋转体的体积为V2,则()A.V1=V2B.V1=V2C.V1=V2D.V1=2V2例2.曲线y=e x,直线x=0,x=与x轴围成的平面图形绕x轴旋转一周得到旋转体的体积是()A.B.C.D.例3.曲线y=x2和y2=x所围成的平面图形绕x轴旋转一周后,所形成的旋转体的体积为()A.B.C.D.。
数学选修2-2导数及其应用(定积分)知识点必记
1.函数的平均变化率是什么? 答:平均变化率为
=
∆∆=∆∆x
f
x y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 注1:其中x ∆是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念是什么?
答:函数)(x f y =在0x x =处的瞬时变化率是x
x f x x f x y
x x ∆-∆+=∆∆→∆→∆)()(lim
lim
0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x
x f x x f x y
x x ∆-∆+=∆∆→∆→∆)()(lim
lim
0000. 3.平均变化率和导数的几何意义是什么?
答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。
4导数的背景是什么?
答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。
答:若()f x ,()g x 均可导(可积),则有:
答:①求函数f (x )的导数'()f x
②令'()f x >0,解不等式,得x 的范围就是递增区间. ③令'()f x <0,解不等式,得x 的范围,就是递减区间; 注:求单调区间之前一定要先看原函数的定义域。
7.求可导函数f (x )的极值的步骤是什么?
答:(1)确定函数的定义域。
(2) 求函数f (x )的导数'()f x
(3)求方程'()f x =0的根
(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/()f x 在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值
8.利用导数求函数的最值的步骤是什么?
答:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;
⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。
注:实际问题的开区间唯一极值点就是所求的最值点; 9.求曲边梯形的思想和步骤是什么?
答:分割→近似代替→求和→取极限 (“以直代曲”的思想) 10.定积分的性质有哪些?
根据定积分的定义,不难得出定积分的如下性质: 性质1
a b dx b
a
-=⎰1
性质5 若[]b a x x f ,,0)(∈≥,则0)(≥⎰b a
dx x f
①推广:1212[()()()]()()()b
b b
b
m m a
a
a
a
f x f x f x dx f x dx f x dx f x ±±
±=±±
±⎰⎰⎰⎰
②推广:12
1
()()()()k
b
c c b
a
a
c c f x dx f x dx f x dx f x dx =++
+⎰⎰⎰⎰
11定积分的取值情况有哪几种?
答:定积分的值可能取正值,也可能取负值,还可能是0.
( l )当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于x 轴上方的图形面积;
(2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于x 轴上方图形面积的相反数;
(3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于x 轴上方图形的面积减去下方的图形的面积.
12.物理中常用的微积分知识有哪些? 答:(1)位移的导数为速度,速度的导数为加速度。
(2)力的积分为功。