(完整版)高中数学人教版选修2-2导数及其应用(定积分)知识点总结,推荐文档
- 格式:pdf
- 大小:200.78 KB
- 文档页数:3
高中数学定积分知识点总结篇一:高中数学定积分知识点数学选修2-2知识点总结一、导数1.函数的平均变化率为f?ff?f?y?f???x?xx2?x1?x注1:其中?x是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念:函数y?f在x?x0处的瞬时变化率是limf?f?y则?lim?x?0?x?x?0?x称函数y?f在点x0处可导,并把这个极限叫做y?f在x0处的导数,记作f'或y'|x?x0,即f'=limf?f?y. ?lim?x?0?x?x?0?x3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。
4导数的背景(1)切线的斜率;(2)瞬时速度;6、常见的导数和定积分运算公式:若f?x?,g?x?均可导(可积),则有:用导数求函数单调区间的步骤: ①求函数f的导数f'②令f'>0,解不等式,得x的范围就是递增区间. ③令f'篇二:高中数学人教版选修2-2导数及其应用知识点总结数学选修2-2导数及其应用(定积分)知识点必记1.函数的平均变化率是什么?答:平均变化率为f?ff?f?y?f???x?xx2?x1?x注1:其中?x是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念是什么?答:函数y?f在x?x0处的瞬时变化率是limf?f?y则称?lim?x?0?x?x?0?x函数y?f在点x0处可导,并把这个极限叫做y?f在x0处的导数,记作f'或y'|x?x0,即f'=limf?f?y. ?lim?x?0?x?x?0?x3.平均变化率和导数的几何意义是什么?答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。
4导数的背景是什么?答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。
人教版高中数学选修2-2知识点梳理重点题型(常考知识点)巩固练习《导数及其应用》全章复习与巩固【学习目标】1. 会利用导数解决曲线的切线的问题.2. 会利用导数解决函数的单调性等有关问题.3. 会利用导数解决函数的极值、最值等有关问题.4. 能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问题【知识网络】【要点梳理】要点一:有关切线问题直线与曲线相切,我们要抓住三点: ①切点在切线上; ②切点在曲线上;③切线斜率等于曲线在切点处的导数值. 要点诠释:通过以上三点可以看出,抓住切点是解决此类题的关键,有切点直接求,无切点则设切点,布列方程组.要点二:有关函数单调性的问题设函数()y f x =在区间(a ,b )内可导,(1)如果恒有'()0f x >,则函数()f x 在(a ,b )内为增函数; (2)如果恒有'()0f x <,则函数()f x 在(a ,b )内为减函数; (3)如果恒有'()0f x =,则函数()f x 在(a ,b )内为常数函数. 要点诠释:(1)若函数()f x 在区间(a ,b )内单调递增,则'()0f x ≥,若函数()f x 在(a ,b )内单调递减,则'()0f x ≤.(2)'()0f x ≥或'()0f x ≤恒成立,求参数值的范围的方法: ① 分离参数法:()m g x ≥或()m g x ≤.② 若不能隔离参数,就是求含参函数(,)f x m 的最小值min (,)f x m ,使min (,)0f x m ≥. (或是求含参函数(,)f x m 的最大值max (,)f x m ,使max (,)0f x m ≤) 要点三:函数极值、最值的问题 函数极值的问题(1)确定函数的定义域; (2)求导数)(x f '; (3)求方程0)(='x f 的根;(4)检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点诠释: ①先求出定义域②一般都要列表:然后看在每个根附近导数符号的变化:若由正变负,则该点为极大值点; 若由负变正,则该点为极小值点.注意:无定义的点不用在表中列出③根据表格给出结论:注意一定指出在哪取得极值. 函数最值的问题若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下:(1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根;(3)求在),(b a 内所有使0)(='x f 的的点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数()y f x =在闭区间],[b a 上的最小值.要点诠释:①求函数的最值时,不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的函数值进行比较即可.②若)(x f 在开区间),(b a 内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值. 要点四:优化问题在实际生活中用料最省、利润最大、效率最高等问题,常常可以归结为函数的最大值问题,从而可用导数来解决.我们知道,导数是求函数最大(小)值的有力工具,导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题.利用导数解决实际问题中的最值的一般步骤:(1) 分析实际问题中各量之间的关系,找出实际问题的数学模型,写出实际问题中变量之间的函数关系式()y f x =;(2) 求函数的导数'()f x ,解方程'()0f x =;(3) 比较函数在区间端点和极值点的函数值大小,最大(小)者为最大(小)值. 要点诠释:①解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系.再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 利用导数解决优化问题的基本思路:②得出变量之间的关系()y f x =后,必须由实际意义确定自变量x 的取值范围;③在实际问题中,有时会遇到函数在区间内只有一个点使f ′(x )=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.④在求实际问题的最大(小)值时,一定要注意考虑实际问题的意义,不符合实际意义的值应舍去. 要点五:定积分的概念如果函数=()y f x 在区间[]a b ,上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间[]a b ,等分成n 个小区间,在每个小区间[]1,i i x x -上取点()1,2,,i i n =ξ,作和式:11()()nnn i i i i b aS f x f n==-=∆=∑∑ξξ.当n →+∞时,上述和式n S 无限趋近于常数,那么称该常数为函数()f x 在区间[,]a b 上的定积分,记作:()baf x dx ⎰,即+1()lim()nbi an i b af x dx f n→∞=-=∑⎰ξ.要点诠释: (1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时),记为()baf x dx ⎰,而不是n S .(2) 定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即()()()bbbaaaf x dx f u du f t dt ===⎰⎰⎰(称为积分形式的不变性),另外定积分()()baf x d x ⎰与积分区间[a ,b ]息息相关,不同的积分区间,定积分的积分上下限不同,所得的值也就不同,例如120(1)x dx +⎰与320(1)x dx +⎰的值就不同.要点六:定积分的几何意义要点诠释:(1)当()0f x ≤时,由()y f x =、x =a 、x =b 与x 轴所围成的曲边梯形位于x 轴的下方,积分()d baf x x⎰在几何上表示上述曲边梯形面积的相反数(负数).所以[()]d ()bbaaS f x x f x S =-=-=-⎰⎰,即()d baf x x S =-⎰,如图(b ).(2)当()f x 在区间[a ,b ]上有正有负时,积分()d b af x x ⎰在几何上表示几个小曲边梯形面积的代数和(x 轴上方面积取正号,x 轴下方面积取负号).在如图(c )所示的图象中,定积分132()d baf x x S S S =+-⎰.要点七:定积分的运算性质 性质1:()d ()bba ak f x x k f x kS ==⎰⎰;性质2:[()g()]d ()g()d bb baaaf x x x f x x x ±=±⎰⎰⎰;性质3:定积分关于积分区间具有可加性。
数学选修2-2 知识点总结、导数1.函数的平均变化率为y f f (x2) f(x1) f(x1 x) f(x1)x x x2 x1 x注1:其中x 是自变量的改变量,可正,可负,可零。
注2 :函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念: 函数y f(x) 在x x0 处的瞬时变化率是lim y lim f(x0 x) f ( x0 ),则称函数y f (x)在点x0处可导,并把这个极限x 0 x x 0 x叫做y f(x) 在x0 处的导数,记作f'(x0) 或y'|xx0 ,即f'(x0) = lim ylim f(xx) f(x).x 0 x x 0 x3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。
4 导数的背景( 1 )切线的斜率;( 2 )瞬时速度;5、常见的函数导数6、常见的导数和定积分运算公式:若 f x ,g x 均可导(可积),则有:用导数求函数单调区间的步骤:①求函数f(x)的导数 f '(x)②令 f '(x)>0,解不等式,得x 的范围就是递增区间.③令 f '(x)<0,解不等式,得x 的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。
7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。
(2)求函数f(x)的导数 f '(x)(3)求方程 f '(x)=0 的根(4)用函数的导数为0 的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查 f /(x) 在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值8.利用导数求函数的最值的步骤:求 f (x) 在a,b 上的最大值与最小值的步骤如下:⑴求 f (x) 在a,b 上的极值;⑵将 f (x) 的各极值与 f (a), f (b) 比较,其中最大的一个是最大值,最小的一个是最小值。
高中数学人教版选修(xuǎnxiū)2高中数学人教版选修(xuǎnxiū)2-2导数及其应用知识点总结数学选修2-2导数(dǎo shù)及其应用知识点必记1.函数(hánshù)的平均变化率是什么?答:平均变化率为f(某2)f(某1)f(某1某)f(某1)yf某2某1注1:其中(qízhōng)某是自变量的改变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念是什么?答:函数yf(某)在某某0处的瞬时变化率是limf(某0某)f(某0)y,那么称lim某0某某0某函数yf(某)在点某0处可导,并把这个极限叫做yf(某)在某0处的导数,记作f"(某0)或y"|某某0,即f"(某0)=limf(某0某)f(某0)y.lim某0某某0某3.平均变化率和导数的几何意义是什么?答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。
4导数的背景是什么?答:〔1〕切线的斜率;〔2〕瞬时速度;〔3〕边际本钱。
5、常见的函数导数和积分公式有哪些?函数导函数不定积分ycy"0某n1某d某n1ny某nnN 某y"n某n1ya某a0,a1y"alnay"e某某a某ad某lna某ye某ed某e某某yloga某a0,a1,某0yln某y"1某lna1某1某d某ln某y"ysin某y"cos某cos某d某sin某sin某d某cos某ycos某y"sin某6、常见的导数和定积分运算公式有哪些?答:假设f某,g某均可导〔可积〕,那么有:和差的导数运算f(某)g(某)f(某)g(某)""f"(某)g"(某)f"(某)g(某)f(某)g"(某)积的导数运算特别地:Cf某"Cf"某商的导数运算f(某)f"(某)g(某)f(某)g"(某)(g(某)0)g(某)2g(某)"1g"(某)特别地:"2g某g 某复合函数的导数y某yuu某微积分根本定理f某d某ab〔其中F"某f某〕和差的积分运算ba[f1(某)f2(某)]d某f1(某)d某f2(某)d某aabb特别地:积分的区间可加性bakf(某)d某kf(某)d某(k为常数)abbaf(某)d某f(某)d某f(某)d某(其中acb)accb6.用导数求函数单调区间的步骤是什么?答:①求函数f(某)的导数f"(某)②令f"(某)>0,解不等式,得某的范围就是递增区间.③令f"(某)8.利用导数求函数的最值的步骤是什么?答:求f(某)在a,b上的最大值与最小值的步骤如下:⑴求f(某)在a,b上的极值;⑵将f(某)的各极值与f(a),f(b)比拟,其中最大的一个是最大值,最小的一个是最小值。
人教版高中数学必修2-2知识点第一章导数及其应用一.导数概念的引入1.导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x ∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()lim x f x x f x x∆→+∆-∆2.导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim ()n x n f x f x k f x x x ∆→-'==-3.导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数.()y f x =的导函数有时也记作y ',即0()()()lim x f x x f x f x x∆→+∆-'=∆二.导数的计算1.基本初等函数的导数公式:若()f x c =(c 为常数),则()0f x '=;若()f x x α=,则1()f x x αα-'=;若()sin f x x =,则()cos f x x'=若()cos f x x =,则()sin f x x '=-;若()x f x a =,则()ln x f x a a'=若()x f x e =,则()xf x e '=若()log x a f x =,则1()ln f x x a '=若()ln f x x =,则1()f x x '=2.导数的运算法则[()()]()()f xg x f x g x '''±=±[()()]()()()()f xg x f x g x f x g x '''∙=∙+∙2()()()()()[]()[()]f x f x g x f x g x g x g x ''∙-∙'=3.复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数(())()y f g x g x '''=∙三.导数在研究函数中的应用1.函数的单调性与导数一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增;如果()0f x '<,那么函数()y f x =2.函数的极值与导数极值反映的是函数在某一点附近的大小情况;求函数()y f x =的极值的方法是:如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值;3.函数的最大(小)值与导数函数极大值与最大值之间的关系;求函数()y f x =在[,]a b 上的最大值与最小值的步骤求函数()y f x =在(,)a b 内的极值;将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题利用导数的知识,求函数的最大(小)值,从而解决实际问题第二章推理与证明1.归纳推理把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳)。
导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).
.
.
.
高考不提分,赔付1万元,关注快乐学了解详情。
解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为
.
A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。