第三节 分部积分法
- 格式:ppt
- 大小:13.14 MB
- 文档页数:7
第三节分部积分法问题∫=?dx xex解决思路利用两个函数乘积的求导法则.设函数)(x u u =和)(x v v =具有连续导数,(),v u v u uv ′+′=′(),v u uv v u ′−′=′,dx v u uv dx v u ∫∫′−=′.du v uv udv ∫∫−=分部积分公式)()()((x dv x u dx x v u ⋅=′∫∫分部积分法主要过程如下:∫dxx f )(所求积分∫∫−=)()()()()()(x du x v x v x u x dv x u ∫∫′−=dxx v x u x v x u dx x f )()()()()((3)计算新积分(2)分部积分公式(1)拆分被积表达式中, 如果某部分求导后能得到简化,可考虑选为u ,剩下的部分就是dv 。
范围:一般处理含有多种类型的混合函数。
关键:对被积表达式的适当拆分。
(求导数或微分)∫′⋅dx x v x u )()(旧积分∫′⋅⇒dxx u x v )()(新积分,)()(dx x u x du u ′=⇒)()(x v dx x v dv ⇒′=(求积分或凑微分)u.cos ∫xdx x 求解(1)令,x u =x d xdx dv sin cos ==∫xdx x cos ∫=udv ∫−=vdu uv ∫−=xdx x x sin sin xv dx du sin ,:==则.cos sin C x x x ++=例1解(2)令,cos x u=∫xdx x cos ∫+=xdx x x x sin 2cos 222显然,u,dv 选择不当,积分更难进行.22,sin :xv xdx du =−=则∫xdx x cos ∫−=vdu uv总结若被积函数是幂函数与正(余)弦函数或指数函数的乘积, 可考虑设幂函数为u例2求积分.2∫dx e x x解,2x u =,xxde dx e dv ==∫dx e x x 2∫−=dx xe e x x x 22.)(22C e xe e x xxx+−−=再次使用分部积分法,x u =dxe dv x =),2(xe v xdx du ==),(xe v dx du ==例3求积分.arctan ∫xdx x ∫⋅=xdx x arctan 原式)(arctan 2arctan 222x d xx x ∫−=dx xx x x 222112arctan 2+⋅−=∫dx x x x )111(21arctan 222+−⋅−=∫.)arctan (21arctan 22C x x x x +−−=u dv 2v u ⋅du v ⋅v 熟练以后的写法例4求积分.ln 3∫xdx x 解,ln x u =,443dv xd dx x ==∫xdx x ln 3∫−=x d x x x ln 41ln 4144.161ln 4144C x x x +−=总结若被积函数是幂函数与对数函数或反三角函数的乘积,就考虑设对数函数或反三角函数为.u∫−=dx x x x 3441ln 41例6求积分.sin ∫xdx e x解∫xdx exsin ∫=xxdesin ∫−=)(sin sin x d e x e x x ∫−=xdx e x e xxcos sin ∫−=xxxdex e cos sin ∫−−=)cos cos (sin x d e x e x e xx x ∫−−=xdx e x x e xx sin )cos (sin ∫∴xdx e xsin .)cos (sin 2C x x ex+−=注意循环形式)0,(.)(122>∈+=∫a N n dx a x I nn 求解利用分部积分公式得:时当,1>n ∫−+dx a x n 122)(1例7∫+−++=−dxa x xn a x x n n )()1(2)(222122∫+−+−++=−−dx a x a a x n a x x n n n ])()(1[)1(2)(222122122))(1(2)(211221n n n n I a I n a x x I −−++=∴−−−∫+=dx ax I 2211Q C ax a +=arctan 1])32()([)1(2111222−−−++−=∴n n n I n a x xn a I 的递推公式。