信息融合技术
- 格式:doc
- 大小:97.50 KB
- 文档页数:6
信息融合综述信息融合是一种将多个来源的信息进行整合和合并的过程。
它可以是从不同的传感器收集到的数据,也可以是从多个不同的信息源中获取的数据。
信息融合旨在提高最终输出结果的准确性和可靠性。
在各种领域,如计算机视觉、机器学习、无线通信等中都广泛应用了信息融合技术。
信息融合的方法和技术有很多种,并且随着技术的发展和应用领域的不同,不断有新的方法和技术被提出。
以下是一些常见的信息融合技术:1. 数据融合:数据融合是将来自多个传感器或数据源的数据进行合并和整合,以提高数据质量和准确性。
常见的方法包括数据插补、数据降噪和数据关联。
2. 特征融合:特征融合是将来自多个特征源的特征进行合并和整合,以提取更具信息量的特征表示。
常见的方法包括特征加权、特征选择和特征组合。
3. 决策融合:决策融合是将多个决策结果进行合并和整合,以生成一个更可靠和准确的决策结果。
常见的方法包括投票法、加权法和模型融合。
4. 模型融合:模型融合是将多个模型进行合并和整合,以提高模型的准确性和泛化能力。
常见的方法包括集成学习、堆叠模型和深度学习中的网络融合。
信息融合的应用领域非常广泛,包括智能交通系统、物联网、远程监测和医疗诊断等。
在智能交通系统中,信息融合可以将来自不同传感器的交通数据进行整合,以提供实时的交通状况和导航信息。
在物联网中,信息融合可以将来自多个传感器和设备的数据进行整合,以提供更丰富和准确的物联网服务。
在远程监测中,信息融合可以将来自不同监测设备的数据进行合并,以提供更全面和可信的监测结果。
在医疗诊断中,信息融合可以将来自不同医学影像设备的数据进行整合,以提供更精确和可靠的诊断结果。
信息融合是一项重要的技术,它可以将多个来源的信息进行整合和合并,以提高准确性和可靠性。
随着技术的不断发展和应用领域的扩大,信息融合的方法和技术也在不断地演进和完善。
信息融合优质课教案--【教学参考】第一章:信息融合概述1.1 信息融合的定义解释信息融合的概念和内涵强调信息融合在现代社会的重要性1.2 信息融合的类型与方法介绍不同类型的信息融合(如数据融合、图像融合、语音融合等)讲解各种信息融合的方法和技巧1.3 信息融合的应用领域探讨信息融合在各个领域的应用案例分析信息融合在各领域的发展趋势和前景第二章:数据融合技术与应用2.1 数据融合的基本原理介绍数据融合的基本原理和方法解释数据融合的关键技术和算法2.2 数据融合的方法与策略探讨数据融合的不同方法和策略分析各种方法的优缺点和适用场景2.3 数据融合的应用案例列举数据融合在不同领域的应用案例分析数据融合在各领域的实际效果和价值第三章:图像融合技术与应用3.1 图像融合的基本原理介绍图像融合的基本原理和方法解释图像融合的关键技术和算法3.2 图像融合的方法与策略探讨图像融合的不同方法和策略分析各种方法的优缺点和适用场景3.3 图像融合的应用案例列举图像融合在不同领域的应用案例分析图像融合在各领域的实际效果和价值第四章:语音融合技术与应用4.1 语音融合的基本原理介绍语音融合的基本原理和方法解释语音融合的关键技术和算法4.2 语音融合的方法与策略探讨语音融合的不同方法和策略分析各种方法的优缺点和适用场景4.3 语音融合的应用案例列举语音融合在不同领域的应用案例分析语音融合在各领域的实际效果和价值第五章:信息融合的未来发展趋势5.1 信息融合技术的发展趋势探讨信息融合技术的未来发展趋势分析可能出现的新技术和方法5.2 信息融合应用的发展趋势分析信息融合在各领域的应用发展趋势探讨可能出现的新应用领域和场景5.3 信息融合面临的挑战与解决方案指出信息融合面临的主要挑战和问题提出可能的解决方案和对策第六章:信息融合的系统设计与实现6.1 信息融合系统的设计原则介绍信息融合系统设计的基本原则和标准强调系统设计中需要注意的问题和挑战6.2 信息融合系统的架构与组件讲解信息融合系统的常见架构和组件分析各个组件的功能和相互作用6.3 信息融合系统的实现与优化探讨信息融合系统的实现方法和步骤讲解如何对系统进行性能优化和维护第七章:信息融合在国家安全领域的应用7.1 国家安全与信息融合的关系探讨信息融合在国家安全领域的重要性分析信息融合在国家安全中的应用案例7.2 信息安全与信息融合讲解信息融合在信息安全领域的应用探讨信息融合在网络安全中的作用和价值7.3 情报分析与信息融合分析信息融合在情报分析中的应用探讨信息融合在情报分析中的优势和挑战第八章:信息融合在商业领域的应用8.1 信息融合在市场营销中的应用讲解信息融合在市场营销领域的应用探讨信息融合在市场营销中的优势和挑战8.2 信息融合在供应链管理中的应用介绍信息融合在供应链管理领域的应用分析信息融合在供应链管理中的作用和价值8.3 信息融合在商业智能中的应用探讨信息融合在商业智能领域的应用分析信息融合在商业智能中的优势和挑战第九章:信息融合在医疗领域的应用9.1 信息融合在医疗诊断中的应用介绍信息融合在医疗诊断领域的应用分析信息融合在医疗诊断中的作用和价值9.2 信息融合在医疗监测中的应用讲解信息融合在医疗监测领域的应用探讨信息融合在医疗监测中的优势和挑战9.3 信息融合在医疗数据管理中的应用探讨信息融合在医疗数据管理领域的应用分析信息融合在医疗数据管理中的优势和挑战强调信息融合在现代社会中的重要性10.2 信息融合的未来展望展望信息融合的未来发展趋势和前景提出可能出现的新技术和应用领域10.3 对信息融合教育的展望强调信息融合教育的重要性探讨如何加强信息融合教育和人才培养重点和难点解析重点环节1:信息融合的定义与重要性需要重点关注信息融合的概念和内涵,以及其在现代社会的重要性。
1.3信息融合技术1.3.1信息融合的基本原理信息融合这一概念是20世纪70年代提出的,在其后的较长一段时期,人们普遍使用“数据融合”这一名词。
近年来,随着科学技术的迅猛发展,军事、民用工业领域中不断增长的复杂度使得出现了数据泛滥、信息超载,而现有大型设备结构小型化、功能复杂化使得传感器安装的数量和类型受到限制,需要新的技术途径对过多的信息进行消化、解释和评估,“信息融合”一词被广泛采用[23]。
对信息融合概念的描述多种多样。
美国军方成立的数据融合工作组联合指导实验室(JDL)将信息融合概括为:一个处理探测、互联、相关、估计以及组合多元信息和数据的多层次、多方面过程,目的是获得准确的状态估计和识别,完整而及时地对战场态势和威胁评估。
欧洲遥感实验室协会(EARSel)以及法国电器和电子协会(FSEE)建立的工作组的定义为:一个由方法和工具表示的框架,用于进行不同来源的数据的联合,目的是获得更高质量的信息[18]。
“高质量”的精确含义依赖于应用。
这样,存在各种不同种类、不同等级的融合,如数据融合、图像融合、特征融合、决策融合、传感器融合、分类器融合等。
对不同来源、不同模式、不同媒质、不同表现形式的信息进行综合,最后可以得到对被感知对象更加精确的描述。
国外对信息融合技术的研究起步较早。
20世纪70年代初,美国研究机构就在国防部的资助下,开展了声纳信息理解系统的研究。
从那以后,信息融合技术便迅速发展起来,不仅在各种C3I系统(Computing Communication Control and Information)中尽可能采用多个传感器来收集信息,而且在工业控制、机器人、空中交通管制、海洋监视、综合导航和管理等领域也在朝着多传感器的方向发展。
1988年,美国国防部把信息融合技术列为90年代重点研究开发的二十项关键技术之一,且列为最优先发展的A类[10,11]。
信息融合由简单的多传感器融合起步,经历了同一系统内部不同信息的融合,少数简单系统之间的单一信号融合,发展到现在多个不同复杂系统之间的不同类型信号之间的融合。
多源信息融合技术及其应用研究1. 引言1.1 背景介绍多源信息融合技术是指利用不同传感器或数据源获取的多种信息,通过合理的融合方法和算法将这些信息整合在一起,以提高信息的准确性、完整性和可靠性。
随着信息技术的不断发展和应用领域的拓展,多源信息融合技术在图像处理、目标跟踪、情报分析等领域得到了广泛的应用。
随着信息技术的飞速发展,信息的来源也变得越来越多样化和复杂化。
传统的单一传感器或数据源往往无法满足对信息的全面获取和准确分析的需求,因此多源信息融合技术应运而生。
该技术通过整合多源信息,不仅可以提高信息的可靠性和精度,还可以实现对信息的更加全面和深入的理解。
在军事、安全、医疗、交通等领域,多源信息融合技术已经得到了广泛的应用。
通过将不同传感器获取的信息进行融合,可以提高情报的准确性和及时性,为决策提供更加全面的依据。
在医疗领域,多源信息融合技术也可以帮助医生更准确地诊断疾病,提高治疗效果。
多源信息融合技术具有重要的理论和实际意义,对于促进信息技术的发展和应用具有重要作用。
本研究旨在探讨多源信息融合技术的方法和应用,为相关领域的研究和实践提供理论支持和参考依据。
1.2 研究目的研究目的是为了探讨多源信息融合技术在不同领域中的应用情况,分析其优势和局限性,并寻找改进方法。
通过深入研究多源信息融合技术的方法与算法,可以帮助我们更好地理解不同信息源之间的关联性,提高信息处理的效率和准确性。
研究多源信息融合在图像处理、目标跟踪和情报分析等领域的具体应用,可以为相关领域的技术发展提供参考和指导,促进技术的创新和进步。
通过对多源信息融合技术的研究和应用探讨,我们可以更好地应对信息爆炸时代带来的挑战,实现对大量信息进行有效整合和利用,从而为各行业的发展和进步提供有力支持。
1.3 研究意义多源信息融合技术的研究意义主要体现在以下几个方面:1. 提高信息利用效率:不同信息源包含的信息可能存在冗余或互补的情况,通过多源信息融合技术,可以将各个信息源的优势进行整合,减少冗余信息,提取出更为有效的信息,从而提高信息的利用效率。
信息融合技术信息融合技术是指通过将来自不同来源的传感器、传感器网络和其他信息源的数据、信息和情报进行处理和集成,以实现对复杂环境中的目标或事件的全面理解和分析的一种技术手段。
在现代社会中,信息的爆炸式增长带来了大量不同类型和来源的信息,如何通过有效地融合这些信息成为了一个亟待解决的挑战。
信息融合技术的应用可以帮助我们更好地理解和应对复杂的问题,提高决策的准确性和效率。
信息融合技术主要包括三个方面的内容:传感器数据融合、情报融合和决策支持。
传感器数据融合是指将来自多个传感器的数据进行整合和分析,以提供更准确、全面的目标状态估计;情报融合是指将来自不同情报来源的信息进行整合和分析,以发现隐藏的关联和趋势;决策支持是指基于融合后的数据和信息提供决策策略和优化方案。
这三个方面相互补充,相互支撑,完成了信息从收集到处理再到决策的全过程。
在信息融合技术中,传感器数据融合是一个重要的环节。
传感器数据融合可以通过集成多个传感器的测量结果来提高目标状态的估计精度和完整性。
例如,在军事领域,通过将雷达、红外、光学等多种传感器的数据进行融合,可以准确地识别和追踪敌方目标,并预测其行为。
在交通领域,通过融合车载传感器、卫星导航系统和交通管理系统的数据,可以实时监测交通流量、拥堵情况,并进行智能调度和优化。
情报融合是信息融合技术的另一个重要方面。
情报融合通过整合来自不同情报来源的信息,如人工情报、遥感图像、开放源情报等,发现隐藏的关联和趋势,提供全面的情报视图和信息支持。
情报融合可以帮助分析人员更好地理解情况、制定对策并预测未来的发展。
例如,在反恐领域,通过融合电子情报、社交媒体数据和地理信息,可以发现恐怖组织成员之间的联系和行动规律,预测袭击事件的可能性和影响。
决策支持是信息融合技术的最终目标和应用。
通过将传感器数据融合和情报融合的结果进行进一步的分析和处理,可以提供决策者所需的决策支持信息,帮助他们制定准确、及时的决策策略。
信息融合技术1引言融合(Fusion)的概念开始出现于70年代初期,当时称之为多源相关、多源合成、多传感器混合或数据融合(Data Fusion),现在多称之为信息融合(Information Fusion)或数据融合。
融合就是指采集并集成各种信息源、多媒体与多格式信息,从而生成完整、准确、及时与有效的综合信息过程。
数据融合技术结合多传感器的数据与辅助数据库的相关信息以获得比单个传感器更精确、更明确的推理结果。
经过融合的多传感器信息具有以下特征:信息的冗余性、互补性、协同性、实时性以及低成本性。
多传感器信息融合与经典信号处理方法之间存在本质的区别,其关键在于信息融合所处理的多传感器信息具有更为复杂的形式,而且可以在不同的信息层次上出现。
2信息融合的结构模型由于信息融合研究内容的广泛性与多样性,目前还没有统一的关于融合过程的分类。
2、1按照信息表征层次的分类系统的信息融合相对于信息表征的层次相应分为三类:数据层融合、特征层融合与决策层融合。
数据层融合通常用于多源图像复合、图像分折与理解等方面,采用经典的检测与估计方法。
特征层融合可划分为两大类:一类就是目标状态信息融合,目标跟踪领域的大体方法都可以修改为多传感器目标跟踪方法;另一类就是目标特性融合,它实质上就是模式识别问题,具体的融合方法仍就是模式识别的相应技术。
决策层融合就是指不同类型的传感器观测同一个目标,每个传感器在本地完成处理,其中包括顶处理、特征抽取、识别或判决,以建立对所观察目标的初步结论。
然后通过关联处理、决策层触合判决,最终获得联合推断结果。
2、2JDL模型(Joint Directors of Laboratories, JDL)与λ-JDL模型该模型将融合过程分为四个阶段:信源处理,第一层处理(即目标提取)、第二层处理(即态势提取)、第三层提取(即威胁提取)与第四层提取(即过程提取)。
模型中的每一个模块都可以有层次地进一步分割,并且可以采用不同的方法来实现它们。
信息融合综述信息融合是指将来自多个来源、多个传感器或多个模态的信息进行集成、处理和分析的过程。
它通过整合多源数据、提取重要特征、融合不同角度的信息来获取更全面、准确的信息,从而提高数据的利用价值和决策的精确性。
信息融合技术在实际应用中具有广泛的应用前景,本文将对其进行综述。
一、信息融合的定义与分类信息融合包括传感器级融合、特征级融合和决策级融合三个层次。
传感器级融合主要是对来自不同传感器的原始数据进行校正、配准和对准处理,以消除传感器本身的误差,提高数据的准确性。
特征级融合则是在传感器级融合的基础上,对从不同传感器获取的特征进行集成、选择和提取,以增加信息的丰富度和多样性。
决策级融合是在特征级融合的基础上,将多个特征进行组合、优化和加权,以得到更可靠、准确的决策结果。
二、信息融合的应用领域信息融合技术在军事、交通、环境监测、物联网、智能城市等领域中得到广泛应用。
在军事领域,信息融合技术可用于目标探测、识别与跟踪、情报分析等方面,提高军事作战效能。
在交通领域,信息融合技术可以用于交通拥堵监测、智能导航、交通流预测等方面,提高交通管理的效率。
在环境监测领域,信息融合技术可以用于气象预报、水质监测、地质灾害预警等方面,增强环境监测的准确性和及时性。
在物联网和智能城市领域,信息融合技术可以用于物联网设备数据的整合、智能家居的控制和优化、城市资源的调度等方面,提高物联网和智能城市的整体性能。
三、信息融合的方法和技术信息融合的方法和技术包括统计方法、人工智能方法和模型驱动方法等。
统计方法主要包括最大似然估计、卡尔曼滤波、粒子滤波等,通过对数据进行统计建模和估计,提高数据的准确性和可信度。
人工智能方法主要包括神经网络、遗传算法、模糊逻辑等,通过对数据进行学习和推理,提高数据的分类、识别和决策能力。
模型驱动方法主要利用物理模型和数学模型,对数据进行建模和仿真,以分析和预测系统的行为和性能。
四、信息融合的挑战与未来发展信息融合技术面临着数据质量、信息处理效率、安全性和隐私保护等方面的挑战。
多维信息融合技术研究现今,在信息社会的浪潮中,信息的获取已经不再是难点,而是如何处理、分析和利用所获得的信息,这成为了新的挑战。
多维信息融合技术,就是针对这一挑战所产生的一种技术。
多维信息融合技术能够将从不同来源和不同格式的数据中提取出需要的信息,并进行分类、分析、关联,以便更好地掌握信息,做出更好的决策。
这种技术应用广泛,可以用于国防、情报、安全、医疗等领域,它对于提高决策效率和改进决策质量有着重要的作用。
一、多维信息融合技术的概念多维信息融合技术(MDI,Multidimensional Data Integration)是针对大规模信息处理和分析的一种技术。
它通过将来自不同数据源的信息进行整合,重塑和转换数据,从而实现对数据进行可视化和分析。
这些数据可以包括基于文本、语音、图像和视频的多种信息类型。
MDI技术是一个相对新的概念,它将传统的数据处理技术、信息检索技术、智能计算和视觉分析技术等所涉及的知识进行集成,从而形成一个全面的信息处理平台。
这种技术以人为中心,能够为用户提供一种直观、高效的数据获取和分析方式,有助于人们快速地获取准确、丰富的信息。
二、多维信息融合技术的原理MDI技术包含了多个技术组成部分,包括数据抽取、数据转换、数据清洗、数据集成和数据分析等。
其基本原理是将多源异构数据通过预处理和转换进行集成,形成一个共同的数据模型,从而实现对数据的综合分析和决策支持。
1. 数据抽取数据抽取是MDI技术的第一步,它通过从各种数据源中抽取关键数据并将其转换成规范形式的方式,将多个数据源中的有用数据提取出来。
2. 数据转换在数据抽取之后,数据需要被转换成一种标准的数据格式,以便能够更好地进行分析和处理。
数据转换可以包括将不同的数据格式转换为一致的格式,如将文本、图像和语音转换为结构化数据;还可以将表格和数据库中的数据进行转换,以便进行逻辑关系的建立。
3. 数据清洗数据清洗是指对数据进行规范化和统一化操作,以便消除数据中的重复、缺失或错误之类的问题。
信息融合技术的应用(1) 嘿,咱今儿个来唠唠信息融合技术这玩意儿。
这信息融合技术啊,可不像咱想象的那么高深莫测,它其实就在咱身边呢。
(2) 就说我上次去超市那事儿吧。
我一进超市,好家伙,那货架上的东西琳琅满目啊。
我本来就是想买点零食,可这超市里的信息可真多。
商品的价格标签那是一种信息,告诉咱这玩意儿多少钱;商品的摆放位置也是信息,零食区、日用品区啥的分得明明白白;还有那促销的牌子,写着啥买一送一啦,满减啦,这都是信息。
(3) 你看啊,超市的工作人员就像是在搞信息融合呢。
他们得把商品的进货信息、库存信息、销售信息啥的都融合在一起。
进货信息得知道从哪儿进的货,进了多少;库存信息得时刻掌握还有多少存货,啥时候该补货;销售信息呢,哪种商品卖得好,哪种卖得不好,得心里有数。
就像我想买薯片,结果发现我常吃的那种牌子货架上快没了,这就是工作人员没及时融合好库存和销售信息,补货不及时。
不过也有做得好的地方,比如新到的热门零食,摆在显眼位置,还配上促销信息,这就是把商品信息、顾客喜好信息和营销信息融合得好,吸引咱去买。
(4) 再说说超市的收款台。
那扫码枪一扫,商品的名称、价格啥的就都出来了,这其实也是信息融合。
商品上的条形码或者二维码里包含了商品的各种信息,收款系统把这些信息和价格数据库里的信息一融合,就知道该收咱多少钱了。
而且现在很多超市还有会员系统,会员信息和购买信息一融合,就可以给咱积分啊、打折啥的,这可太方便了。
(5) 从超市出来,我就想啊,这信息融合技术可真有意思。
它就像个大管家,把各种信息都管得井井有条,让咱们的生活更方便。
超市里的这些事儿啊,就是信息融合技术在生活中的一个小缩影,你仔细观察,到处都有它的影子呢。
中心思想:通过描述在超市购物时看到的商品信息、库存信息、销售信息、收款信息等多种信息融合的场景,体现信息融合技术在日常生活中的应用,让读者感受到信息融合技术并不遥远且十分有趣。
信息融合技术及其方法研究1 信息融合技术信息融合是为了达到目标的精确位置、身份估计以及实时的战场态势和敌方威胁评估,而对单个或多个信息源的数据进行互联和综合的过程,将信息融合划分成如下几个过程:对准、互联、滤波、识别和威胁评估及战场态势评估。
对准是一个数据排列处理过程。
它包括时间、空间和度量单位的处理。
因为多传感器的信息融合将涉及到不同的坐标系统、观察时间和扫描周期,所以需将所有传感器的数据转换到一个公共的参考系中,尽管已经有许多技术可用,其中最典型的方法是最小平方估计,目前很少有学者在进行这个领域的研究,但战场结果显示有许多问题都是由于不良的定位所造成的。
互联是当今信息融合中最有技术挑战力的一个领域。
它是决定从不同传感器中哪些测量是代表同一个目标的处理过程。
数据互联可在3个层次上进行,第1层是测量—测量互联,被用来处理在单个传感器或单个系统的初始跟踪上。
第2层是测量—跟踪互联,被用在跟踪维持上;第3层是跟踪—跟踪互联,用于多传感器的数据处理中,互联中使用最多的方法是序贯最近邻法。
该方法是选择使统计距离最小和残缺概率密度最大的回波作为目标回波,计算方法比较简单,缺点是在实际应用中容易发生误跟和丢失目标。
其它方法,如联合概率数据关联方法,它全部考虑了跟踪门内的所有候选回波,并根据不同相关情况计算出各个概率加权系数,以及所有候选回波的加权和,即为等效回波,然后用等效回波更新多个目标的状态。
另外,多假设跟踪法也是今后要考虑的方法之一。
识别是对目标属性进行评估的一个过程。
识别问题的第1步是识别外形面貌特征,识别问题的第2步是一个决策理论问题。
威胁评估以及战场态势评估是一个较为抽象的处理过程,相对前面提到的各个过程处理复杂的多,处理技术要用到大量的数据库,该数据库必须包括有不同的目标行为、目标飞行趋势、将来企图的数据和敌方军事力量的智能信息。
传统的经典方法可以被用于这个层次上的处理,由于它是一个抽象的推理过程,因而符号处理更为合适,人工智能技术在此过程也已被利用。
总之,信息融合采用的方法有:极大似然估计方法,Bayes推理方法,Kalman 滤波方法等都是比较成熟的算法,对于其中一些模糊现象处理,如相关门限中有许多个测量待选择,航迹维持的时间和质量等。
目前在不同的系统中正在开发相应的适用方法,例如,多目标多传感器中相关处理所采用的多周期动态组合算法和矩阵优化算法,目标检测中采用的软判定传感器技术,航迹维持中的航迹质量因子描述航迹状态转移方法等等,都已达到实际应用阶段,技术已经成熟。
正在研究的属于认识类模型算法,在信息融合的初级处理过程中尚未达到适用阶段。
2 信息融合结构目前还没有多传感器信息融合结构的标准分类,但和结构相关的有以下2个问题。
2.1传感器布置传感器融合结构中的最重要的问题是如何布置传感器,基本上有3种类型的布置,最常用的拓扑结构是并行拓扑,在这种布置中,各种类型的传感器同时工作,令1种类型是串行拓扑。
在这种结构里,传感器检测信息具有暂时性。
实际上,(SAR)图像就属于此结构,最后1种类型是混合拓扑,即树状拓扑。
2.2 按融合层次划分多传感器信息融合根据信息表征的层次,其基本方法可分为3类:数据层融合,特征层融合,决策层融合。
在数据层融合中,每一个传感器观测物体并且组合来自传感器的原始数据,然后,进行特征识别过程。
此过程一般是从原始数据中提取一个特征矢量来完成,并且根据此特征做出决策。
在信息融合中,原始数据必须是匹配的,例如:传感器测量同一物理现象如两个视觉图像或两个超声波传感器:相反,如果传感器不是同类的,它们必须在特征层或决策层融合。
数据层融合能提供最精确的结果并需要很大的通讯带宽。
在特征层融合中,从观测数据中提取许多特征矢量后把它们连接成单个矢量,下一步进行识别,在该情况下,需要的通讯带宽见笑,结果的精确性也相应减小,主要是因为在原始数据中生成特征矢量的同时,信息也在丢失。
在决策层融合中,每一个传感器依据本身的单源数据作出决策。
这些决策被融合生成最后的决策,在上面阐述的3种结构中,精确性是最差的,但需要的带宽最小。
在具体的应用中应用根据融合的目的和条件选用,下表对它们的特点做了综合比较。
3 信息融合的两种方法分析随着多种遥感卫星的发射成功,从不同遥感平台获得的不同空间分辨率的影像金字塔序列,给遥感用户提供了从粗到精、从多光谱到细分光谱段的对地观测数据源。
在卫星遥感成像系统中,要同时获得光谱、空间和时间的高分辨率是很难的,各种传感器图像实质上都是分辨率有损压缩信息,即每一种传感器所获得的遥感数据只反映了事物的一个或几个方面的特性,因此如何将同一个地区各种特性影像的有用信息聚合在一起是当前亟待研究的课题。
遥感图像融合是一个对多遥感器的图像数据和其他信息的处理过程,它着重于把那些在空间或时间上冗余或互补的多源数据,按一定的规则(或算法)进行运算处理,获得比任何单一数据更精确、更丰富的信息,生成一幅具有新的空间、波谱、时间特征的合成图像。
它不仅仅是数据间的简单复合,而强调信息的优化,以突出有用的专题信息,消除或抑制无关的信息,改善目标识别的图像环境,从而增加解译的可靠性,减少模糊性(即多义性、不完全性、不确定性和误差)、改善分类、扩大应用范围和效果。
本文主要讨论小波分析理论及支持向量机在遥感图像融合应用以及人工神经网络在多传感器信息融合中的实现方法。
3.1小波图像融合像素级图像融合的主要步骤:以两幅图像的融合为例。
设A,B为两幅原始图像,F为融合后的图像。
若对二维图像进行N层的小波分解,最终将有(3N+1)个不同频带,其中包含3N 个高频子图像和1个低频子图像,如图1。
其融合处理的基本步骤如下:(1)对每一原图像分别进行小波变换,建立图像的小波塔型分解;(2)对各分解层分别进行融合处理。
各分解层上的不同频率分量可采用不同的融合算子进行融合处理,最终得到融合后的小波金字塔;(3)对融合后所得小波金字塔进行小波重构,所得到的重构图像即为融合图像。
图1在图像融合过程中,小波基的种类和小波分解的层数对融合效果有很大的影响,对特定的图像来说,哪一种小波基的融合效果最好,分解到哪一层最合适,都是需要考虑的问题。
为此可以通过引入融合效果的评价来构成一个闭环系统。
如图2所示。
对图像而言,小波变换是将图像分解成频域上各个频率段的子图,以代表原图的各个特征分量。
这对后续的融合处理极为重要,使得融合处理可以根据不同的特征分量采用不同的融合方法以达到最佳融合效果。
图像的融合策略(方法)是图像融合的核心,方法与规则的优劣直接影响融合的速度与质量。
在一幅图像的小波分解中,绝对值较大的小波高频系数对应着亮度急剧变化的点,也就是图像中对比度变换较大的边缘特征,如边界、亮线及区域轮廓。
融合的效果就是对同样的目标,融合前在图像A中若比图像B中显著,融合后图像A中的目标就被保留,图像B中的目标就被忽略。
这样,图像A、B中目标的小波变换系数将在不同的分辨率水平上占统治地位,从而在最终的融合图像中,图像A 与图像B中的显著目标都被保留。
小波变换是图像的多尺度、多分辨率分解,它可以聚焦到图像的任意细节,被称为数学上的显微镜。
近年来,随着小波理论及其应用的发展,已将小波多分辨率分解用于像素级图像融合。
小波变换的固有特性使其在图像处理中有如下优点:1.完善的重构能力,保证信号在分解过程中没有信息损失和冗余信息;2.把图像分解成平均图像和细节图像的组合,分别代表了图像的不同结构,因此容易提取原始图像的结构信息和细节信息;3.具有快速算法,它在小波变换中的作用相当于FFT算法在傅立叶变换中的作用,为小波变换应用提供了必要的手段;4.二维小波分析提供了与人类视觉系统方向相吻合的选择性图像。
3.2基于支持向量机的遥感影像融合支持向量机(Support Vector Machine,SVM)作为一种最新的也是最有效的统计学习方法,近年来成为模式识别与机器学习领域一个新的研究热点。
SVM 具有小样本学习、抗噪声性能、学习效率高与推广性好的优点,能够用于解决空间信息处理分析领域的遥感影像处理。
遥感图像分析与处理是SVM应用一个热门的研究方向,一些主要应用如土地利用分类、混合象元分解、遥感影像融合、多光谱/高光谱遥感分类等。
目前针对高光谱数据进行分类还是仅仅局限于传统的分类方法,不但运算速度慢,分类精度低,而且出现了严重的huges现象。
而在高光谱遥感分类中SVM具有明显的优越性,因此SVM应用被归纳为高光谱遥感分类最重要的进展之一。
SVM的关键在于核函数,这也是最喜人的地方。
低维空间向量集通常难于划分,解决的方法是将它们映射到高维空间。
但这个办法带来的困难就是计算复杂度的增加,而核函数正好巧妙地解决了这个问题。
也就是说,只要选用适当的核函数,我们就可以得到高维空间的分类函数。
在SVM理论中,采用不同的核函数将导致不同的SVM算法。
遥感空间特征信息分类和提取主要方法包括在领域知识和地理辅助信息支持下的数理统计、神经网络、基于符号逻辑推理方法、分形等。
一般过程是:首先通过预处理获得影像的基本空间特征分布,然后用提取模型对其中的结构单元进行学习记忆,最后提取影像结构信息,还可进一步加入一定的辅助知识获得影像结构信息,还可进一步加入一定的辅助知识获得其有关的属性,比如通过地形因子进行综合判别,进行推断、判别、决策。
其中,提取模型是关键。
人工神经网络方法(ANN)主要包括反向传播神经网络(BPNN)和自组织映射神经网络(ARTMAP).但对于高维、复杂映射的特征提取问题,BPNN存在学习速度慢,难以收敛、网络无反馈记忆等问题ARTMAP具有自组织反馈、增量式学习、高度复杂映射等特点,与BPNN相比较,更接近于模拟人的感知记忆系统,因此适合于应用在高维空间的映射和分类中。
但由于ARTMAP自组织增量式的学习方式,遇到高度复杂的数据集会使网络急剧膨胀,影响特征提取的效率,另外ARTMAP同样有神经网络难以对结果作解释的缺陷。
SVM方法不同于常规统计和神经网络方法,它不是通过特征个数变少来控制模型的复杂性。
它提供了一个与问题维数无关的函数复杂性的有意义刻划。
使用高维特征度,使得在高维特征空间中构造的线性决策边界可对应于输入空间的非线性决策连篇边界,概念上,通过使用具有很多个基函数的线性估计量,使在高维空间控制逼近函数的复杂性提供了很好的推广能力;计算上,在高维度上利用线性函数的对偶核,解决了数值优化的二次规划求解问题。
SVM结合了几个不同概念:(1)归纳原理的新实施,SVM是选择有限数据集提供最小期望风险的最优模型;(2)用事先定义的非线性基函数集把输入样本映射到高维的空间;(3)用具有复杂性约束的线性函数来逼近或判别高维空间的输入样本;(4)用优化对偶理论使高维特征空间中的模型参数估计易于计算。