SIFT算法详解及应用(课件)
- 格式:ppt
- 大小:5.25 MB
- 文档页数:69
图像识别中的SIFT算法实现与优化一、SIFT算法介绍SIFT算法(Scale-Invariant Feature Transform)是一种用于图像对比和匹配的局部特征提取算法,由David Lowe于1999年开发提出并持续改良。
SIFT算法可以检测出具有旋转、缩放、光照变化等不变性的图像特征点,被广泛应用于计算机视觉领域,如图像匹配、图像检索、物体识别等。
SIFT算法主要分为四步:尺度空间极值检测、关键点定位、关键点方向确定和描述子生成。
尺度空间极值检测:SIFT算法通过构建高斯金字塔来检测尺度下的极值点。
在高斯金字塔中,首先对原始图像进行下采样,生成一组不同尺度的图像。
然后在每个尺度上利用高斯差分来检测极值点,满足以下条件的点即为极值点:周围像素点中的最大值或最小值与当前像素点的差值达到一定阈值,而且是在尺度空间上达到极值。
关键点定位:对于极值点的定位,SIFT算法采用了一种基于拟合精细的方法来定位真实的关键点。
SIFT算法通过在尺度空间中计算极值点的DoG(高斯差分)的Hessian矩阵,来估计关键点的尺度和位置。
如果Hessian矩阵的行列式和迹符号都满足一定的条件,则认为该点为关键点。
关键点方向确定:在确定关键点的位置和尺度之后,SIFT算法还需要确定关键点的主方向。
该方向是通过计算关键点周围像素点的梯度方向和大小,并在组合后的梯度图像上寻找最大梯度方向得到的。
这个方向是在许多方向中确定的,而描述符是相对于主方向定义的。
描述子生成:最后,SIFT算法采用一个高维向量来描述关键点,并且具有不变性。
该向量的计算是在相对于关键点的周围图像区域内,采集图像梯度方向的统计信息来完成的。
描述符向量包含了关键点的位置、主方向,以及相对于主方向的相对性质。
二、SIFT算法优化思路尽管SIFT算法已经被广泛使用,但是由于算法复杂度和内存消耗等问题,使得在大数据和实时应用场景下,SIFT算法的运行速度和效果表现都有巨大限制。
3.1.1尺度空间极值检测尺度空间理论最早出现于计算机视觉领域,当时其目的是模拟图像数据的多尺度特征。
随后Koendetink利用扩散方程来描述尺度空间滤波过程,并由此证明高斯核是实现尺度变换的唯一变换核。
Lindeberg ,Babaud 等人通过不同的推导进一步证明高斯核是唯一的线性核。
因此,尺度空间理论的主要思想是利用高斯核对原始图像进行尺度变换,获得图像多尺度下的尺度空间表示序列,对这些序列进行尺度空间特征提取。
二维高斯函数定义如下:222()/221(,,)2x y G x y e (5)一幅二维图像,在不同尺度下的尺度空间表示可由图像与高斯核卷积得到:(,,(,,)*(,)L x y G x y I x y (6)其中(x,y )为图像点的像素坐标,I(x,y )为图像数据, L代表了图像的尺度空间。
σ称为尺度空间因子,它也是高斯正态分布的方差,其反映了图像被平滑的程度,其值越小表征图像被平滑程度越小,相应尺度越小。
大尺度对应于图像的概貌特征,小尺度对应于图像的细节特征。
因此,选择合适的尺度因子平滑是建立尺度空间的关键。
在这一步里面,主要是建立高斯金字塔和DOG(Difference of Gaussian)金字塔,然后在DOG 金字塔里面进行极值检测,以初步确定特征点的位置和所在尺度。
(1)建立高斯金字塔为了得到在不同尺度空间下的稳定特征点,将图像(,)I x y 与不同尺度因子下的高斯核(,,)G x y 进行卷积操作,构成高斯金字塔。
高斯金字塔有o 阶,一般选择4阶,每一阶有s 层尺度图像,s 一般选择5层。
在高斯金字塔的构成中要注意,第1阶的第l 层是放大2倍的原始图像,其目的是为了得到更多的特征点;在同一阶中相邻两层的尺度因子比例系数是k ,则第1阶第2层的尺度因子是k ,然后其它层以此类推则可;第2阶的第l 层由第一阶的中间层尺度图像进行子抽样获得,其尺度因子是2k ,然后第2阶的第2层的尺度因子是第1层的k 倍即3k 。
前面们介绍了Harris和Shi-Tomasi角检测算法,这两种算法具有旋转不变性,但不具有尺度不变性,以下图为例,在左侧小图中可以检测到角,但图像被放后,在使用同样的窗口,就检测不到角了。
所以,们来介绍一种计算机视觉的算法,尺度不变特征转换即SIFT(Scale-invariantfeaturetransform)。
它用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值,并提取出其位置、尺度、旋转不变量,此算法由DavidLowe在1999年所发表,2004年完善总结。
应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对等领域。
SIFT算法的实质在不同的尺度空间上查找关键(特征),并计算出关键的方向。
SIFT 所查找到的关键一些十分突出,不会因光照,仿变换和噪音等因素而变化的,如角、边缘、暗区的亮及亮区的暗等。
1.1基本流程Lowe将SIFT算法分解为如下四步:尺度空间极值检测:搜索所有尺度上的图像位置。
通过高斯差分函数来识别潜在的对于尺度和旋转不变的关键。
关键定位:在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度。
关键的选择依据于它们的稳定程度。
关键方向确定:基于图像局部的梯度方向,分配给每个关键位置一个或多个方向。
所有后面的对图像数据的操作都相对于关键的方向、尺度和位置进行变换,从而保证了对于这些变换的不变性。
关键描述:在每个关键周围的邻域内,在选定的尺度上测量图像局部的梯度。
这些梯度作为关键的描述符,它允许比较的局部形状的变形或光照变化。
们就沿着Lowe的步骤,对SIFT算法的实现过程进行介绍:1.2尺度空间极值检测在不同的尺度空间不能使用相同的窗口检测极值,对小的关键使用小的窗口,对的关键使用的窗口,为了达到上述目的,们使用尺度空间滤波器。
高斯核可以产生多尺度空间的核函数。
-《Scale-spacetheory:Abasictoolforanalysingstructuresatdifferentscales》。
sift算法计算旋转参数SIFT算法是一种常用的图像特征提取算法,它可以用于计算图像的旋转参数。
本文将介绍SIFT算法的原理和计算旋转参数的步骤。
一、SIFT算法原理SIFT(Scale Invariant Feature Transform)算法是由David Lowe于1999年提出的一种图像处理算法,它主要用于图像特征提取和匹配。
SIFT算法通过寻找图像中的关键点,并提取关键点周围的特征描述子,从而实现对图像的特征提取和匹配。
SIFT算法的主要步骤包括:尺度空间极值检测、关键点定位、方向分配、特征描述和特征匹配。
其中,关键点定位和方向分配是计算旋转参数的关键步骤。
二、计算旋转参数的步骤1. 尺度空间极值检测SIFT算法首先对输入图像进行尺度空间的构建,通过高斯金字塔和DOG(Difference of Gaussian)计算得到图像的尺度空间。
然后,在每组DOG图像中寻找极值点,用于标记潜在的关键点。
2. 关键点定位在寻找极值点的基础上,SIFT算法采用了稳定的关键点定位方法,通过比较极值点与周围像素的梯度和曲率信息,筛选出稳定的关键点。
这些关键点具有尺度和旋转不变性,可以在不同尺度和旋转角度的图像中进行匹配。
3. 方向分配为了使关键点具有旋转不变性,SIFT算法为每个关键点分配一个主方向。
具体做法是在关键点周围的区域中计算梯度直方图,找到梯度最大的方向作为主方向。
这样,即使图像发生旋转,关键点的描述子仍然可以进行匹配。
4. 特征描述在确定了关键点的尺度和旋转参数后,SIFT算法采用了局部图像块的特征描述方法。
它将关键点周围的图像区域分成若干个子区域,并计算每个子区域的梯度直方图。
然后,将这些直方图组合成一个特征向量,形成关键点的描述子。
5. 特征匹配SIFT算法使用特征向量进行特征匹配。
常用的方法是计算两个图像之间的欧氏距离,找到距离最小的匹配对。
通过特征匹配,可以实现对图像的旋转参数的计算。
SIFT特征点提取与匹配算法SIFT (Scale-Invariant Feature Transform) 特征点提取与匹配算法是一种在计算机视觉领域中常用的特征点提取与匹配方法。
它由David Lowe在1999年提出,并且成为了计算机视觉领域中广泛应用的算法之一、SIFT特征点提取与匹配算法的主要思想在于提取图像中具有独特性、不受尺度变化和旋转变化影响的局部特征点,并通过特征匹配找到两幅图像之间的对应关系。
SIFT算法主要分为4个步骤:尺度空间极值检测、关键点定位、方向分配和特征描述。
第一步,尺度空间极值检测。
该步骤旨在检测图像中所有尺度的极值点作为特征点的候选。
为了对图像进行不同尺度的检测,SIFT算法使用了高斯金字塔。
高斯金字塔是通过对原始图像进行一系列高斯模糊和下采样操作构建的图像金字塔。
在每一组金字塔中,通过计算图像在不同尺度下的拉普拉斯变换,得到图像的尺度空间表征。
然后,通过比较每一层相邻像素点的灰度,检测出具有极值的像素点。
这些极值点将被作为候选的关键点。
第二步,关键点定位。
在这一步骤中,SIFT算法对候选的关键点进行一系列的筛选,以保留稳定的关键点。
首先,使用插值的方法对关键点进行亚像素精确定位。
然后,根据图像的梯度信息计算关键点的主曲率,通过判断主曲率是否小于阈值,来筛选掉低对比度的关键点和边缘响应的关键点。
此外,通过计算关键点的梯度方向,可以为后续的方向分配做准备。
第三步,方向分配。
为了提高特征点的旋转不变性,在这一步骤中,SIFT算法为每个关键点分配一个主方向。
具体地,SIFT算法将关键点的周围区域分为若干个子区域,并计算每个子区域的梯度方向直方图。
通过找到直方图中的局部极大值,选择关键点的主方向。
这样,即使图像发生旋转,关键点的描述子也能够保持一致性。
第四步,特征描述。
在这一步骤中,SIFT算法为每个关键点生成一个128维的描述子。
描述子的生成主要通过计算关键点周围区域内的梯度信息。
SIFT特征提取算法SIFT特征提取算法(Scale-Invariant Feature Transform)是一种计算机视觉领域广泛应用的特征提取算法,它具有尺度不变性和旋转不变性的特点,能够在图像中鲁棒地提取出关键点,并生成与这些关键点相关的描述子,以实现图像特征的匹配和识别。
SIFT特征提取算法包含以下几个重要的步骤:尺度空间极值检测、关键点定位、关键点方向确定、关键点描述子生成等。
首先,SIFT特征提取算法从一幅图像中构建尺度空间。
为了实现尺度不变性,SIFT算法利用高斯金字塔模拟不同尺度下的图像,通过对图像进行多次高斯模糊操作得到一系列尺度不同的图像。
然后,通过对这些图像进行差分运算,得到一组差分图像用于尺度空间极值检测。
接下来,SIFT算法从尺度空间极值检测结果中选取稳定的关键点。
在差分图像中,极值点表示着尺度空间中的局部最大值或最小值,这些极值点对应着图像中的关键点。
为了保证关键点的稳定性,SIFT算法会过滤掉一些不稳定的候选关键点,例如低对比度的关键点和边缘响应较大的关键点。
然后,对于选取的关键点,SIFT算法会计算它们的主方向。
利用关键点附近的梯度直方图,SIFT算法可以确定关键点的方向。
这个主方向可以提高后续描述子生成的旋转不变性。
最后,SIFT算法根据关键点的位置和主方向生成关键点的描述子。
在关键点周围的邻域内,SIFT算法通过计算邻域内像素的梯度幅值和方向,生成一个特征向量来描述关键点的外观特征。
这个特征向量被称为SIFT特征描述子,通常是一个128维的向量。
为了保证描述子的不变性,SIFT算法对特征向量进行了归一化和方向旋转等处理。
总结来说,SIFT特征提取算法通过尺度空间极值检测、关键点定位、关键点方向确定和关键点描述子生成等步骤,能够从图像中提取出具有尺度不变性和旋转不变性的关键点和描述子。
SIFT特征提取算法在计算机视觉领域有着广泛的应用,例如图像匹配、物体识别和三维重建等任务中都能够发挥重要作用。