材料的拉伸性能
- 格式:ppt
- 大小:5.39 MB
- 文档页数:87
拉伸性能指标解读拉伸性能是材料力学性能中的重要指标之一,用于评估材料抵抗拉伸力的能力。
它通过拉伸试验来测量材料在拉伸过程中的变形行为和破坏特性。
拉伸性能指标主要包括屈服强度、抗拉强度、伸长率和断面收缩率等。
屈服强度是材料在拉伸试验过程中,应力-应变曲线上的一个特定点,表示材料开始产生塑性变形的能力。
在材料受拉伸力作用下,原来的晶粒结构开始发生滑移和形变,屈服强度是材料开始变形的阈值。
较高的屈服强度意味着材料的韧性好,具有较高的抵抗变形的能力。
抗拉强度是材料在拉伸试验中达到最大应力时的强度指标,表示材料在拉伸过程中抗拉应力的能力。
抗拉强度越高,材料的耐拉性能就越好。
抗拉强度是评价材料用于承受拉伸载荷的能力的关键参数,特别适用于强度要求较高的工程应用。
伸长率是衡量材料在拉伸过程中塑性变形程度的指标,表示材料在断裂前可以延长的百分比。
伸长率越大,材料的可以承受更大的拉伸变形,具有良好的延展性和可塑性。
伸长率的大小与材料的成分、晶粒尺寸、形变速率以及温度等因素有关。
比如,冷轧钢具有较高的伸长率,而铸造钢的伸长率则较低。
断面收缩率是材料断裂时剩余断面与原断面面积的比值,表示材料在断裂时的收缩程度。
断面收缩率的数值越大,说明材料的塑性变形越显著,能量吸收能力越高,断裂后剩余截面的面积越小。
断面收缩率往往与伸长率成反比,即材料的伸长率越大,断面收缩率就越小。
除了以上几个常见的拉伸性能指标,还有一些其他指标也可以用来评价材料的拉伸性能,如杨氏模量、泊松比等。
杨氏模量也被称为弹性模量,用于描述材料的刚性程度,即在拉伸力作用下,材料的形变程度。
泊松比则是材料在拉伸过程中横向收缩与纵向变形之间的比率,用于描述材料的变形特性。
在工程实践中,了解和评估材料的拉伸性能对于材料的选用和设计具有重要意义。
不同的材料具有不同的拉伸性能,根据具体应用需求和要求选择适合的材料,可以提高材料的使用寿命和安全性能。
同时,通过改变材料的处理方式、调整成分比例等方法,也可以改善材料的拉伸性能,提高材料的工程性能。
影响材料拉伸性能试验的几大技术因素屈服强度σs、抗拉强度σb等参数是金属材料最富代表性的力学性能指标,是工程设计、机械制造的主要依据,这类力学性能指标的分析和研究对于从事基础理论研究和分析工程事故具有非常重要的意义。一、影响材料拉伸试验强度的因素:1.温度效应随着试验温度的升高, 金属材料的σs(σ0.2)显著降低。例如低碳钢材料,随着试验温度升高,其屈服强度σs相应降低且屈服平台的长度逐渐缩短,直至某一温度屈服平台消失,σs不复存在;由于温度升高使材料的晶界由硬、脆转变为软、弱,使其抗力降低,因此,材料的σb在宏观上也随试验温度的变化而改变。2. 加载速率效应材料的屈服点随加载速率的增大而提高;室温条件下,拉伸速度对强度较高的金属材料的σb 无影响,而对强度较低的、塑性好的金属材料有微小的影响。拉伸时加载速率增大,σb有增高的趋势。在高温下,拉伸加载速率对σb有显著的影响。3.试验条件及试样工艺效应金属材料处于有害的介质环境时,试样的屈服点降低。试样的表面粗糙度对屈服点也有影响,特别是对塑性较差的金属材料有较大的影响,有使屈服点降低的趋势。4. 偏心效应由于试验机的加载轴线与试样的几何中心不一致,所以严格的轴向荷载(图1(a))是很难获得的,这就造成了试验机偏心加载、产生弯曲而引入测试误差。考虑同轴度的影响,试样受。如图1(b)所示。其中,几何同轴度为e、力的同轴度为α图15.试验刚度效应在创恒实验室的材料的拉伸试验中,试验系统可视为试验机机身、夹具-加载系统和试样三部分构成的“可变形的试验系统”。显然,试验机机身的刚度、夹具-加载系统的刚度和受拉试样的抗拉刚度共同构成了“试验系统”的刚度。所以,试验机的弹性变形、夹具-加载系统的工作状态和试样本身的变形都会对试验产生影响,即试验刚度在一定程度上会影响试样的试验强度指标。在实践中,不同刚度的试验机实测对比结果也反映了试验刚度对材料试验强度的影响。二、结论1. 遵循规范、仔细操作、认真分析、将各种技术因素对材料试验强度的影响最小化2. 使用符合要求的试样,保证加载的对中度,尽量使用气动或液压夹具,减少偏心效应的影响。3. 试验刚度随荷载P的增加而逐渐减小,试验的刚度也与试样的尺寸和材料弹性模量有关。。
拉伸性能实验报告
本次实验旨在测试材料的拉伸性能。
实验采用了标准拉伸试验方法,对不同材料进行了拉伸测试。
实验结果表明,不同材料的拉伸性能存在着显著的差异。
实验材料:本次实验选取了三种材料进行测试,分别为聚酰亚胺薄膜、聚乙烯塑料膜和铝合金板材。
实验设备:拉伸试验机、计算机、测量仪器等。
实验方法:将样品夹在拉伸试验机上,先进行预拉伸,然后施加拉伸力,记录样品在拉伸过程中的应变和应力数据,绘制应力应变曲线。
实验结果:
1.聚酰亚胺薄膜:在拉伸过程中表现出极高的拉伸强度和模量,表现出了良好的耐热性和化学稳定性。
2.聚乙烯塑料膜:在拉伸过程中表现出较低的拉伸强度和模量,但表现出了较好的延展性和耐冲击性。
3.铝合金板材:在拉伸过程中表现出较高的拉伸强度和模量,但表现出较低的延展性和韧性。
结论:不同材料的拉伸性能存在着显著的差异,应根据具体应用需求选择合适的材料。
025材料在拉伸和压缩时的力学性能解析材料在拉伸和压缩时的力学性能是指材料在外力作用下的变形和破坏行为。
这些性能参数包括弹性模量、屈服强度、延伸率、断裂强度等,这些性能参数反映了材料在受力过程中的力学行为。
材料在拉伸和压缩时的力学性能可以通过应力-应变曲线来分析。
应力-应变曲线可以描述材料在受力作用下的应变和应力之间的关系。
根据应力-应变曲线的不同形状,可以得到不同的力学性能。
材料在拉伸时的力学性能:1. 弹性模量(Young's modulus):弹性模量是指材料在拉伸过程中的应变与应力之间的比例关系。
弹性模量越大,材料的刚度越高,抗拉性能越好。
2. 屈服强度(Yield strength):屈服强度是指材料开始发生塑性变形的应力值。
材料的屈服强度越高,具有越好的抗拉性能。
3. 延伸率(Elongation):延伸率是指材料在拉伸过程中的长度增加量与原始长度之比。
延伸率越高,材料的延展性越好。
4. 断裂强度(Tensile strength):断裂强度是指材料在拉伸过程中的最大应力值。
断裂强度越高,材料的抗拉性能越好。
材料在压缩时的力学性能:需要注意的是,材料在拉伸和压缩时的力学性能往往不完全对称。
在一些材料中,其拉伸性能表现较好,而压缩性能较差,或者压缩性能表现较好,而拉伸性能较差。
因此,在设计工程结构和选择材料时,需要综合考虑材料在拉伸和压缩时的力学性能。
总之,材料在拉伸和压缩时的力学性能对于材料的应用和工程设计具有重要影响。
通过分析材料的弹性模量、屈服强度、延伸率、断裂强度等性能参数,可以更好地了解材料的力学行为,为材料选择和工程设计提供指导和参考。
6 材料在拉伸和压缩时的力学性能力学性能———指材料受力时在强度和变形方面表现出来的性能。
塑性变形又称永久变形或残余变形⎪⎩⎪⎨⎧弹性变形塑性变形变形塑性材料:断裂前产生较大塑性变形的材料,如低碳钢脆性材料:断裂前塑性变形很小的材料,如铸铁、石料2002)国家标准规定《金属拉伸试验方法》(GB228—对圆截面试样:L=10d L=5d对矩形截面试样:.5=L65=AL3.11A万能试验机二、低碳钢在拉伸时的力学性能F △L A LO σεpσe σs σb σa b c d e1o e 'f g 冷作硬化现象如对试件预先加载,使其达到强化阶段,然后卸载;当再加载时试件的线弹性阶段将增加,而其塑性降低。
----称为冷作硬化现象O σεa b c d e 1o e 'f g 残余变形——试件断裂之后保留下来的塑性变形。
ΔL=L 1-L 0延伸率:δ=%100001⨯-L L L δ>5%——塑性材料δ<5%——脆性材料截面收缩率Ψ=%100010⨯-A A A123O σεA 0.2%S 4102030ε(%)0100200300400500600700800900σ(MPa)1、锰钢2、硬铝3、退火球墨铸铁4、低碳钢特点:d 较大,为塑性材料。
三、其他材料在拉伸时的力学性能无明显屈服阶段的,规定以塑性应变=0.2%所对应的应力作为名义屈服极限,记作p ε2.0p σ2.0p σ无明显屈服阶段。
O σεbσσb —拉伸强度极限,脆性材料唯一拉伸力学性能指标。
0.1%E 特点:应力应变不成比例,无屈服、颈缩现象,变形很小且强度极限很低。
E 不确定通常取总应变为0.1%时曲线的割线斜率确定弹性模量。
dLbbLL/d(b): 1---3四、金属材料在压缩时的力学性能国家标准规定《金属压缩试验方法》(GB7314—87)低碳钢压缩•对于低碳钢这种塑性材料,其抗拉能力比抗剪能力强,故而先被剪断;而铸铁压缩时,也是剪断破坏。
高分子材料的拉伸性能测试《高分子材料的拉伸性能测试》实验指导书一、实验目的1、测试热塑性塑料弯曲性能。
2、掌握高分子材料的应力―应变曲线的绘制。
4、了解塑料抗张强度的实验操作。
二、实验原理拉伸试验是材料最基本的一种力学性能试验方法,可以得到材料的各种拉伸性能,包括拉伸强度、弹性模量、泊松比、伸长率、应力-应变曲线等。
拉伸试验是指在规定的温度、湿度和试验速度下,在试样上沿纵轴方向施加拉伸载荷使其破坏,此时材料的性能指标如下:1.拉伸强度为:(1)式中σ--拉伸强度,mpa;p---毁坏载荷(或最小载荷),n;b---试样宽度,cm;h---试样厚度,cm.2.拉伸破坏(或最大载荷处)的伸长率为:(2)式中ε---试样弯曲毁坏(或最小载荷处)伸长率,%;δl0-毁坏时标距内弯曲量,cm;l0---测量的标距,cm,3.弯曲弹性模量为:(3)式中et---弯曲弹性模量,mpa;δp―荷载-变形曲线上初始直线段部分载荷量,n;δl0―与载荷增量对应的标距内变形量,cm。
4.弯曲形变-快速反应曲线如果材料是理想弹性体,抗张应力与抗张应变之间的关系服从胡克定律,即:σ=eε式中:e-杨氏模量或拉伸模量;σ-应力;ε-应变聚合物材料由干本身长链分子的大分子结构持点,并使其具备多重的运动单元,因此不是理想的弹性体,在外力作用下的力学犯罪行为就是一个僵硬过程,具备显著的粘弹性质。
弯曲试验时因试验条件的相同,其弯曲犯罪行为存有非常大差别。
初始时,形变减少,快速反应也减少,在a点之前形变与快速反应成正比关系,合乎胡克定律,呈圆形理想弹性体。
a点叫作比例极限点。
少于a点后的一段,形变减小,快速反应仍减少,但二者不再成正比关系,比值逐渐增大;当达至y点时,其比值为零。
y点叫作屈服点。
此时弹性模最对数为零,这就是一个关键的材料持征点。
对塑料来说,它就是采用的音速。
如果再继续弯曲,形变维持维持不变甚至还可以上升,而快速反应可以在一个相当大的范围内减少,直到脱落。
塑料拉伸性能试验方法一、引言塑料材料的拉伸性能试验方法是一种用于评估材料在拉伸过程中的应力应变关系的实验方法。
该方法可以测量材料的拉伸强度、弹性模量、延伸率等参数,从而评估材料的力学性能和应用潜力。
本文将介绍常用的塑料拉伸性能试验方法,包括试样制备、试验装置和试验过程等内容。
二、试样制备1.标准试样的准备:根据不同的标准和具体要求,选择适当形状和尺寸的试样。
常用的试样形状包括矩形条、圆柱体和圆环等。
2.试样的制备:使用手工或机械方法将原料制备成符合标准要求的试样。
试样表面应平整、无明显缺陷和损伤。
三、试验装置1.试验机:拉伸试验机是进行塑料拉伸性能试验的主要设备。
其主要组成部分包括上下夹持装置和负荷传感器等。
2.夹持装置:用于夹持试样并施加恒定的拉伸力。
夹持装置通常由上下夹具、拉伸块和夹紧装置等组成。
3.拉伸块:用于夹持试样的部位,保持试样在拉伸过程中的稳定性。
4.负荷传感器:用于测量施加在试样上的拉伸力。
常见的负荷传感器包括应变片和力传感器等。
5.位移传感器:用于测量试样的变形,从而计算应变。
位移传感器通常通过夹持装置和试样来测量试样在拉伸过程中的变化。
四、试验过程1.装置准备:首先,根据试样的尺寸和要求,调整和安装夹持装置,并连接好负荷传感器和位移传感器。
2.试样夹持:将试样放置在夹持装置中,确保试样的尺寸和尺寸间隙(如果有的话)符合标准要求,并使用夹紧装置夹紧试样。
夹持装置和试样之间的接触面应均匀且平整。
3.拉伸过程:根据标准要求,设置试验机的拉伸速度。
起初,试样处于未受力状态。
启动试验机并开始施加拉伸力,直到达到试样的破断点。
4.数据记录与分析:在拉伸过程中,通过负荷传感器和位移传感器记录负荷和位移数据。
根据得到的数据,可以计算出试样的应力和应变值。
五、结果计算和分析1.计算拉伸强度:拉伸强度是试样在拉伸过程中所承受的最大拉伸应力。
拉伸强度的计算公式为拉伸强度=最大负荷/试样的初始横截面积。
金属5种拉伸性能拉伸试验可测定材料的一系列强度指标和塑性指标。
强度通常是指材料在外力作用下抵抗产生弹性变形、塑性变形和断裂的能力。
材料在承受拉伸载荷时,当载荷不增加而仍继续发生明显塑性变形的现象叫做屈服。
产生屈服时的应力,称屈服点或称物理屈服强度,用σS(帕)表示。
工程上有许多材料没有明显的屈服点,通常把材料产生的残余塑性变形为0.2%时的应力值作为屈服强度,称条件屈服极限或条件屈服强度,用σ0.2 表示。
材料在断裂前所达到的最大应力值,称抗拉强度或强度极限,用σb(帕)表示。
接下来简单介绍了5种相应的拉伸性能。
1、屈服和屈服强度很多结构设计中我们需要确保在施加应力的条件下只会发生弹性形变。
某一个结构或者组件在经历了塑性变形或者说形状发生了永久性的变化之后可能就无法满足其应用的功能要求。
屈服发生的点可以通过应力-应变曲线最初开始偏离线性关系的位置来确定,该点我们有时候称之为弹性极限。
然而该点的精确位置较难测定。
直线与应力-应变曲线弯向塑性变形区间的交点所对应的应力被定义为屈服强度。
对于具有非线性弹性区间的材料来说,不可能使用应变截距的方法,通常将产生某特定程度应变所需的应力定义为屈服强度。
弹性-塑性转变十分明显而且出现非常突然,我们称这种想象为屈服点现象。
在上屈服点处,塑性形变由工程应力的明显下降开始。
形变在某上下范围浮动的应力值之内持续发生,我们称该应力为下屈服点。
接下来应力随着应变的增加而升高。
对于具有这种效应的金属来说,其屈服强度被认为是与下屈服点相关的平均应力值,因为该应力比较明显且对测试过程的敏感性较低。
因此对于这些材料来说,我们没有必要使用应变截距的方法。
2、拉伸强度在屈服发生之后,使金属继续发生塑性形变所需的应力增长到最大值,然后开始下降并最终发生断裂。
拉伸强度就是对应于工程应力——应变曲线最高点的应力值。
该强度对应于构件所能承受的最大拉伸应力。
如果持续施加应力则会发生断裂。
到该点之前,拉伸试样较细部分的形变都是一致的。
塑料拉伸性能的标准塑料是一种常见的材料,它具有轻质、耐腐蚀、易加工等特点,在各个领域都有着广泛的应用。
而塑料的拉伸性能是评价其质量的重要指标之一。
本文将介绍塑料拉伸性能的标准,以帮助大家更好地了解和评价塑料材料的质量。
首先,塑料的拉伸性能是指在拉伸作用下,塑料材料的抗拉强度、断裂伸长率、弹性模量等指标。
这些指标可以直观地反映出塑料材料在受力时的性能表现。
因此,对于不同类型的塑料材料,其拉伸性能的标准也有所不同。
一般来说,塑料的拉伸性能标准主要包括以下几个方面:1. 抗拉强度,抗拉强度是指材料在拉伸过程中所承受的最大拉力,通常以 MPa (兆帕)为单位。
抗拉强度越高,代表着材料具有更好的抗拉性能,能够承受更大的拉力而不会发生断裂。
2. 断裂伸长率,断裂伸长率是指材料在拉伸断裂时的伸长比例,通常以百分比表示。
断裂伸长率越高,代表着材料具有更好的延展性,能够在受力时发生更大程度的变形而不会立即断裂。
3. 弹性模量,弹性模量是指材料在弹性阶段内的应力-应变关系斜率,通常以GPa(千兆帕)为单位。
弹性模量越大,代表着材料具有更好的刚性和弹性,能够在受力后迅速恢复原状。
4. 断裂韧性,断裂韧性是指材料在拉伸断裂时吸收的能量,通常以 J/m²(焦耳/平方米)为单位。
断裂韧性越高,代表着材料具有更好的抗冲击性能,能够在受力时吸收更多的能量而不会立即断裂。
根据不同的塑料类型和应用领域,上述拉伸性能指标的标准也有所不同。
例如,对于一些需要承受大拉力的工程塑料,其抗拉强度和弹性模量的要求会比较高;而对于一些需要具有良好延展性和抗冲击性的包装塑料,其断裂伸长率和断裂韧性的要求会比较高。
在实际应用中,我们可以通过拉伸试验来测试塑料材料的拉伸性能,从而判断其是否符合相关标准要求。
通过合理的试验方案和测试方法,可以准确地评估塑料材料的拉伸性能,为产品设计和选材提供重要参考依据。
总之,塑料的拉伸性能标准是评价其质量的重要指标,通过对抗拉强度、断裂伸长率、弹性模量、断裂韧性等指标的测试和评估,可以更好地了解塑料材料的性能表现,为相关领域的应用提供科学依据。
材料拉伸知识点总结一、材料拉伸的概念材料的拉伸是指将材料沿着其长度方向施加外力,使其受到拉力而发生变形的过程。
在拉伸过程中,材料会发生延伸、变形和断裂等现象。
材料的拉伸性能直接影响到材料的工程应用,因此对材料的拉伸性能进行研究具有重要的意义。
二、材料拉伸的力学性质1. 弹性模量弹性模量是材料在受到拉力时,在弹性范围内所表现的抗拉性能。
它是材料在拉伸过程中产生弹性变形的能力的量度。
弹性模量越大,材料的抗拉性能越好。
2. 屈服强度材料受到拉力作用时,在允许弹性变形的情况下所能承受的最大拉力。
超过这一点之后,材料将出现塑性变形,即产生塑性流动。
屈服强度是材料抗拉性能的一个重要指标。
3. 断裂强度材料在拉伸过程中最终发生断裂的强度。
断裂强度是材料抗拉性能的一个重要指标,可以用来评估材料的结构强度和安全性。
4. 延伸率材料在拉伸过程中产生塑性变形的能力。
通常用百分数来表示,即拉伸前后的长度差除以拉伸前的长度乘以100%。
延伸率越大,材料的抗拉性能越好。
5. 断裂伸长率材料在拉伸断裂之前的延伸率。
断裂伸长率是一个重要的拉伸性能指标,反映了材料的延伸性能。
三、材料拉伸的影响因素1. 材料的组织结构材料的晶粒大小、晶粒形状、晶粒方向等组织结构对材料的拉伸性能有重要影响。
通常情况下,晶粒越小、结构越致密,材料的拉伸性能越好。
2. 材料的成分材料的化学成分对其拉伸性能有很大的影响。
不同的合金元素、杂质元素会改变材料的晶体结构、力学性能和抗拉性能。
3. 加工工艺材料的热处理、冷加工、热轧、冷轧等加工工艺会影响材料的晶粒大小、晶格位错密度以及晶粒形状,进而影响材料的拉伸性能。
4. 温度温度对材料的塑性变形、断裂性能、晶界强度等方面都有影响。
通常情况下,升高温度会使材料的延伸性能增加,但断裂性能降低。
5. 拉伸速度拉伸速度会影响材料的延伸率、延伸速度敏感性、屈服强度等性能。
通常情况下,拉伸速度越大,材料的延伸率越小,延伸速度敏感性越大。