材料力学-材料拉伸时的力学性能
- 格式:ppt
- 大小:1.53 MB
- 文档页数:16
材料力学拉伸实验材料力学是工程学中的重要基础学科,它研究材料在外力作用下的力学性能。
在工程实践中,对材料的拉伸性能进行测试是非常重要的,因为这可以帮助工程师了解材料的强度、韧性和延展性等重要性能指标。
本文将介绍材料力学拉伸实验的基本原理、实验步骤和数据分析方法,希望能对相关领域的学习和研究提供帮助。
1. 实验原理。
材料在外力作用下会发生形变,其中最常见的一种形变是拉伸形变。
当外力作用在材料上时,材料会发生拉伸变形,这时材料会产生应力和应变。
应力是单位面积上的力,而应变是单位长度上的形变量。
拉伸实验可以通过施加不同的拉伸力来研究材料的应力-应变关系,从而得到材料的力学性能参数。
2. 实验步骤。
(1)准备工作,首先准备好需要进行拉伸实验的材料样品,通常为圆柱形。
然后根据实验要求选择合适的拉伸试验机,并安装好相应的夹具。
(2)样品加工,将材料样品切割成符合实验要求的尺寸,并在样品上标记好长度和直径等必要的信息。
(3)安装样品,将样品夹持在拉伸试验机上,并调整夹具,使样品处于合适的位置。
(4)施加载荷,通过拉伸试验机施加逐渐增加的拉伸力,记录下相应的载荷和伸长值。
(5)数据采集,在拉伸过程中,实时记录载荷和伸长值,并绘制应力-应变曲线。
(6)数据分析,根据实验数据,计算出材料的屈服强度、抗拉强度、断裂强度等力学性能指标。
3. 数据分析方法。
拉伸实验得到的主要数据是载荷和伸长值,通过这些数据可以计算出应力和应变。
应力是载荷与样品初始横截面积的比值,而应变是伸长值与样品初始长度的比值。
绘制应力-应变曲线后,可以得到材料的屈服点、抗拉强度和断裂点等重要参数。
4. 结论。
材料力学拉伸实验是研究材料力学性能的重要手段,通过实验可以得到材料的力学性能参数,为工程设计和材料选型提供重要参考。
在进行拉伸实验时,需要注意样品的加工和安装,以及实验数据的准确记录和分析。
希望本文的介绍能够对相关领域的学习和研究有所帮助。
实验一材料在轴向拉伸、压缩时的力学性能一、实验目的1.测定低碳钢在拉伸时的屈服极限σs、强度极限σb、延伸率δ和断面收缩率 。
2.测定铸铁在拉伸以及压缩时的强度极限σb。
3.观察拉压过程中的各种现象,并绘制拉伸图。
4.比较低碳钢(塑性材料)与铸铁(脆性材料)机械性质的特点。
二、设备及仪器1.电子万能材料试验机。
2.游标卡尺。
图1-1 CTM-5000电子万能材料试验机电子万能材料试验机是一种把电子技术和机械传动很好结合的新型加力设备。
它具有准确的加载速度和测力范围,能实现恒载荷、恒应变和恒位移自动控制。
由计算机控制,使得试验机的操作自动化、试验程序化,试验结果和试验曲线由计算机屏幕直接显示。
图示国产CTM -5000系列的试验机为门式框架结构,拉伸试验和压缩试验在两个空间进行。
图1-2 试验机的机械原理图试验机主要由机械加载(主机)、基于DSP的数字闭环控制与测量系统和微机操作系统等部分组成。
(1)机械加载部分试验机机械加载部分的工作原理如图1-2所示。
由试验机底座(底座中装有直流伺服电动机和齿轮箱)、滚珠丝杠、移动横梁和上横梁组成。
上横梁、丝杠、底座组成一框架,移动横梁用螺母和丝杠连接。
当电机转动时经齿轮箱的传递使两丝杠同步旋转,移动横梁便可水平向上或相下移动。
移动横梁向下移动时,在它的上部空间由上夹头和下夹头夹持试样进行拉伸试验;在它的下部空间可进行压缩试验。
(2)基于DSP的数字闭环控制与测量系统是由DSP平台;基于神经元自适应PID算法的全数字、三闭环(力、变形、位移)控制系统;8路高精准24Bit 数据采集系统;USB1.1通讯;专用的多版本应用软件系统等。
(3) 微机操作系统试验机由微机控制全试验过程,采用POWERTEST 软件实时动态显示负荷值、位移值、变形值、试验速度和试验曲线;进行数据处理分析,试验结果可自动保存;试验结束后可重新调出试验曲线,进行曲线比较和放大。
可即时打印出完整的试验报告和试验曲线。
实验一、测定金属材料拉伸时的力学性能一、实验目的1、测定低碳钢的屈服极限s σ,强度极限b σ,延伸率δ和面积收缩率ψ。
2、测定铸铁的强度极限b σ。
3、观察拉伸过程中的各种现象,并绘制拉伸图(l F ∆-曲线)。
二、仪器设备1、液压式万能试验机。
2、游标卡尺。
三、实验原理简要材料的力学性质s σ、b σ、δ和ψ是由拉伸破坏试验来确定的。
试验时,利用试验机自动绘出低碳钢拉伸图和铸铁拉伸图。
对于低碳材料,确定屈服载荷s F 时,必须缓慢而均匀地使试件产生变形,同时还需要注意观察。
测力回转后所指示的最小载荷即为屈服载荷s F ,继续加载,测得最大载荷b F 。
试件在达到最大载荷前,伸长变形在标距范围内均匀分布。
从最大载荷开始,产生局部伸长和颈缩。
颈缩出现后,截面面积迅速减小,继续拉伸所需的载荷也变小了,直至断裂。
铸铁试件在极小变形时,就达到最大载荷,而突然发生断裂。
没有流动和颈缩现象,其强度极限远低于碳钢的强度极限。
四、实验过程和步骤1、用游标卡尺在试件的标距范围内测量三个截面的直径,取其平均值,填入记录表内。
取三处中最小值作为计算试件横截面积的直径。
2、 按要求装夹试样(先选其中一根),并保持上下对中。
3、 按要求选择“试验方案”→“新建实验”→“金属圆棒拉伸实验”进行试验,详细操作要求见万能试验机使用说明。
4、 试样拉断后拆下试样,根据试验机使用说明把试样的l F ∆-曲线显示在微机显示屏上。
从低碳钢的l F ∆-曲线上读取s F 、b F 值,从铸铁的l F ∆-曲线上读取b F 值。
5、 测量低碳钢(铸铁)拉断后的断口最小直径及横截面面积。
6、 根据低碳钢(铸铁)断口的位置选择直接测量或移位方法测量标距段长度1l 。
7、 比较低碳钢和铸铁的断口特征。
8、 试验机复原。
六、实验结论分析与讨论分析比较两种材料在拉伸时的力学性能及断口特征。
实验二、测定金属材料压缩时的力学性能一、实验目的1、测定低碳钢的屈服应力s σ。
材料在拉伸与压缩时的力学性能第3讲教学方案——材料在拉伸与压缩时的力学性能许用应力与强度条件§2-3 材料在拉伸与压缩时的力学性能材料的力学性能:也称机械性能。
通过试验揭示材料在受力过程中所表现出的与试件几何尺寸无关的材料本身特性。
如变形特性,破坏特性等。
研究材料的力学性能的目的是确定在变形和强度刚度的依据。
因此材料力学试验是材料力学课程重要的组成部分。
此处介绍用常温静载试验来测定材料的力学性能。
1. 试件和设备标准试件:圆截面试件,如图2-14:标距l 与直径d 的比例分为,l =10d ,l =5d ;板试件(矩形截面):标距l 与横截面面积A 的比例分为,l =11. 3A ,l =5. 65A ;试验设备主要是拉力机或全能机及相关的测量、记录仪器。
详细介绍见材料力学试验部分。
国家标准《金属拉伸试验方法》(如GB228-87)详细规定了实验方法和各项要求。
2. 低碳钢拉伸时的力学性能低碳钢是指含碳量在0.3%以下的碳素钢,如A 3钢、16Mn 钢。
1)拉伸图(P —ΔL ),如图2-15所示。
弹性阶段(oa )屈服(流动)阶段(bc )强化阶段(ce )由于P —ΔL 曲线与试样的尺寸有关,为了消除试件尺寸的影响,可采用应力应变曲线,即σ-ε曲线来代替P —ΔL 曲线。
进而试件内部出现裂纹,名义应力σ下跌,至f 点试件断裂。
对低碳钢来说,σs ,σb 是衡量材料强度的重要指标。
2)σ-ε曲线图,如图2-16所示,其各特征点的含义为:oa 段:在拉伸(或压缩)的初始阶段应力σ与应变ε为直线关系直至a 点,此时a点所对应的应力值称为比例极限,用σ表示。
它是应力与应变成正比例的最大极限。
当σ≤σP 则有σ=E ε(2-5)即胡克定律,它表示应力与应变成正比,即有σE ==tan αεPE 为弹性模量,单位与σ相同。
当应力超过比例极限增加到b 点时,σ-ε关系偏离直线,此时若将应力卸至零,则应变随之消失(一旦应力超过b 点,卸载后,有一部分应变不能消除),此b 点的应力定义为弹性极限σe 。
材料力学中的拉伸强度测试引言材料力学是材料科学的重要分支,研究各种物质在外力作用下的性能和行为。
而拉伸强度测试是材料力学中常见的一种实验方法,用于评估材料的力学性能,并为工程设计和材料选择提供依据。
本文将深入探讨材料拉伸强度测试的原理、过程和应用。
一、拉伸强度测试的原理拉伸强度是指材料在拉伸过程中抵抗断裂的能力,也叫做抗拉强度或拉断强度。
测试拉伸强度的目的是衡量材料在受拉力作用下的极限承受能力,以及它的延伸性和韧性。
拉伸强度测试通常使用万能试验机进行,采取标准试样进行拉伸,通过测量试样在均匀加载下的应变和应力,得到应力-应变曲线。
应力-应变曲线是描述材料塑性和断裂特性的重要参数,包括线性弹性阶段、屈服点、塑性阶段和断裂点。
二、拉伸强度测试的过程1. 试样制备拉伸试样的制备是测试的第一步,它必须符合相应的标准规范,以确保结果的准确性和可比性。
常用的拉伸试样有圆柱形和平行四边形形状。
2. 试样夹持将试样夹持在万能试验机上,确保试样能够在垂直拉伸方向上受力。
夹具的选择和夹持力的控制对测试结果有重要影响。
3. 施加载荷逐渐增加加载力,以一定的速率使试样发生拉伸。
在加载过程中,记录试样的应变和应力数据,以便绘制应力-应变曲线。
4. 数据处理和结果分析通过绘制应力-应变曲线,可以得到一系列参数,如屈服强度、抗拉强度、断裂强度等。
这些参数可以用来评估材料的性能,并与其他材料进行比较。
三、拉伸强度测试的应用拉伸强度测试在材料工程中具有广泛的应用。
它可以帮助工程师选择合适的材料,设计强度要求达到的构件,并评估材料的质量和可靠性。
1. 材料选择拉伸强度是衡量材料性能的重要指标之一。
在工程设计中,需要考虑材料在受拉载荷下的抗拉能力。
通过拉伸强度测试,可以得到不同材料在相同加载条件下的性能比较,从而选择最适合的材料。
2. 构件设计拉伸强度测试结果可以用于构件的设计和验证。
工程师可以根据材料的拉伸强度确定构件的抗拉性能要求,确保设计的稳定性和安全性。
0/A P =s s σ金属材料力学性能测试——拉伸实验拉伸实验是测定材料力学性质基本的重要实验之一。
根据国家标准金属拉力实验法的规定,拉伸试件必须做成标准试件。
圆截面试件如图1-1所示:长试件L=10d 0,短试件L=5d 0。
拉伸时材料的强度指标和塑性指标测定: 1、强度指标的测定:材料拉伸时的力学性能指标(如s σ,b σ,δ,ψ ),由拉伸破坏实验来确定。
图1-2是低碳钢拉伸实验时的拉伸图。
OA 段为弹性变形阶段,过了A 点,材料进入屈服阶段,材料进入上屈服点,A 点对应上屈服点的载荷Psu ,B 点对应 屈服点的载荷Psl 。
由于上屈服点的值不稳定(对同一批材料而言) ,下屈服点较稳定,因此在没有特别说明的情况下,规定下屈服点的载荷为屈服载荷Ps ,则屈服极限为: MPa 。
其中:A0为试件的初始横截面面积,拉伸图上D 点对应的最大荷载值为Pb,此后试件发生劲缩现象,迅速破坏。
材料的抗拉强度极限为:0/A P =b b σMPa 。
铸铁的拉伸实验图如图1-3所示。
试件变形很小,到达一定的载荷突然断裂,拉断时的最大载荷,即为强度的载荷Pb 铸铁拉伸强度极限为:0/A P =b b σMPa 。
2、塑性指标测定:将拉断后的低碳钢试件拼接后,测量断后标距L1;劲缩处的平均值径d1,由下列公式计算延伸率δ和断面收缩率ψ;%100/)(%100/)(010001⨯A A -=ψ⨯-=A L L L δ其中:A1为试件断开处的横截面积,L 1为试件断后的标距。
拉伸时材料机械性质的测定室温_____℃ 日期____年___月___日实验目的:1.测定低碳钢的屈服极限s σ,极限强度b σ,延伸率δ,面积收缩率ψ,铸铁的极限强度b σ。
2.观察拉伸过程中的实验现象。
实验设备:电子万能试验机。
游标卡尺。
实验主要步骤:1.分别测量两种材料的上、中、下横截面直径并填入表格。
2.安装试件,然后开始实验。
3.记录拉伸载荷,测量断后标距及收缩直径,代入公式计算。