材料轴向拉伸时的力学性能
- 格式:ppt
- 大小:823.00 KB
- 文档页数:13
Q235钢轴向拉伸力学性能研究1、实验目的研究Q235钢轴向拉伸力学性能2、实验原理试件在连续机械拉伸过程中,断裂之前每时每刻的载荷都有相应的变形与之对应,在单向拉伸时F —ΔL (力——变形)曲线的形式代表了不同材料的力学性能。
对Q235钢进行机械轴向拉伸试验,同时记录下拉伸过程每时刻下的载荷和变形,在通过实验之前测定的试件直径和标距,利用:0F S σ=LL ε∆= 计算出每时刻下的应力和应变值,从而绘制出Q235钢的应力-应变曲线,通过应力-应变曲线得到Q235钢在轴向拉伸下的力学性能。
3、实验方法参照国标《金属拉伸试验方法》(GB228—87)进行试验。
本实验中的拉伸试件采用国家标准中规定的圆比例长试件,实验段直径d 0=10mm ,标距L 0=100mm 。
实验前用游标卡尺和圆规测量试件的直径d 0和标距L 0,多次测量求平均值如表1,游标卡尺的精度在±0.02mm 。
使用试验机上的力传感器测量Q235试件受力大小,使用标距=50mm,量程=10mm 的引伸计测定试件的变形量。
表1引申计测量精度(YYU-15/50),标距为50mm,变形为15mm,相对误差优于一级。
一级测量精度:标距相对误差±1.0%,示值误差(相对)±1.0%,(绝对)±3.0微米。
引伸计由传感器、放大器和记录器三部分组成。
传感器直接和被测构件接触。
构件上被测的两点之间的距离kg2kg2为标距,标距的变化kg1kg2(伸长或缩短)为线变形。
实验采用万能电子试验机(CSS-100)(精度等级为1级,轴向力量程为100KN,测量精度为0.01KN,位移测量分辨率为0.005mm)进行Q235钢试件的拉伸试验,将测得的相应数据录入万能电子拉伸测试软件。
本次试验有三组试件分别编号1#、2#、3#,依次将试件安装在试验机的夹头中,并将引申计安装在试件中部,准备工作完成。
利用电子万能试验机对选择的Q235钢标准试件进行轴向拉伸,使用试验机上的力传感器测量Q235试件受力大小,使用引伸计测定试件的变形量。
实验一材料在轴向拉伸、压缩时的力学性能一、实验目的1.测定低碳钢在拉伸时的屈服极限σs、强度极限σb、延伸率δ和断面收缩率 。
2.测定铸铁在拉伸以及压缩时的强度极限σb。
3.观察拉压过程中的各种现象,并绘制拉伸图。
4.比较低碳钢(塑性材料)与铸铁(脆性材料)机械性质的特点。
二、设备及仪器1.电子万能材料试验机。
2.游标卡尺。
图1-1 CTM-5000电子万能材料试验机电子万能材料试验机是一种把电子技术和机械传动很好结合的新型加力设备。
它具有准确的加载速度和测力范围,能实现恒载荷、恒应变和恒位移自动控制。
由计算机控制,使得试验机的操作自动化、试验程序化,试验结果和试验曲线由计算机屏幕直接显示。
图示国产CTM -5000系列的试验机为门式框架结构,拉伸试验和压缩试验在两个空间进行。
图1-2 试验机的机械原理图试验机主要由机械加载(主机)、基于DSP的数字闭环控制与测量系统和微机操作系统等部分组成。
(1)机械加载部分试验机机械加载部分的工作原理如图1-2所示。
由试验机底座(底座中装有直流伺服电动机和齿轮箱)、滚珠丝杠、移动横梁和上横梁组成。
上横梁、丝杠、底座组成一框架,移动横梁用螺母和丝杠连接。
当电机转动时经齿轮箱的传递使两丝杠同步旋转,移动横梁便可水平向上或相下移动。
移动横梁向下移动时,在它的上部空间由上夹头和下夹头夹持试样进行拉伸试验;在它的下部空间可进行压缩试验。
(2)基于DSP的数字闭环控制与测量系统是由DSP平台;基于神经元自适应PID算法的全数字、三闭环(力、变形、位移)控制系统;8路高精准24Bit 数据采集系统;USB1.1通讯;专用的多版本应用软件系统等。
(3) 微机操作系统试验机由微机控制全试验过程,采用POWERTEST 软件实时动态显示负荷值、位移值、变形值、试验速度和试验曲线;进行数据处理分析,试验结果可自动保存;试验结束后可重新调出试验曲线,进行曲线比较和放大。
可即时打印出完整的试验报告和试验曲线。
第八章 强度设计§8.1金属材料轴向拉压时的力学性能一、教学目标和教学内容1、教学目标了解低碳钢和铸铁,作为两种典型的材料,在拉伸和压缩试验时的性质。
了解塑性材料和脆性材料的区别。
2、教学内容材料在拉伸和压缩时的力学性能;塑性材料和脆性材料性质的比较;二、重点难点无三、教学方式采用启发式教学,通过提问,引导学生思考,让学生回答问题。
四、计划学时 1学时五、实施学时六、讲课提纲材料在拉伸和压缩时的力学性质一、 概述*为什么要研究材料的力学性质为构件设计提供合理选用材料的依据。
强度条件:[]σσ≤工作应力理论计算求解 通过试验研究材料力学性质得到**何谓材料的力学性质材料在受力和变形过程中所具有的特征指标称为材料的力学性质。
***材料的力学性质与哪些因素有关?与材料的组成成分、结构组织(晶体或非晶体)、应力状态、温度和加载方式等诸因素有关。
二、材料在拉伸时的力学性质1、低碳钢的拉伸试验低碳钢是工程上广泛使用的材料,其力学性质又具典型性,因此常用它来阐明钢材的一些特性。
(1)拉伸图与应力---应变曲线FP-ΔL图σ- 曲线(受几何尺寸的影响)(反映材料的特性)(2)拉伸时的力学性质低碳钢材料在拉伸、变形过程中所具有的特征....:..和性能指标一条线(滑移线)二个规律(FP∞△L 规律、卸载规律)三个现象(屈服、冷作硬化、颈缩)四个阶段(弹性、屈服、强化、颈缩)五个性能指标( E 、S σ、b σ、δ、φ)下面按四个阶段逐一介绍:Ⅰ弹性阶段(OB 段)① OB 段---产生的弹性变形;② 该阶段的一个规律:FP∞△L 规律③ 该阶段现有两个需要讲清的概念:比例极限p σ弹性极限e σ④ 该阶段可测得一个性能指标——弹性模量ELAL F E p ∆∆= 也就是:OA 直线段的斜率:tg α=E =εσ Ⅱ 屈服阶段(BD 段)⑴进入屈服阶段后,试件的变形为弹塑性变形;⑵在此阶段可观察到一个现象——屈服(流动)现象;⑶可测定一个性能指标——屈服极限:s σ=AP FS注意:FPS 相应于FP-ΔL 图或ơ-є曲线上的C‘点,C‘点称为下屈服点;而C 称为上屈服点。
金属材料的拉伸、压缩实验承受轴向拉伸和压缩是工程构件最常见的受力方式之一,材料在拉伸和压缩时的力学性能也是材料最重要的力学性能之一。
常温、静载下金属材料的单向拉伸和压缩实验也是测定材料力学性能的最基本、应用最广泛、方法最成熟的试验方法。
通过拉伸实验所测定的材料的弹性指标E、μ,强度指标σs、σb,塑性指标δ、ψ,是工程中评价材质和进行强度、刚度计算的重要依据。
下面以典型的塑性材料——低碳钢和典型的脆性材料——铸铁为例介绍实验的详细过程和数据处理方法。
一、预习要求1、电子万能材料试验机在实验前需进行哪些调整?如何操作?2、简述测定低碳钢弹性模量E的方法和步骤。
3、实验时如何观察低碳钢拉伸和压缩时的屈服极限?二、材料拉伸时的力学性能测定拉伸时的力学性能实验所用材料包括塑性材料低碳钢和脆性材料铸铁。
(一)实验目的1、在弹性范围内验证虎克定律,测定低碳钢的弹性模量E。
2、测定低碳钢的屈服极限σs、强度极限σb、延伸率δ和断面收缩率ψ;测定铸铁拉伸时的强度极限σb。
3、观察低碳钢和铸铁拉伸时的变形规律和破坏现象。
4、了解万能材料试验机的结构工作原理和操作。
(二)设备及试样1、电子万能材料试验机。
2、杠杆式引伸仪或电子引伸仪。
3、游标卡尺。
4、拉伸试样。
GB6397—86规定,标准拉伸试样如图1所示。
截面有圆形(图1a)和矩形(图1b)两种,标距l0与原始横截面积A0比值为11.3的试样称为长试样,标距l0与原始横截面积A0比值为5.56的试样称为短试样。
对于直径为d0的长试样,l0=10d0;对于直径为d0的短试样,l0=5d0。
实验前要用划线机在试样上画出标距线。
(三)低碳钢拉伸实验1、实验原理与方法常温下的拉伸实验是测定材料力学性能的基本实验,可用以测定弹性模量E、屈服极限σs、强度极限σb、延伸率δ和断面收缩率ψ等力学性能指标。
这些指标都是工程设计中常用的力学性能参数。
现以液压式万能材料试验机为例说明其测量原理和方法。