北邮模式识别课堂作业答案(参考)
- 格式:doc
- 大小:80.00 KB
- 文档页数:7
模式识别试卷及答案一、选择题(每题5分,共30分)1. 以下哪一项不是模式识别的主要任务?A. 分类B. 回归C. 聚类D. 预测答案:B2. 以下哪种算法不属于监督学习?A. 支持向量机(SVM)B. 决策树C. K最近邻(K-NN)D. K均值聚类答案:D3. 在模式识别中,以下哪一项是特征选择的目的是?A. 减少特征维度B. 增强模型泛化能力C. 提高模型计算效率D. 所有上述选项答案:D4. 以下哪种模式识别方法适用于非线性问题?A. 线性判别分析(LDA)B. 主成分分析(PCA)C. 支持向量机(SVM)D. 线性回归答案:C5. 在神经网络中,以下哪种激活函数常用于输出层?A. SigmoidB. TanhC. ReLUD. Softmax答案:D6. 以下哪种聚类算法是基于密度的?A. K均值聚类B. 层次聚类C. DBSCAND. 高斯混合模型答案:C二、填空题(每题5分,共30分)1. 模式识别的主要任务包括______、______、______。
答案:分类、回归、聚类2. 在监督学习中,训练集通常分为______和______两部分。
答案:训练集、测试集3. 支持向量机(SVM)的基本思想是找到一个______,使得不同类别的数据点被最大化地______。
答案:最优分割超平面、间隔4. 主成分分析(PCA)是一种______方法,用于降维和特征提取。
答案:线性变换5. 神经网络的反向传播算法用于______。
答案:梯度下降6. 在聚类算法中,DBSCAN算法的核心思想是找到______。
答案:密度相连的点三、简答题(每题10分,共30分)1. 简述模式识别的基本流程。
答案:模式识别的基本流程包括以下几个步骤:(1)数据预处理:对原始数据进行清洗、标准化和特征提取。
(2)模型选择:根据问题类型选择合适的模式识别算法。
(3)模型训练:使用训练集对模型进行训练,学习数据特征和规律。
模式识别答案模式识别试题二答案问答第1题答:在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代表,概念或典型,而“模式”则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模式”,是“老头”的具体化。
问答第2题答:Mahalanobis距离的平方定义为:其中x,u为两个数据,是一个正定对称矩阵(一般为协方差矩阵)。
根据定义,距某一点的Mahalanobis距离相等点的轨迹是超椭球,如果是单位矩阵Σ,则Mahalanobis距离就是通常的欧氏距离。
问答第3题答:监督学习方法用来对数据实现分类,分类规则通过训练获得。
该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。
非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。
就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。
使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。
问答第4题答:动态聚类是指对当前聚类通过迭代运算改善聚类;分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。
问答第5题答:在给定观察序列条件下分析它由某个状态序列S产生的概率似后验概率,写成P(S|O),而通过O求对状态序列的最大似然估计,与贝叶斯决策的最小错误率决策相当。
问答第6题答:协方差矩阵为,则1)对角元素是各分量的方差,非对角元素是各分量之间的协方差。
2)主分量,通过求协方差矩阵的特征值,用得,则,相应的特征向量为:,对应特征向量为,对应。
这两个特征向量即为主分量。
3) K-L变换的最佳准则为:对一组数据进行按一组正交基分解,在只取相同数量分量的条件下,以均方误差计算截尾误差最小。
4)在经主分量分解后,协方差矩阵成为对角矩阵,因而各主分量间相关消除。
模式识别习题及答案模式识别习题及答案【篇一:模式识别题目及答案】p> t,方差?1?(2,0)-1/2??11/2??1t,第二类均值为,方差,先验概率??(2,2)?122???1??1/21??-1/2p(?1)?p(?2),试求基于最小错误率的贝叶斯决策分界面。
解根据后验概率公式p(?ix)?p(x?i)p(?i)p(x),(2’)及正态密度函数p(x?i)?t(x??)?i(x??i)/2] ,i?1,2。
(2’) i?1基于最小错误率的分界面为p(x?1)p(?1)?p(x?2)p(?2),(2’) 两边去对数,并代入密度函数,得(x??1)t?1(x??1)/2?ln?1??(x??2)t?2(x??2)/2?ln?2(1) (2’)1?14/3-2/3??4/32/3??1由已知条件可得?1??2,?1,?2??2/34/3?,(2’)-2/34/31设x?(x1,x2)t,把已知条件代入式(1),经整理得x1x2?4x2?x1?4?0,(5’)二、(15分)设两类样本的类内离散矩阵分别为s1??11/2?, ?1/21?-1/2??1tt,各类样本均值分别为?1?,?2?,试用fisher准(1,0)(3,2)s2-1/21??(2,2)的类别。
则求其决策面方程,并判断样本x?解:s?s1?s2??t20?(2’) ??02?1/20??-2??-1?*?1w?s()?投影方向为12?01/22?1? (6’) ???阈值为y0?w(?1??2)/2??-1-13 (4’)*t2?1?给定样本的投影为y?w*tx??2-1?24?y0,属于第二类(3’) ??1?三、(15分)给定如下的训练样例实例 x0 x1 x2 t(真实输出) 1 1 1 1 1 2 1 2 0 1 3 1 0 1 -1 4 1 1 2 -1用感知器训练法则求感知器的权值,设初始化权值为w0?w1?w2?0;1 第1次迭代2 第2次迭代(4’)(2’)3 第3和4次迭代四、(15分)i. 推导正态分布下的最大似然估计;ii. 根据上步的结论,假设给出如下正态分布下的样本,估计该部分的均值和方差两个参数。
“模式识别(三).PDF”课件课后上机选做作业参考解答(武大计算机学院袁志勇, Email: yuanzywhu@) 上机题目:两类问题,已知四个训练样本ω1={(0,0)T,(0,1)T};ω2={(1,0)T,(1,1)T}使用感知器固定增量法求判别函数。
设w1=(1,1,1)Tρk=1试编写程序上机运行(使用MATLAB、 C/C++、C#、JA V A、DELPHI等语言中任意一种编写均可),写出判别函数,并给出程序运行的相关运行图表。
这里采用MATLAB编写感知器固定增量算法程序。
一、感知器固定增量法的MATLAB函数编写感知器固定增量法的具体内容请参考“模式识别(三).PDF”课件中的算法描述,可将该算法编写一个可以调用的自定义MATLAB函数:% perceptronclassify.m%% Caculate the optimal W by Perceptron%% W1-3x1 vector, initial weight vector% Pk-scalar, learning rate% W -3x1 vector, optimal weight vector% iters - scalar, the number of iterations%% Created: May 17, 2010function [W iters] = perceptronclassify(W1,Pk)x1 = [0 0 1]';x2 = [0 1 1]';x3 = [1 0 1]';x4 = [1 1 1]';% the training sampleWk = W1;FLAG = 0;% iteration flagesiters = 0;if Wk'*x1 <= 0Wk =Wk + x1;FLAG = 1;endif Wk'*x2 <= 0Wk =Wk + x2;FLAG = 1;endif Wk'*x3 >= 0Wk=Wk-x3;FLAG = 1; endif Wk'*x4 >= 0Wk =Wk -x4; FLAG = 1; enditers = iters + 1; while (FLAG) FLAG = 0; if Wk'*x1 <= 0Wk = Wk + x1; FLAG = 1; endif Wk'*x2 <= 0Wk = Wk + x2; FLAG = 1; endif Wk'*x3 >= 0 Wk = Wk - x3; FLAG = 1; endif Wk'*x4 >= 0 Wk = Wk - x4; FLAG = 1; enditers = iters + 1; endW = Wk;二、程序运行程序输入:初始权向量1W , 固定增量大小k ρ 程序输出:权向量最优解W , 程序迭代次数iters 在MATLAB 7.X 命令行窗口中的运行情况: 1、初始化1[111]T W = 初始化W 1窗口界面截图如下:2、初始化1kρ=初始化Pk 窗口界面截图如下:3、在MATLAB 窗口中调用自定义的perceptronclassify 函数由于perceptronclassify.m 下自定义的函数文件,在调用该函数前需要事先[Set path…]设置该函数文件所在的路径,然后才能在命令行窗口中调用。
模式识别习题及答案模式识别习题及答案模式识别是人类智能的重要组成部分,也是机器学习和人工智能领域的核心内容。
通过模式识别,我们可以从大量的数据中发现规律和趋势,进而做出预测和判断。
本文将介绍一些模式识别的习题,并给出相应的答案,帮助读者更好地理解和应用模式识别。
习题一:给定一组数字序列,如何判断其中的模式?答案:判断数字序列中的模式可以通过观察数字之间的关系和规律来实现。
首先,我们可以计算相邻数字之间的差值或比值,看是否存在一定的规律。
其次,我们可以将数字序列进行分组,观察每组数字之间的关系,看是否存在某种模式。
最后,我们还可以利用统计学方法,如频率分析、自相关分析等,来发现数字序列中的模式。
习题二:如何利用模式识别进行图像分类?答案:图像分类是模式识别的一个重要应用领域。
在图像分类中,我们需要将输入的图像分为不同的类别。
为了实现图像分类,我们可以采用以下步骤:首先,将图像转换为数字表示,如灰度图像或彩色图像的像素矩阵。
然后,利用特征提取算法,提取图像中的关键特征。
接下来,选择合适的分类算法,如支持向量机、神经网络等,训练模型并进行分类。
最后,评估分类结果的准确性和性能。
习题三:如何利用模式识别进行语音识别?答案:语音识别是模式识别在语音信号处理中的应用。
为了实现语音识别,我们可以采用以下步骤:首先,将语音信号进行预处理,包括去除噪声、降低维度等。
然后,利用特征提取算法,提取语音信号中的关键特征,如梅尔频率倒谱系数(MFCC)。
接下来,选择合适的分类算法,如隐马尔可夫模型(HMM)、深度神经网络(DNN)等,训练模型并进行语音识别。
最后,评估识别结果的准确性和性能。
习题四:如何利用模式识别进行时间序列预测?答案:时间序列预测是模式识别在时间序列分析中的应用。
为了实现时间序列预测,我们可以采用以下步骤:首先,对时间序列进行平稳性检验,确保序列的均值和方差不随时间变化。
然后,利用滑动窗口或滚动平均等方法,将时间序列划分为训练集和测试集。
一、(15分)设有两类正态分布的样本集,第一类均值为T1μ=(2,0),方差11⎡⎤∑=⎢⎥⎣⎦11/21/2,第二类均值为T2μ=(2,2),方差21⎡⎤∑=⎢⎥⎣⎦1-1/2-1/2,先验概率12()()p p ωω=,试求基于最小错误率的贝叶斯决策分界面。
解 根据后验概率公式()()()()i i i p x p p x p x ωωω=, (2’)及正态密度函数11/21()exp[()()/2]2T i i i i nip x x x ωμμπ-=--∑-∑ ,1,2i =。
(2’) 基于最小错误率的分界面为1122()()()()p x p p x p ωωωω=, (2’) 两边去对数,并代入密度函数,得1111112222()()/2ln ()()/2ln T T x x x x μμμμ----∑--∑=--∑--∑ (1) (2’)由已知条件可得12∑=∑,114/3-⎡⎤∑=⎢⎥⎣⎦4/3-2/3-2/3,214/3-⎡⎤∑=⎢⎥⎣⎦4/32/32/3,(2’)设12(,)Tx x x =,把已知条件代入式(1),经整理得1221440x x x x --+=, (5’)二、(15分)设两类样本的类内离散矩阵分别为11S ⎡⎤=⎢⎥⎣⎦11/21/2, 21S ⎡⎤=⎢⎥⎣⎦1-1/2-1/2,各类样本均值分别为T 1μ=(1,0),T2μ=(3,2),试用fisher 准则求其决策面方程,并判断样本Tx =(2,2)的类别。
解:122S S S ⎡⎤=+=⎢⎥⎣⎦200 (2’) 投影方向为*112-2-1()211/2w S μμ-⎡⎤⎡⎤⎡⎤=-==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦1/200 (6’)阈值为[]*0122()/2-1-131T y w μμ⎡⎤=+==-⎢⎥⎣⎦(4’)给定样本的投影为[]*0-12241T y w x y ⎡⎤===-<⎢⎥-⎣⎦, 属于第二类 (3’)三、 (15分)给定如下的训练样例实例 x0 x1 x2 t(真实输出) 1 1 1 1 1 2 1 2 0 1 3 1 0 1 -1 4 1 1 2 -1用感知器训练法则求感知器的权值,设初始化权值为0120w w w ===;1 第1次迭代(4’)2 第2次迭代(2’)3 第3和4次迭代四、 (15分)i. 推导正态分布下的最大似然估计;ii. 根据上步的结论,假设给出如下正态分布下的样本{}1,1.1,1.01,0.9,0.99,估计该部分的均值和方差两个参数。
第一章 绪论1.什么是模式?具体事物所具有的信息。
模式所指的不是事物本身,而是我们从事物中获得的___信息__。
2.模式识别的定义?让计算机来判断事物。
3.模式识别系统主要由哪些部分组成?数据获取—预处理—特征提取与选择—分类器设计/ 分类决策。
第二章 贝叶斯决策理论1.最小错误率贝叶斯决策过程? 答:已知先验概率,类条件概率。
利用贝叶斯公式 得到后验概率。
根据后验概率大小进行决策分析。
2.最小错误率贝叶斯分类器设计过程?答:根据训练数据求出先验概率类条件概率分布 利用贝叶斯公式得到后验概率 如果输入待测样本X ,计算X 的后验概率根据后验概率大小进行分类决策分析。
3.最小错误率贝叶斯决策规则有哪几种常用的表示形式?答:4.贝叶斯决策为什么称为最小错误率贝叶斯决策?答:最小错误率Bayes 决策使得每个观测值下的条件错误率最小因而保证了(平均)错误率 最小。
Bayes 决策是最优决策:即,能使决策错误率最小。
5.贝叶斯决策是由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利用这个概率进行决策。
6.利用乘法法则和全概率公式证明贝叶斯公式答:∑====m j Aj p Aj B p B p A p A B p B p B A p AB p 1)()|()()()|()()|()(所以推出贝叶斯公式7.朴素贝叶斯方法的条件独立假设是(P(x| ωi) =P(x1, x2, …, xn | ωi)⎩⎨⎧∈>=<211221_,)(/)(_)|()|()(w w x w p w p w x p w x p x l 则如果∑==21)()|()()|()|(j j j i i i w P w x P w P w x P x w P 2,1),(=i w P i 2,1),|(=i w x p i ∑==21)()|()()|()|(j j j i i i w P w x P w P w x P x w P ∑===M j j j i i i i i A P A B P A P A B P B P A P A B P B A P 1)()|()()|()()()|()|(= P(x1| ωi) P(x2| ωi)… P(xn| ωi))8.怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布?答:假设各属性独立,P(x| ωi) =P(x1, x2, …, xn | ωi) = P(x1| ωi) P(x2| ωi)… P(xn| ωi)后验概率:P(ωi|x) = P(ωi) P(x1| ωi) P(x2| ωi)… P(xn| ωi)类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值方差,最后得到类条件概率分布。
第一次课堂作业1.人在识别事物时是否可以避免错识2.如果错识不可避免,那么你是否怀疑你所看到的、听到的、嗅到的到底是真是的,还是虚假的3.如果不是,那么你依靠的是什么呢用学术语言该如何表示。
4.我们是以统计学为基础分析模式识别问题,采用的是错误概率评价分类器性能。
如果不采用统计学,你是否能想到还有什么合理地分类器性能评价指标来替代错误率1.知觉的特性为选择性、整体性、理解性、恒常性。
错觉是错误的知觉,是在特定条件下产生的对客观事物歪曲的知觉。
认知是一个过程,需要大脑的参与.人的认知并不神秘,也符合一定的规律,也会产生错误2.不是3.辨别事物的最基本方法是计算. 从不同事物所具有的不同属性为出发点认识事物. 一种是对事物的属性进行度量,属于定量的表示方法(向量表示法)。
另一种则是对事务所包含的成分进行分析,称为定性的描述(结构性描述方法)。
4.风险第二次课堂作业作为学生,你需要判断今天的课是否点名。
结合该问题(或者其它你熟悉的识别问题,如”天气预报”),说明:先验概率、后验概率和类条件概率按照最小错误率如何决策按照最小风险如何决策ωi为老师点名的事件,x为判断老师点名的概率1.先验概率: 指根据以往经验和分析得到的该老师点名的概率,即为先验概率P(ωi )后验概率: 在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验概率。
在上过课之后,了解到的老师点名的概率为后验概率P(ωi|x)类条件概率:在老师点名这个事件发生的条件下,学生判断老师点名的概率p(x| ωi )2.如果P(ω1|X)>P(ω2|X),则X归为ω1类别如果P(ω1|X)≤P(ω2|X),则X归为ω2类别3.1)计算出后验概率已知P(ωi)和P(X|ωi),i=1,…,c,获得观测到的特征向量X根据贝叶斯公式计算j=1,…,x2)计算条件风险已知: 后验概率和决策表计算出每个决策的条件风险3) 找出使条件风险最小的决策αk,则αk就是最小风险贝叶斯决策。
第3次课堂作业1.正态分布概率下采用最小错误率贝叶斯决策,满足什么条件时,分类边界是线性函数2.什么是参数估计,什么是非参数估计(分别举例解释)1.在正态分布条件下,基于最小错误率贝叶斯决策只要能做到两类协方差矩阵是一样的,那么无论先验概率相等不相等,都可以用线性分界面实现。
a)在Σi=σ2I P(ωi)=P(ωj)条件下,正态分布概率模型下的最小错误率贝叶斯决策等价于最小距离分类器b)Σi=σ2I P(ωi)P(ωj) 判别函数为最小欧氏距距离分类器c)2)Σi=Σ判别函数线性分类器2.参数估计:已经随机变量服从正态分布,估计均值为μ和方差ε非参数估计:未知数学模型,直接估计概率密度函数自己举例子吧参数估计:基于贝叶斯的最小错误率估计方法非参数估计:Parzen窗口估计k N近邻估计第4次课堂作业对比两种方法,回答:1.你怎样理解极大似然估计。
2.你怎样理解贝叶斯估计基本思想。
1.极大似然估计:已经得到实验结果的情况下,寻找着使得这个结果出现的可能性最大的那个数值作为θ的估计2.贝叶斯估计基本思想:已知参数θ的概率密度函数,根据样本的观测值,基于贝叶斯决策来估计参数(理解部分,自己加吧加吧)第6次课堂作业1.线性分类器的分界面是什么曲线在线性判别函数条件下它对应d维空间的一个超平面g(X)=0就是相应的决策面方程2.在两维空间存在一条不过原点的直线,a x1+b x2+c=0,采用增广向量形式:那么,在增加一维的三维空间中,αT Y=0表示的是,它的方程表示为。
Y=[1;x2;x1] a=[c;b;a]三维空间中决策面为一过原点的平面这样,特征空间增加了一维,但保持了样本间的欧氏距离不变对于分类效果也与原决策面相同,只是在Y空间中决策面是通过坐标原点的3.设五维空间的线性方程为55x1 + 68x2 + 32x3 + 16x4 + 26x5 + 10 = 0, 试求出其权向量与样本向量点积的表达式W T X + w0=0中的W , X和w0,以及增广样本向量形式中αT Y的α与Y。
W=[55,68,32,16,26]’ w0=10X=(x1,x2,x3,x4,x5)’A=[10, 55,68,32,16,26]’Y=[1, x1,x2,x3,x4,x5)]’第七次作业1.线性分类器的分界面是超平面,线性分类器设计步骤是什么2. Fisher线性判别函数是研究这类判别函数中最有影响的方法之一,请简述它的准则.3.感知器的准则函数是什么它通过什么方法得到最优解(1) 1. 按需要确定一准则函数J。
2. 确定准则函数J达到极值时W*及W*0的具体数值,从而确定判别函数,完成分类器设计。
(2)Fisher准则就是要找到一个最合适的投影轴,使两类样本在该轴上投影的交迭部分最少,从而使分类效果为最佳。
(3)训练样本的错分最小梯度下降法和迭代法第八次作业答案1.简述最近邻的决策规则2.简述k-最近邻的决策规则3.比较最近邻决策和最小错误率贝叶斯决策的错误率1.将与测试样本的类别作为决策的方法成为最近邻法2.找测试样本的k个最近样本做决策依据的方法3.最近邻法的渐近平均错误率的上下界分别为贝叶斯错误率由于一般情况下P*很小,因此又可粗略表示成第九次作业研究模式识别中事物的描述方法主要靠什么设原特征空间表示成x=(x1,x2,x3)T ,即一个三维空间。
现在在x空间基础上得到一个二维的特征空间Y:(y1,y2)T–其中若y1=x1,y2=x2,属哪一种方法:特征选择还是特征提取–若,试问属哪种–怎样利用距离可分性判据J2进行特征提取1.模式就是用它们所具有的特征(Feature) 描述的。
a)一种是对事物的属性进行度量,属于定量的表示方法(向量表示法)。
b)另一种则是对事务所包含的成分进行分析,称为定性的描述(结构性描述方法)。
2.选择提取矩阵S w-1S b的本征值为λ1,λ2… λD,按大小顺序排列为:λ1≥ λ2≥ … ≥λD,选前d个本征值对应的本征向量作为W即: W =[μ1,μ2…μd]此时:J2 (W) = λ1+ λ2 + …+ λd第10次课堂作业简述PCA变换的基本思想简述PCA变换的过程有那些特征选择的方法1.主成分分析(PCA)基本思想进行特征降维变换,不能完全地表示原有的对象,能量总会有损失。
希望找到一种能量最为集中的的变换方法使损失最小2.原始输入: x 变换后特征:y 变换矩阵(线性变换):A则y=A T x考虑以R x的特征向量作为A的列,则R y=A T R x A = [a1,a2……a n]T R x[ a1,a2……a n] = [ a1,a2……a n] T [λ1a1, λ2a2……λn a n]=为对角矩阵,对角线元素为λ1, λ2……λn达到变换后特征不相关的目的原有N维,只保留m维,如果对特征向量排序,舍到最小的特征,则损失的能量最小即去掉y m+1……y N3.特征提取按欧氏距离度量的特征提取方法按概率距离判据提取特征特征选择最优搜索算法次优搜索法:单独最优特征组合,顺序前进法,顺序后退法,增l减r法第十一次课堂作业联系实际问题或者人的认知过程,谈谈什么是无监督学习无监督学习能完成什么任务然而在实际应用中,不少情况下无法预先知道样本的标签,也就是说没有训练样本因而只能从原先没有样本标签的样本集开始进行分类器设计,这就是通常说的无监督学习方法。
计算机视觉图像分割基于内容的图像检索数据挖掘推荐系统/协同过滤文本分类简述C均值聚类算法误差平方和为准则,实现极小的聚类选定代表点后要进行初始划分、迭代计算C—均值算法可归纳成:(1) 选择某种方法把N个样本分成C个聚类的初始划分,计算每个聚类的均值和误差平方和j c(2) 选择一个备选样本y,设其在第i类(3) 若Ni=1,则转(2),否则继续(4) 计算(5) 对于所有的j,若e j最小,则把y放入第j类(6) 重新计算第i,j类的均值和j c(7) 若连续迭代N次(即所有样本都运算过) 不变,则停止,否则转到2。
第十二次课堂作业画出前馈人工神经网络结构。
谈谈对期望风险、经验风险和结构风险的理解。
1.根据n个独立同分布观测样本:(x1 , y1 ) , (x2 , y2 ) ,… , (xn, yn),在一组函数 )},({ωx f 中求一个最优的函数),(0ωx f 对依赖关系进行估计 ,使期望风险⎰=),()),(,()(0y x dF x f y L R ωω 最小经验风险最小化2.学习的目标在于使期望风险最小化,传统的学习方法中采用了所谓经验风险最小化(ERM)准则 ,即用样本定义经验风险 ∑==n i i i emp x f y L n R 1)),(,(1)(ωω作为对期望风险的估计 ,设计学习算法使它最小化3.结构风险最小化 (Structural Risk Minimization 或译有序风险最小化)即 SRM 准则实现 SRM 原则可以有两种思路:1) 在每个子集中求最小经验风险 ,然后选择使最小经验风险和置信范围之和最小的子集;2) 设计函数集的某种结构使每个子集中都能取得最小的经验风险 (如使训练误差为 0 ) ,然后只需选择选择适当的子集使置信范围最小判断人工神经网络和支持向量机分别最小化哪一种风险。
经验 网络。