第8章 特征的选择与提取(特征选择)
- 格式:ppt
- 大小:89.00 KB
- 文档页数:30
数据科学中的特征选择与特征提取方法探究特征选择与特征提取是数据科学中的重要步骤,它们对于机器学习模型的性能和效果起着至关重要的作用。
在本文中,我们将深入探讨特征选择与特征提取的方法,包括它们的定义、原理、应用场景和常见算法。
我们将重点介绍递归特征消除、主成分分析、线性判别分析等经典的特征选择和提取方法,并分析它们的优缺点以及适用的情况。
最后,我们还将介绍一些新兴的特征选择与提取方法,以及未来的发展趋势。
一、特征选择与特征提取的定义及意义特征选择与特征提取都是指将原始的特征数据进行处理,提取出其中最具代表性的特征,以便于构建更加精确的机器学习模型。
特征选择是指从原始特征中选择出最有效、最相关的特征,剔除掉噪声或不相关的特征,以提高模型的精度和泛化能力。
而特征提取则是指通过某种数学变换,将原始特征转化为一组新的特征,这些新的特征通常包含了原始特征中的大部分信息,但是具有更好的可分性。
特征选择与特征提取在数据科学中具有重要的意义。
首先,它可以提高模型的计算效率。
原始的特征数据通常包含了大量的噪声和冗余信息,特征选择与提取可以减少模型的维度,提高计算效率。
其次,它可以提高模型的泛化能力。
过多的特征会导致过拟合,特征选择可以避免这种情况的发生。
特征提取则可以提高特征的可分性,使模型更容易捕捉到数据的本质特征。
最后,它可以提高模型的解释性。
经过特征选择与提取后的特征更具代表性,可以更好地解释数据。
二、特征选择的方法1. Filter方法Filter方法是通过对每个特征进行单独的统计检验,然后根据统计指标进行特征排序,选取排名靠前的特征。
常用的统计指标包括卡方检验、互信息、相关系数等。
Filter方法简单高效,计算速度快,但是它忽略了特征之间的关联性,可能选取出相关性较弱的特征。
2. Wrapper方法Wrapper方法是利用训练好的机器学习模型来评估特征的重要性,然后根据其重要性进行特征选择。
常用的Wrapper方法包括递归特征消除、正向选择和反向选择等。
第八讲特征提取和特征选择一、基本概念1、特征的生成(1)原始特征的采集和转换通过对原始特征的信号采集,获得样本的原始表达数据,从原始数据中选择或计算出对分类任务有用的原始特征,并转换成可用的形式原始数据:像素点RGB值矩阵可用的原始特征:轮廓特征颜色特征纹理特征数学特征(2)有效特征的生成目的:降低特征维数,减少信息冗余提升特征的有效性方法:特征提取:提高特征对类别的分辨能力特征选择:寻找对分类最重要的特征 2、 特征提取通过某种变换,将原始特征从高维空间映射到低维空间。
A :X →Y ; A 为特征提取器,通常是某种正交变换。
最优特征提取:J(A*)=max J(A), J 是准则函数3、 特征选择从一组特征中挑选出一些最有效的特征,以达到降低特征空间维数的目的。
Dd d i S y y y y F x x x S i d D <=∈→;,...,2,1,},......,,{:},......,,{:2121原始特征集合S 中包含D 个特征,目标特征集合F 中包含d 个特征;最优特征选择:J(F*)=max J(F), J 是准则函数 4、 准则函数的选取(1) 准则函数的选取原则分类正确率是最佳的特征提取和特征选择准则函数,但难以计算。
实用的类别可分性准则函数应满足以下要求:与分类正确率有单调递增关系当特征独立时具有可加性:∑==dk kijd ij x J x x x J 1)()...21,,,(具有标量测度特性:⎪⎩⎪⎨⎧===≠>ji ij ij ij J J j i J j i J 时,当时,当00对特征具单调性:)...)...12121+,,,,(,,,(ddijdij xxxxJxxxJ<(2)类内类间距离是各类的先验概率。
,中的样本数,为中的样本数,为),(:值,称为类内类间距离向量之间的距离的平均离,则各类中各特征)为这两个向量间的距,(特征向量,维类中的类及分别为,类,令设一个分类问题共有定义:jijjiinknljlikci jicjjidjlikjijlikPPnnxxnnPPxJxxxxai jωωδδωω∑∑∑∑=====1111121)()()()()()()(Dc.例:∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑================⨯⨯⨯⨯⨯⨯⨯⨯========2121222221311212312121213131111111212121211111221213212123121331211212340602121k l l k k l l k k l l k k l l k n k n l j l i k i ji j jid n k n l j l i k c i ji cj jid x xP P x xP P x x P P x x P P x x n n P P x J n n P P c x x n n P P x J ijij),(+),(+),(+),(),(),()()()()()()()()()()()()()(,,.,.,)(δδδδδδ对于随机性统计分类,类内类间距离和分类错误率不相关 b.类内类间距离的分解()()()()()()()()m m m mn P m xm xn P m m m m m x m x n P x J mP m m x m i m x x x x x x i Tici ii n k i i kTii kic i in k i Ti i i kTii kici i d ci ii n k i k n i i j l i k j l i k j l i k iiii--+--=⎥⎥⎦⎤⎢⎢⎣⎡--+--===∑∑∑∑∑∑∑=======11111111111)()()()()()()(T )()()()( )( : 则总均值向量:表示所有各类样本集的用类样本集的均值向量表示第用)-()-)=(,(则有的距离,度量两个特征向量之间如采用均方欧氏距离来δ()()()()()bw b w b w d Ti ic i ib n k Tii kii kici iw J J S tr S tr S S tr x J m m m mP S m x m x n P S i+=+=+=--=--=∑∑∑===)()( )( )()(则间离散度矩阵分别为令类内离散度矩阵和类1111Jw 称为类内平均距离,Jb 称为是类间平均距离从类别可分性的要求来看,希望Jw 尽可能小, Jb 尽可能大 (3) 概率距离类间的概率距离可用分布函数之间的距离来度量完全可分:若p(x|ω1) ≠0时, p(x|ω2)=0;完全不可分:对任意x ,都有 p(x|ω1) = p(x|ω2);性的概率距离度量则可作为两类之间可分;为、当两类完全不可分是取得最大值;、当两类完全可分时;、满足以下条件:若任何函数0c b 0a ],),|(),|([)(p p p p J J J dx P P x p x p g J ≥=∙⎰2121ωω二、 使用类内类间距离进行特征提取1、 准则函数的构造:类内类间距离为:Jd=Jw+Jb =tr (Sw +Sb)其中Jw 是类内平均距离,Jb 是类间平均距离通常给定一个训练集后,Jd 是固定的,在特征提取时,需要加大Jb ,减小Jw ,来获得满意的分类效果。