直线一级倒立摆系统建模
- 格式:doc
- 大小:2.18 MB
- 文档页数:20
直线一级倒立摆的建模及控制分析摘要:本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。
在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系统的控制器。
此外,用MATLAB 仿真绘制了相应的曲线并做了分析。
一、问题描述倒立摆控制系统是机器人技术、控制理论、计算机控制等多个领域和多种技术的有机结合,其被控系统本身是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,是控制理论研究中较为理想的实验对象。
它为控制理论的教学、实验和科研构建了一个良好的实验平台,促进了控制系统新理论、新思想的发展。
倒立摆系统可以采用多种理论和方法来实现其稳定控制,如PID,自适应、状态反馈、智能控制等方法都己经在倒立摆控制系统上得到实现。
由于直线一级倒立摆的力学模型较简单,又是研究其他倒立摆的基础,所以本文利用所学的矩阵论知识对此倒立摆进行建模和控制分析。
二、方法简述本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。
在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系统的控制器。
此外,用MATLAB 仿真绘制了相应的曲线并做了分析。
三、模型的建立及分析3.1 微分方程的推导在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示。
图1 直线一级倒立摆系统假设 M 为小车质量;m 为摆杆质量;b 为小车摩擦系数;l 为摆杆转动轴心到杆质心的长度;I 为摆杆惯量;F 为加在小车上的力;x 为小车位置;φ为摆杆与垂直向上方向的夹角;θ为摆杆与垂直向下方向的夹角。
图2是系统中小车和摆杆的受力分析图。
其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。
值得注意的是: 在实际倒立摆系统中检测和执行装置的正负方向已确定, 因而矢量方向定义如图2所示, 图示方向为矢量正向。
(a) (b)图2 小车和摆杆的受力分析图分析小车水平方向所受的合力,可以得到以下方程:N x b F x M --= (1)由摆杆水平方向的受力进行分析可以得到下面等式:θθθθs i n c o s 2ml ml x m N -+= (2) 把这个等式代入上式中,就得到系统的第一个运动方程:()F ml ml x b x m M =-+++θθθθsin cos 2 (3)为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:θθθθc o s s i n 2 ml ml mg P --=- (4) 力矩平衡方程如下:θθθI Nl Pl =--cos sin (5)合并这(4)、(5)两个方程,约去P 和N ,得到第二个运动方程:()θθθc o s s i n 2x ml mgl ml I -=++ (6) 假设φ与1(单位是弧度)相比很小,即φ《1,则可以进行近似处理:0d d s i n 1c o s 2=⎪⎭⎫ ⎝⎛-=-=t θφθθ,, (7) 用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:()()⎩⎨⎧=-++=-+u ml x b x m M xml mgl ml I φφφ 2 (8) 3.2 状态空间方程方程组(8)对φ,x 解代数方程,整理后的系统状态空间方程为: ()()()()()()()()u Mm l m M I m l Mm l m M I m lI x x Mm l m M I m M m gl Mm l m M I m lbMm l m M I gl m Mm l m M I b m l I x x ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡222222222200001000000010φφφφ u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001φφφ 对于质量均匀分布的摆杆有:3/2ml I =,于是可得:()x ml mgl ml ml =-+φφ223/ 化简得:xll g 4343+=φφ设}{x u x x X ==1,,,,φφ ,则有:14301004300100000000010u l x x l g x x⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡φφφφ10001000001u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=φφφ 3.3 实际系统模型实际系统模型参数: M =1.096 Kg ;m =0.109 Kg ;b =0.1 N/m/s ; l =0.25 m ;I =0.0034 kg ·m ·m ;采样频率 T =0.005 s 。
系统的建模及性能分析倒立摆系统的构成及其参数1倒立摆系统的基本结构本设计所用到的倒立摆模型直线一级倒立摆系统。
整个系统是由6大部分所组成的一个闭环系统,包括计算机、数据采集卡、电源及功率放大器、直流伺服电机、倒立摆本体和两个光电编码器等模块。
如图2.1所示:图2.1 倒立摆系统的结构组成示意图Fig 2.1 Structure of the linear single inverted pendulum system2系统主要组成部分简介直线一级倒立摆装置如图2.2所示[13]:图2.2直线一级倒立摆装置Fig 2.2 Straight linear 1-stage inverted pendulum device Quanser倒立摆系统包含倒立摆本体、数据采集电控模块以及控制平台等三大部分,其中控制平台是由装有Quanser专用实时控制软件的通用PC机组成。
1.直线倒立摆主体倒立摆主体是由Quanser直线运动控制伺服单元IP02与直线一级摆杆组成,并配有专用的小车直线轨道。
这里主要介绍下Quanser直线运动控制伺服单元IP02(即倒立摆运动小车)及导轨的组成:图2.3伺服单元IP02的组成Fig 2.3 Servo unit IP02 parts编号名称英文(01)IP02小车IP02 Cart(02)不锈钢滑轨Stainless Steel Shaft(03)齿轮导轨Rack(04)小车位移齿轮Cart Position Pinion(05)小车电机传动齿轮Cart Motor Pinion(06)小车电机传动齿轮轴Cart Motor Pinion Shaft(07)摆杆传动轴Pendulum Axis(08)IP02小车位移编码器IP02 Cart Encoder(09)IP02摆杆角度编码器IP02 Pendulum Encoder(10)IP02小车位移编码器接口IP02 Cart Encoder Connector(11)IP02摆杆角度编码器接口IP02 Pendulum Encoder Connector(12)电机接口Motor Connector(13)直流伺服电机DC Motor(14)变速器Planetary Gearbox(15)直线滑轨支撑轴Linear Bearing(16)摆杆连接套Pendulum Socket(17)IP02配重模块IP02 Weight图2.4系统导轨结构图Fig 2.4 System guide rail structure编号名称英文(22)导轨末端挡板Rack End Plate(23)导轨固定螺丝Rack Set Screw(24)小车运动限位Track Discontinuity直线一级倒立摆系统的倒立摆的摆杆连接在IP02小车的摆杆连接套上,IP02小车由电机通过齿轮传动机构在导轨上来回运动,保持摆杆平衡。
直线一级倒立摆建模与性能分析直线一级倒立摆建模及性能分析一、数学模型建立在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示。
u 为外界作用力;x 为小车位移; 为摆杆与铅垂方向的夹角;O 、G 分别为摆杆与小车的链接点、摆杆质心的位置;M 为小车的质量;m 为摆杆的质量;J 为摆杆绕G 的转动惯量;l 为O 到摆杆质心的距离,L 为摆杆的长度;0f 为小车与导轨间的滑动摩擦系数,1f 为摆杆绕 O 转动的摩擦阻力矩系数。
对于上图的物理模型我们做以下假设: M :小车质量 m :摆杆质量 b :小车摩擦系数l :摆杆转动轴心到杆质心的长度 I :摆杆惯量 F :加在小车上的力 x :小车位置ɸ:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)其机械部分遵守牛顿运动定律,其电子部分遵守电磁学的基本定律。
因此可以通过机理建模得到系统较为精确的数学模型。
应用牛顿力学来建立系统的动力学方程过程如下: 分析小车水平方向所受的合力,可以得到以下方程:N x b F xM --= 由摆杆水平方向的受力进行分析可以得到下面等式:22(sin )d N m x l dtθ=+即:2cos sin N mx ml ml θθθθ=+-把这个等式代入上式中,就得到系统的第一个运动方程:F ml ml x b x m M =-+++θθθθsin cos )(2(1-1) 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:22(cos )d P mg m l dtθ-=-即:2sin cos P mg ml ml θθθθ-=+力矩平衡方程如下:θθθ I Nl Pl =--cos sin 注意:此方程中力矩的方向,由于θφθφφπθsin sin ,cos cos ,-=-=+=,故等式前面有负号。
合并这两个方程,约去P 和N ,得到第二个运动方程:θθθcos sin )(2xml mgl ml I -=++ (1-2) 1.1 微分方程模型设φπθ+=,当摆杆与垂直向上方向之间的夹角φ与1(单位是弧度)相比很小,即 1<<φ 时,则可以进行近似处理:1cos -=θ,φθ-=sin ,0)(2=dt d θ。
一、直线一级倒立摆系统的数学模型1、倒立摆系统是一种复杂的非线性系统,为了简化对系统的反洗,在建立数学模型的过程中,作以下假设:1.)小车、摆杆在运动过程中都是不变得刚体;2.)皮带轮与传动带之间没有相对滑动,皮带不能拉伸变长,传动带没有抖振以及伸长的现象;3.)交流伺服电机的输入和输出之间是纯线性的关系;而且忽略不计电机的电枢绕组中的电感等动态特性;4.)将整个系统运行中的摩擦、各种阻力及机械传动间隙等不确定性忽略不计。
通过上述假设,则可以将直线一级倒立摆系统抽象成小车和均质敢组成的系统,如图1.1所示。
图1.1倒立摆系统2、各参数符号含义如下:符号含义单位数值M 小车质量kg 1.096m 摆杆质量kg 0,109b 小车摩擦系数N/m/sec 0.1l 摆杆转动轴心到杆质心的长度m 0.25I 摆杆转动惯性Kg*m²0.0034g 重力加速度N/kg 9.8x 小车的水平位置mθ摆角大小radN 小车对摆杆水平方向作用力NP 小车对摆杆竖直方向作用力NF 电动机经传动机构给小车的力Nφ摆杆与垂直向上方向的夹角rad3、采用牛顿--欧拉方法建立直线型一级倒立摆系统的数学模型。
图1.2是系统中小车和摆杆的受力分析图。
(a)小车的受力分析 (b)摆杆受力分析图1.2小车与摆杆的受力分析对小车水平方向所受的力进行受力分析,可以得到方程:N x b F x M --=⋅⋅⋅ 式(1.1)对摆杆水平方向所受的力进行受力分析并化简整理,可以得到等式:θθθθsin cos 2⋅⋅⋅⋅⋅-==ml ml x m N 式(1.2)将式(1.2)带入式(1.1)中,可以得到系统的第一个运动方程:θθθθsin cos )(2⋅⋅⋅⋅⋅⋅-+++=ml ml x b x m M F 式(1.3)对摆杆垂直方向所受的力进行受力分析并化简整理,可以得到下面等式:θθθθcos sin 2⋅⋅⋅--=ml ml mg P 式(1.4)力矩平衡方程如下:⋅⋅=--θθθI Nl Pl cos sin 式(1.5)将有关P 和N 的等式代入式(1.5)中,得到系统的第二个运动方程:θθθcos sin )(2⋅⋅⋅⋅-=++x ml mgl ml I 式(1.6)假设φ与1(单位弧度)相比很小,即φ<<1,并设θ=π+φ(φ是摆杆与垂直向上方向的夹角),可以作近似处理:φθθθ-=-==⎪⎭⎫⎝⎛s i n ,1c o s,02dt d 式(1.7)将被控对象的输入力F 用u 来表示,可以得到两个线性化后运动方程,如下 所示:⎪⎩⎪⎨⎧=-++=-+⋅⋅⋅⋅⋅⋅⋅⋅⋅u m l x b x m M x m l m glm l I φφφ)()(2式(1.8)对方程组式(1.8)进行拉氏变换,得到:⎪⎩⎪⎨⎧=Φ-++=Φ-Φ+)()()()()()()()()(22222s U s s ml s bX s s X m M s s mlX s mgl s s ml I 式(1.9)假设初始条件为零,对上述方程组的第一个方程求解,可得:)()()(22s s g ml ml I s X Φ⎥⎦⎤⎢⎣⎡-+= 式(1.10)将式(1.10)代入方程组式(1.9)中的第二个方程,可得:222222)()()()()()()(s s ml s s s g ml ml I b s s s g ml ml I m M s U Φ-Φ⎥⎦⎤⎢⎣⎡-++Φ⎥⎦⎤⎢⎣⎡-++= 式(1.11)整理,可以得到摆角的传递函数为:sq bm gl s q m gl m M s q m l I b s sqm l s U s -+-++=Φ23242)()()()( 式(1.12)式中:]))([(222l m ml I m M q -++=将倒立摆的实际参数值代入上式,得到摆角的传递函数为:ss s s s s U s 3141.28853.270883.03566.2)()(2342-++=Φ 式(1.13)同理,可以得到小车位置的传递函数:sq bm gl s q m gl m M s q m l I b s qm gls q m l I s U s X -+-++-+=23242)()()()()( 式(1.14)将实际的参数值代入,得到小车位置的传递函数为:s s s s s s U s X 3141.28853.270883.01413.238832.0)()(2342--+-= 式(1.15)在方程组(1.8)中对⋅⋅x 、⋅⋅φ求解代数方程,得到解如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++++++++-==++++++++++-==⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅u Mm l m M I m l Mm l m M I m M m gl x Mm l m M I m lb u Mm l m M I m l I Mm l m M I gl m x Mm l m M I b m l I x xx 2222222222)()()()()()()()()(φφφφφ 式(1.16)设系统状态空间方程为:⎪⎩⎪⎨⎧+=+=⋅Du Cx y Bu Ax x 式(1.17)整理式(1.16),得到系统状态空间方程:u Mml m M I ml Mml m M I ml I x x Mml m M I m M mgl Mml m M I mlb Mml m M I gl m Mml m M I bml I x x ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅2222222222)(0)()(00)()()(010000)()()(00010φφφφ 式(1.18)u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⋅⋅0001000001φφφ 式(1.19)将已知的M 、m 、b 、g 、l 、I 代入式(1.18)可得状态方程u x x x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅3566.208832.0008285.272357.00100006293.00883.000010φφφφ 式(1.20)输出方程u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⋅⋅0001000001φφφ 式(1.21)。
直线单级倒立摆系统建模。
图 错误!文档中没有指定样式的文字。
-1(a)为直线单级倒立摆实际设备,为方便分析,将其抽象这小车与摆杆的示意图,如图 错误!文档中没有指定样式的文字。
-1 (b)所示。
倒摆的参数与量纲见表 错误!文档中没有指定样式的文字。
-1。
由于小车在水平方向可适当移动,因此,控制小车的移动可使摆杆维持直立不倒。
这和手持木棒使之直立不倒的现象很类似,研究此系统很有意义,如在火箭发射时,火箭必须靠开发动机来维持它沿推动力方向飞行。
显然,若对小车不加控制,摆杆的倒立状态是不稳定的平衡状态,若稍有振动摆杆必然倒下,实际上,这就是稳定性的含义。
这里暂不讨论如何控制的问题。
设加在小车上的力为F ,小车的位置为x ,摆杆与垂直向上方向的夹角φ,垂直向下方向的夹角为θ(πθφ=+),在空气阻力很小可以忽略、杆是刚性的条件下,建立数学模型。
(a)实物图(b)示意图图 错误!文档中没有指定样式的文字。
-1 直线单级倒立摆系统表 错误!文档中没有指定样式的文字。
-1 直线单级倒立摆系统参数参数 大小 摆杆质量m 0.109kg 小车质量M1.096k g摆杆转动轴心到摆杆质心的长度l 0.25m摆杆绕其重心的转动惯量J 20.0034k g m ⋅摆杆与小车间的摩擦系数b 1 10.001N m s rad -⋅⋅⋅ 小车水平运动的摩擦系数b 2 10.1N s m -⋅⋅摆杆与垂直向上方向的夹角φπθ-图 错误!文档中没有指定样式的文字。
-2单级倒立摆受力分析图解:定义逆时针转动为正方向。
设摆杆的重心为(),g g x y ,则sin cos g gx x l y l φφ=-⎧⎪⎨=⎪⎩ (1) 根据牛顿定律建立系统垂直和水平方向的动力学方程:(1) 摆杆绕其重心转动的动力学方程为:1sin cos y x J N l N l b φφφφ=+- (2)式中,J 为摆杆绕其重心的转动惯量:22112123J mL L l ml ==。
一级倒立摆的建模与控制分析直线一级倒立摆建模、分析及控制器的设计一状态空间模型的建立1.1直线一级倒立摆的数学模型图1.1 直线一级倒立摆系统本文中倒立摆系统描述中涉及的符号、物理意义及相关数值如表1.1所示。
图1.2是系统中小车的受力分析图。
其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。
图1.2 系统中小车的受力分析图图1.3是系统中摆杆的受力分析图。
F s 是摆杆受到的水平方向的干扰力, F h 是摆杆受到的垂直方向的干扰力,合力是垂直方向夹角为α的干扰力F g 。
图1.3 摆杆受力分析图分析小车水平方向所受的合力,可以得到以下方程:()11-设摆杆受到与垂直方向夹角为α 的干扰力Fg ,可分解为水平方向、垂直方向的干扰力,所产生的力矩可以等效为在摆杆顶端的水平干扰力FS 、垂直干扰力Fh 产生的力矩。
()21-对摆杆水平方向的受力进行分析可以得到下面等式:N x f F x M --=()θsin 22l x dtd m F N S +=- ()31-即:αθθθθsin sin cos 2fF ml ml xm N +-+= ()41-对图1.3摆杆垂直方向上的合力进行分析,可以得到下面方程:()θcos 22l l dtd m F mg P h -=++-()51-即 θθθθαcos sin cos 2 ml ml F mg P g+=++- ()61-力矩平衡方程如下:0cos sin sin cos cos sin =++++θθθθαθα I Nl Pl l F l F g g ()71-代入P 和N ,得到方程:()0cos 2sin sin 2cos sin cos 2cos sin 2222=+-++++θθθθθθθαθαxml ml mgl ml I l F l F g g ()81-设φπθ+=,(φ是摆杆杆与垂直向上方向之间的夹角,单位是弧度),代入上式。
直线一级倒立摆的牛顿—欧拉方法建模首先,我们需要定义系统的坐标和状态变量。
在这个问题中,我们可以选择将质点的位置和角度作为系统的状态。
令x表示质点的水平位置,θ表示摆杆与竖直方向的夹角。
其次,我们需要确定系统的动力学方程。
根据牛顿第二定律和欧拉定理,可以得到如下的动力学方程:m * x'' = -m * g * sin(θ) - c * x';I * θ'' = m * g * cos(θ) * L - J * θ'其中,m是质点的质量,g是重力加速度,c是摩擦系数,L是摆杆的长度,I是质点关于摆杆固定点的转动惯量,J是摆杆的转动惯量。
最后,我们可以采用数值方法来求解这个动力学方程。
牛顿-欧拉方法是一种常用的数值方法,它基于一阶泰勒级数展开近似,并使用离散时间步长来进行数值计算。
具体步骤如下:1.将时间t离散化为n个时间步长Δt的序列:t_0,t_1,...,t_n。
2.初始化系统的状态变量:x(0),θ(0),x'(0),θ'(0)。
3.对于每个时间步长i,计算状态变量的更新:a. 计算加速度:x''(i) = (1/m) * (-m * g * sin(θ(i)) - c * x'(i))θ''(i) = (1/I) * (m * g * cos(θ(i)) * L - J * θ'(i))b.使用泰勒级数展开逼近位置和速度:x(i+1)=x(i)+Δt*x'(i)+0.5*Δt^2*x''(i)θ(i+1)=θ(i)+Δt*θ'(i)+0.5*Δt^2*θ''(i)c.使用泰勒级数展开逼近速度和加速度:x'(i+1)=x'(i)+Δt*x''(i)θ'(i+1)=θ'(i)+Δt*θ''(i)d.根据实际情况对状态进行调整,如质点位置不能超过摆杆范围等。
直线一级倒立摆的建模及性能分析1 直线一级倒立摆数学模型的成立 (1)2 直线一级倒立摆系统的实际模型 (5)3 直线一级倒立摆系统的性能分析 (6)相关理论的介绍 (6)倒立摆系统的性能分析 (7)1 直线一级倒立摆数学模型的成立所谓系统的数学模型,是指利用数学结构来反映实际系统内部之间、系统内部与外部某些要紧相关因素之间的精准的定量表示。
数学模型是分析、设计、预测和操纵一个系统的理论基础。
因此,关于实际系统的数学模型的成立就显得尤其重要。
系统数学模型的构建能够分为两种:实验建模和机理建模。
实验建模确实是通过在研究对象上加上一系列的研究者事前确信的输入信号,鼓励研究对像并通过传感器检测其可观测的输出,应用数学手腕成立起系统的输入-输出关系。
机理建模确实是在了解研究对象的运动规律的基础上,通过物理、化学的知识和数学手腕成立起系统内部的输入-状态关系。
关于倒立摆系统,由于其本身是不稳固的系统,无法通过测量频率特性的方法获取其数学模型,实验建模存在必然的困难。
可是通过警惕的假设忽略掉一些次要的因素后,倒立摆系统是一个典型的机电一体化系统,其机械部份遵守牛顿运动定律,其电子部份遵守电磁学的大体定律,因此能够通过机理建模取得系统较为精准的数学模型。
为了简单起见,在建模时忽略系统中的一些次要的难以建模的因素,例如空气阻力、伺服电机由于安装而产生的静摩擦力、系统连接处的松弛程度、摆杆连接处质量散布不均匀、传动皮带的弹性、传动齿轮的间隙等。
将小车抽象为质点,摆杆抽象为匀质刚体,摆杆绕转轴转动,如此就能够够通过力学原理成立较为精准的数学模型。
咱们能够应用牛顿力学的分析方式或欧拉-拉格朗日原理成立系统的动力学模型。
关于直线一级倒立摆如此比较简单的系统,咱们采纳通俗易懂的牛顿力学分析法建模。
为了成立直线一级倒立摆的数学模型,采纳如下的坐标系:图1直线一级倒立摆的物理模型其中,F 为加在小车上的力,M 为小车质量,m 为摆杆质量,I 为摆杆惯量, l 为摆杆转动轴心到杆质心的长度,x 为小车位移,φ为摆杆与垂直向上方向的夹角,b 为小车在滑轨上所受的摩擦力,N 和P 为摆杆彼此作使劲的水平和垂直方向的分量。
一、直线一级倒立摆建模根据自控原理实验书上相关资料,直线一级倒立摆在建模时,一般忽略掉系统中的一些次要因素.例如空气阻力、伺服电机的静摩擦力、系统连接处的松弛程度等,之后可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示:倒立摆系统是典型的机电一体化系统,其机械部分遵循牛顿的力学定律,其电气部分遵守电磁学的基本定理.因此,可以通过机理建模方法得到较为准确的系统数学模型,通过实际测量和实验来获取系统模型参数.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性. 直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统. 小车可以通过传动装置由交流伺服电机驱动. 小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。
虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:1) 非线性倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。
也可以利用非线性控制理论对其进行控制。
倒立摆的非线性控制正成为一个研究的热点。
2) 不确定性主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。
3) 耦合性倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。
4) 开环不稳定性倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。
由于机构的限制,如运动模块行程限制,电机力矩限制等。
为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。
由此,约束限制直线型一级倒立摆系统的实际控制要求可归结为3点:(1)倒立摆小车控制过程的最大位移量不能超过小车轨道的长度;(2)为保证倒立摆能顺利起立,要求初始偏角小于20°;(3)为保证倒立摆保持倒立的平衡态,要求控制系统响应速度足够快。
计算机控制技术课程设计实验:直线一级倒立摆系统的建模及仿真一、已知条件:图1倒立摆简化模型摆杆角度为输出,小车的位移为输入。
导轨中点为坐标轴的中心即零点,右向为坐标值增加的方向,杆偏移其瞬时平衡位置右侧的角度为正值。
二、任务要求:总体任务通过调节PID参数,设计PID控制器实现摆杆在受到干扰的情况下,依然能恢复平衡。
具体包括以下几部分:1. 理论推导包括倒立摆系统的动力学模型,传递函数,离散传递函数,状态空间或差分方程,稳定性分析,PID控制器设计2. 程序实现实现内容:倒立摆系统模型,控制器以及仿真结果的显示。
开发语言和工具:Matlab m 文件或C/C++ (工具:VC++或其它)3. PID控制参数设定及仿真结果。
分别列出不同杆长的仿真结果(例如:L=0.25 和L=0.5)。
4. 将理论推导、程序实现、仿真结果写成实验报告。
具体求解过程如下:一,倒立摆系统动力学模型的建立图1 摆杆的受力分析图以摆杆为研究对象,对其进行受力分析,如图1所示。
根据质点系的达朗贝尔原理得IC I 0F CP mg CP M →→⨯+⨯-= (1)式中,IC F 为杆的惯性力,表达式为()IC C P CP CP IP ICP ICP t n t nF ma m a a a F F F ==++=++,m 为杆的质量,g 为重力加速度,I M 为杆的惯性力偶。
惯性力及惯性力偶的大小分别为2222IP P ICP I c 2221,,3t d x d d F ma m F m m M J mL dt dt dt θθαα======(2)式中,α为杆的角加速度,P a 为小车的加速度,2L 为杆的长度,θ为杆偏离中心位置的角度,x 偏离轨道中心的位移。
对(2)式代入(1)式,并整理可得22224sin cos 3d d x L g dt dt θθθ-=-(3) 当摆动较小时,可以进行近似处理sin ,cos 1θθθ≈≈。
直线一级倒立摆的数学建模和根轨迹控制直线一级倒立摆是一种基于控制理论的研究对象,它可以通过数学建模来进行分析和控制。
数学建模的过程中,需要将倒立摆的动力学方程、控制器以及传感器等元器件进行建模。
根据建模结果可以分析系统的稳定性、响应速度等特征,并为设计控制策略提供参考。
根轨迹控制是一种常用于控制系统设计的方法,它通过分析控制系统的传递函数,绘制根轨迹图来评估控制系统的稳定性和性能。
对于直线一级倒立摆,可以根据其数学模型进行传递函数分析,得出控制系统的传递函数,并绘制根轨迹图。
在根轨迹图上,可以根据根轨迹的位置来判断系统的稳定性和响应速度,从而确定控制策略并调整控制参数,以实现目标控制效果。
因此,直线一级倒立摆的数学建模和根轨迹控制在控制理论研究和工程应用中具有重要意义,可以为控制系统设计提供有效的方法和手段。
一阶倒立摆系统建模与仿真研究一阶倒立摆系统是一种典型的非线性控制系统,具有多种状态和复杂的运动特性。
在实际生活中,倒立摆被广泛应用于许多领域,如机器人平衡控制、航空航天、制造业等。
因此,对一阶倒立摆系统进行建模与仿真研究具有重要的理论价值和实际意义。
ml''(t) + b*l'(t) + k*l(t) = F(t)其中,m为质量,b为阻尼系数,k为弹簧常数,l(t)为摆杆的位移,l'(t)为摆杆的加速度,l''(t)为摆杆的角加速度,F(t)为外界作用力。
在仿真过程中,需要设定摆杆的初始位置和速度。
一般而言,初始位置设为0,初始速度设为0。
边界条件则根据具体实验需求进行设定,如限制摆杆的最大位移、最大速度等。
利用MATLAB/Simulink等仿真软件进行建模和实验,可以方便地通过改变输入信号的参数(如力F)或系统参数(如质量m、阻尼系数b、弹簧常数k)来探究一阶倒立摆系统的性能和反应。
通过仿真实验,我们可以观察到一阶倒立摆系统在受到不同输入信号的作用下,会呈现出不同的运动规律。
在适当的输入信号作用下,摆杆能够达到稳定状态;而在某些特定的输入信号作用下,摆杆可能会出现共振现象。
在仿真过程中,我们可以发现一阶倒立摆系统具有一定的鲁棒性。
在一定范围内,即使输入信号发生变化或系统参数产生偏差,摆杆也能够保持稳定状态。
然而,当输入信号或系统参数超过一定范围时,摆杆可能会出现共振现象,导致系统失稳。
因此,在实际应用中,需要对输入信号和系统参数进行合理控制,以保证系统的稳定性。
为了避免共振现象的发生,可以通过优化系统参数或采用其他控制策略来实现。
例如,适当增加阻尼系数b能够减小系统的振荡幅度,有利于系统尽快达到稳定状态。
可以采用反馈控制策略,根据摆杆的实时运动状态调整输入信号,以抑制系统的共振响应。
本文对一阶倒立摆系统进行了建模与仿真研究,通过观察不同参数设置下的系统性能和反应,对其运动规律、鲁棒性及稳定性进行了分析。
直线一级倒立摆系统建模LT摘要本文主要研究的是一级倒立摆的PID控制问题,并对其PID的参数进行了优化,优化算法是遗传算法。
倒立摆是典型的快速、多变量、非线性、强耦合、自然不稳定系统。
由于在实际中有很多这样的系统,因此对它的研究在理论上和方法论上均有深远的意义。
本文首先简单的介绍了一下倒立摆以及倒立摆的控制方法,并对其参数优化算法做了分类介绍。
然后,介绍了本文选用的优化参数的算法遗传算法的基本理论和操作方法。
接着建立了一级倒立摆的数学模型,并求出其状态空间描述。
本文着重讲述的是利用遗传算法来对PID的参数进行优化的实现方法。
最后,用Simulink 对系统进行了仿真,得出遗传算法在实际控制中是一种较为理想的PID参数优化方法的结论。
关键词:PID控制器;一级倒立摆;仿真目录摘要.................................................................................................错误!未定义书签。
第一章前言 ..................................................................................错误!未定义书签。
1.1 设计背景 ....................................................................错误!未定义书签。
1.2 设计意义 ....................................................................错误!未定义书签。
第二章被控对象的分析与建模 (1)第三章设计理论及仿真过程 ......................................................错误!未定义书签。
3.1设计理论及分析方法 .................................................错误!未定义书签。
3.1.1 PID控制器.................................................错误!未定义书签。
3.1.2模糊PID控制器........................................错误!未定义书签。
3.2 双容水箱液位控制系统的仿真过程........................错误!未定义书签。
第四章设计总结 . (13)参考文献 (14)第一章概述1.1 倒立摆介绍以及应用倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
倒立摆主要应用在以下几个方面:(1)机器人的站立与行走类似于双倒立摆系统,尽管第一台机器人在美国问世至今已有三十年的历史,机器人的关键技术--机器人的行走控制至今仍未能很好解决。
(2)在火箭等飞行器的飞行过程中,为了保持其正确的姿态,要不断进行实时控制。
(3)通信卫星在预先计算好的轨道和确定的位置上运行的同时,要保持其稳定的姿态,使卫星天线一直指向地球,使它的太阳能电池板一直指向太阳。
(4)侦察卫星中摄像机的轻微抖动会对摄像的图像质量产生很大的影响,为了提高摄像的质量,必须能自动地保持伺服云台的稳定,消除震动。
(5)为防止单级火箭在拐弯时断裂而诞生的柔性火箭(多级火箭),其飞行姿态的控制也可以用多级倒立摆系统进行研究。
由于倒立摆系统与双足机器人、火箭飞行控制和各类伺服云台稳定有很大相似性,因此对倒立摆控制机理的研究具有重要的理论和实践意义。
1.2 倒立摆的控制方法倒立摆有多种控制方法[1]。
对倒立摆这样的一个典型被控对象进行研究,无论在理论上和方法上都具有重要意义。
不仅由于其级数增加而产生的控制难度是对人类控制能力的有力挑战,更重要的是实现其控制稳定的过程中不断发现新的控制方法,探索新的控制理论,并进而将新的控制方法应用到更广泛的受控对象中。
当前,倒立摆的控制方法可分为以下几类:(1)线性理论控制方法将倒立摆系统的非线性模型进行近似线性化处理,获得系统在平衡点附近的线性化模型,然后再利用各种线性系统控制器设计方法,得到期望的控制器。
PID控制、状态反馈控制、能量控制[2]、LQR控制算法是其典型代表。
(2)预测控制和变结构控制方法预测控制:是一种优化控制方法,强调的是模型的功能而不是结构。
变结构控制:是一种非连续控制,可将控制对象从任意位置控制到滑动曲面上仍然保持系统的稳定性和鲁棒性,但是系统存在颤抖。
预测控制、变结构控制和自适应控制在理论上有较好的控制效果,但由于控制方法复杂,成本也高,不易在快速变化的系统上实时实现。
第二章 一级倒立摆的模型2.1 一级倒立摆的物理模型倒立摆的物理构成可以表述为:光滑的导轨,可以在导轨上自由移动的小车,和一个质量块的摆杆。
它们的铰接方式决定了它们在竖直平面内运动。
水平方向的驱动力F 使小车根据摆角的变化而在导轨上运动,从而达到倒立摆系统的平衡。
该系统的被控变量分别为:1 为摆杆偏离垂直方向的角度,x 为小车相对参考点(导轨的最左端位置)的相对位移。
摆杆的中心坐标为(11,y x )。
实际上,倒立摆系统要保持竖直方向的稳定状态,前提是摆杆与竖直方向所成的角度必须在一定的范围之内。
一般情况下,要求不得小于50。
2.2 一级倒立摆的数学模型利用牛顿力学方法建立直线型一级倒立摆系统的数学模型。
为简化系统,我们在建模时忽略了空气阻力和各种摩擦,并认为摆杆为刚体。
在忽略了空气阻力和各种摩擦之后, 可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图2.1所示。
图2.1 直线一级倒立摆的物理模型我们不妨做以下假设:M 小车质量m 摆杆质量b 小车摩擦系数l 摆杆转动轴心到杆质心的长度I 摆杆惯量φ 摆杆与垂直向上方向的夹角θ 摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下) 倒立摆系统数学模型的建立基于以下假设:1.摆杆及小车都是刚体。
2. 皮带轮与皮带之间无相对滑动,传动皮带无伸长现象。
3. 小车的驱动力与直流放大器的输入成正比,而且无滞后,忽略交流伺服电机电枢组中的电感。
4. 实验过程中的库仑摩擦、各种动摩擦等所有摩擦力足够小,在建模过程中可忽略不计。
对摆杆进行受力分析,建立一级倒立摆系统的数学模型。
对摆杆的受力分解如图2.2所示。
图中1 为摆杆与竖直方向的夹角。
'11F 为小车对摆杆的水平分力,'12F 为小车对摆杆的竖直分力。
图2.2 对摆杆的受力分析水平方向的方程为:11111111111111122121212211sin cos )cos ()sin ('θθθθθθθl m l m x m l x m l x dtd m dt x d m F F -+='+=+==- (2.1) 竖直方向的方程为:1111111*********1212121121cos sin )sin ()cos ('θθθθθθθ l m l m l m l dtd m dt y d m F F g m --='-===+- (2.2) 将两个方程合并:()θθθcos sin 2x ml mgl ml I -=++ (2.3)当摆杆与垂直向上方向之间的夹角相比很小时,则可以进行如下处理:()0,sin ,1cos 2=-=-=θφφφ 为了得到控制理论的习惯表达,即u 为一般控制量,用u 代表控制量的输入力F ,线性化得到数学模型方程为:()x ml mgl ml I =-+φφ2 (2.4) ()u x ml x b x m M =-++ (2.5) 将(2.4),(2.5)进行拉普拉斯变化为:()()()()()()()()()s U s s ml s s bX ss X m M s s mlX s mgl ss ml I =-++=-+22222φφφ (2.6)整理后得以u 为输入量,以摆杆摆角为输出量的传递函数,将上式整理得:()()()()()qbmglsq mgls m M s q ml I b s sqml s U s s 2232421G -+-++==φ (2.7) 其中()()()[]22ml ml I m M q -++=由现代控制理论可知,控制系统的状态空间方程为:DuCX Y Bu AX +=+=X(2.8)方程组对φ,x 解代数方程,得如下状态空间方程:u Mm l m M I m l Mm l m M I m lI x x Mm l m M I m M m gl Mm l m M I m lbMm l m M I gl m Mm l m M I b m l I x x ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡2222222222)(0)(00)()()(010000)()()(00010φφφφ (2.9)⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001φφφ x x x y u '(2.10)以小车加速度作为输入的系统状态方程,设摆杆长为0.25m ,设},,,{φφ xx X =,xu ='则有: u x x xx⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡301004.2900100000000010φφφφ (2.11) u x x x y '⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001φφφ(2.12)第三章直线一级倒立摆PID控制器系统仿真研究3.1 PID控制器的设计本文采用的方法是在得到被控对象有效模型的基础上,通过评价MATLAB 仿真控制系统的性能指标对控制器参数进行优化的。
由于一级倒立摆是一个多输入多输出的多变量系统,而PID是一个单输入单输出的控制器,所以这里用两个PID控制器分别对一级倒立摆的两个变量进行控制。
这两个变量分别是小车的位移,一级摆的角度。
由于应用遗传算法来整定PID参数其中有一个步骤是在利用遗传算法对PID参数的比例系数Kp、积分系数Ki和微分系数Kd进行搜索时,可先根据经验粗略地选择一个搜索范围,然后可利用搜索结果缩小搜索范围再进行搜索,直至获得一个较合适的搜索范围和Kp,Ki,Kd为止。