湘教版七年级数学下册 整式的乘法知识点
- 格式:docx
- 大小:68.55 KB
- 文档页数:8
七年级下册第二章整式的乘法1.同底数幂相乘,底数不变,指数相加。
a n?a m=a m+n(m,n是正整数)例:2.幂的乘方,底数不变,指数相乘。
(a n)m=a mn(m,n是正整数)例:3.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
(ab)n=a n b n(m,n是正整数)例:4.单项式与单项式相乘,把它们的系数、同底数幂分别相乘。
例:5.单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加。
a(m+n)=am+an6.多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加。
(a+b)(m+n)=am+an+bm+bn例:7.平方差公式,即两个数的和与这两个数的差的积等于这两个数的平方差。
(a+b)(a-b)=a2-b2 (公式右边:符号相同项的平方-符号相反项的平方)例:8.完全平方公式口诀:头平方和尾平方,头尾两倍在中央,中间符号是一样。
(a+b)2=a2+2ab+b2 =a2+b2+2ab (a-b)2=a2-2ab+b2=a2+b2-2ab例:9.公式的灵活变形:✍(a+b)2+(a-b)2=(a2+2ab+b2)+(a2-2ab+b2)=2a2+2b2,✍(a+b)2-(a-b)2=(a2+2ab+b2)-(a2-2ab+b2)=2ab+2ab=4ab,✍a2+b2=(a+b)2-2ab,④a2+b2= (a-b)2+2ab,⑤(a+b)2=(a-b)2+4ab,⑥(a-b)2=(a+b)2-4ab01各个击破命题点1幂的运算【例1】若a m+n·a m+1=a6,且m+2n=4,求m,n的值.【思路点拨】已知m+2n=4,只要再找到一个关于m,n的二元一次方程即可组成方程组求解.可根据同底数幂的乘法法则,由等式左右两边a的指数相等即可得到.【解答】【方法归纳】对于乘方结果相等的两个数,如果底数相等,那么指数也相等.1.(徐州中考)下列运算正确的是( )A.3a2-2a2=1 B.(a2)3=a5C.a2·a4=a6D.(3a)2=6a22.若2x=3,4y=2,则2x+2y的值为________.命题点2多项式的乘法【例2】化简:2(x-1)(x+2)-3(3x-2)(2x-3).【解答】【方法归纳】在计算多项式乘法时,要注意不漏项,不重项.多项式与多项式相乘,结果仍是多项式,在合并同类项之前,积的项数等于两个多项式项数的积.3.(佛山中考)若(x+2)(x-1)=x2+mx+n,则m+n=( )A.1 B.-2C.-1 D.24.下列各式中,正确的是( )A.(-x+y)(-x-y)=-x2-y2B.(x2-1)(x-2y2)=x3-2x2y2-x+2y2C.(x+3)(x-7)=x2-4x-4D.(x-3y)(x+3y)=x2-6xy-9y2命题点3适用乘法公式运算的式子的特点【例3】下列多项式乘法中,可用平方差公式计算的是( )A.(2a+b)(2a-3b) B.(x+1)(1+x)C.(x-2y)(x+2y) D.(-x-y)(x+y)【方法归纳】能用平方差公式进行计算的两个多项式,其中一定有完全相同的项,剩下的是互为相反数的项,其结果是相同项的平方减去相反项的平方.5.下列多项式相乘,不能用平方差公式的是( )A.(-2y-x)(x+2y)B.(x-2y)(-x-2y)C.(x-2y)(2y+x)D.(2y-x)(-x-2y)6.下列各式:①(3a-b)2;②(-3a-b)2;③(-3a+b)2;④(3a+b)2,适用两数和的完全平方公式计算的有________(填序号).命题点4利用乘法公式计算【例4】先化简,再求值:(2a-b)(b+2a)-(a-2b)2+5b2.其中a=-1,b=2.【思路点拨】把式子的前两部分分别运用平方差公式和完全平方公式化简.【解答】【方法归纳】运用平方差公式时,要看清两个因式中的相同项和相反数项,其结果是相同项的平方减去相反数项的平方.7.下列等式成立的是( )A.(-a-b)2+(a-b)2=-4abB.(-a-b)2+(a-b)2=a2+b2C.(-a-b)(a-b)=(a-b)2D.(-a-b)(a-b)=b2-a28.若(a2+b2+1)(a2+b2-1)=15,那么a2+b2的值是________.9.计算:(1)(a+b)2-(a-b)2-4ab;(2)[(x+2)(x-2)]2;(3)(a+3)(a-3)(a2-9).命题点5乘法公式的几何背景【例5】(1)如图,请用两种不同的方式表示图中的大正方形的面积;(2)你根据上述结果可以得到一个什么公式?(3)利用这个公式计算:1022.【思路点拨】根据图形可以得到:图形的面积有两种计算方法,一种是根据正方形的面积等于边长的平方计算;另一种方法是图形中两个长方形面积与两个正方形的面积的和,即可得到公式;然后利用公式计算即可.【解答】【方法归纳】根据同一个图形的面积的两种表示,所得到的代数式的值相等,由此可得到对应的代数恒等式.10.将图1中阴影部分的小长方形变换到图2位置,根据两个图形的面积关系可以得到一个关于a、b的恒等式为( )图1 图2 A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b2C.(a+b)(a-b)=a2-b2D.a(a-b)=a2-ab11.(枣庄中考)图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是( )A.2ab B.(a+b)2C.(a-b)2D.a2-b202整合集训一、选择题(每小题3分,共24分)1.(钦州中考)计算(a3)2的结果是( )A.a9B.a6C.a5D.a2.(巴彦淖尔中考)下列运算正确的是( )A.x3·x2=x5B.(x3)2=x5C.(x+1)2=x2+1 D.(2x)2=2x23.如果a2n-1·a n+5=a16,那么n的值为( )A.3 B.4C.5 D.64.下列各式中,与(1-a)(-a-1)相等的是( )A.a2-1 B.a2-2a+1C.a2-2a-1 D.a2+15.如果(x-2)(x+3)=x2+px+q,那么p、q的值为( )A.p=5,q=6 B.p=-1,q=6C.p=1,q=-6 D.p=5,q=-66.(-x+y)( )=x2-y2,其中括号内的是( )A.-x-y B.-x+yC.x-y D.x+y7.一个长方体的长、宽、高分别是3a-4、2a、a,它的体积等于( )A.3a3-4a2B.a2C.6a3-8a D.6a3-8a28.已知a=814,b=275,c=97,则a,b,c的大小关系是( )A.a>b>c B.a>c>bC.a<b<c D.b>c>a二、填空题(每小题4分,共16分)9.若a x=2,a y=3,则a2x+y=________.10.计算:3m2·(-2mn2)2=________.11.(福州中考)已知有理数a,b满足a+b=2,a-b=5,则(a+b)3·(a-b)3的值是________.12.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,请写出所有可能的单项式为________.三、解答题(共60分)13.(12分)计算:(1)(-2a2b)3+8(a2)2·(-a)2·(-b)3;(2)a(a+4b)-(a+2b)(a-2b)-4ab;(3)(2x-3y+1)(2x+3y-1).14.(8分)已知a+b=1,ab=-6,求下列各式的值.(1)a2+b2;(2)a 2-ab +b 2.15.(10分)先化简,再求值:(1)(常州中考)(x +1)2-x(2-x),其中x =2;(2)(南宁中考)(1+x)(1-x)+x(x +2)-1,其中x =12.16.(10分)四个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪a b c d ,定义⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,这个记号就叫做2阶行列式. 例如:⎪⎪⎪⎪⎪⎪123 4=1×4-2×3=-2 . 若⎪⎪⎪⎪⎪⎪x +1 x +2x -2 x +1=10,求x 的值.17.(10分)如图,某校有一块长为(3a +b)米,宽为(2a +b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像.(1)用含a 、b 的代数式表示绿化面积并化简;(2)求出当a=5米,b=2米时的绿化面积.18.(10分)小华和小明同时计算一道整式乘法题(2x+a)(3x+b).小华把第一个多项式中的“a”抄成了-a,得到结果为6x2+11x-10;小明把第二个多项式中的3x抄成了x,得到结果为2x2-9x+10.(1)你知道式子中a,b的值各是多少吗?(2)请你计算出这道题的正确结果.参考答案各个击破【例1】 由已知得a 2m +n +1=a 6,所以2m +n +1=6,即2m +n =5.又因为m +2n =4,所以m =2,n =1.【例2】 原式=2(x 2+2x -x -2)-3(6x 2-9x -4x +6)=-16x 2+41x -22. 【例3】 C【例4】 原式=(4a 2-b 2)-(a 2-4ab +4b 2)+5b 2=3a 2+4ab.当a =-1,b =2时,原式=3×(-1)2+4×(-1)×2=-5.【例5】 (1)方法一:(a +b)2.方法二:a 2+2ab +b 2.(2)(a +b)2=a 2+2ab +b 2.(3)1022=(100+2)2=1002+2×100×2+22=10 404. 题组训练1.C 6.②④9.(1)原式=a 2+2ab +b 2-a 2+2ab -b 2-4ab =0.(2)原式=(x 2-4)2=x 4-8x 2+16.(3)原式=(a 2-9)(a 2-9)=a 4-18a 2+81. 整合集训1.B 000 12.±4x 或4x 413.(1)原式=-8a 6b 3-8a 6b 3=-16a 6b 3.(2)原式=a 2+4ab -(a 2-4b 2)-4ab =a 2+4ab -a 2+4b 2-4ab =4b 2.(3)原式=[2x -(3y -1)][2x +(3y -1)]=4x 2-(3y -1)2=4x 2-(9y 2-6y +1)=4x 2-9y 2+6y -1.14.(1)原式=(a +b)2-2ab =1+12=13.(2)原式=(a +b)2-3ab =12-3×(-6)=1+18=19.15.(1)原式=x 2+2x +1-2x +x 2=2x 2+1.当x =2时,原式=8+1=9. (2)原式=1-x 2+x 2+2x -1=2x.当x =12时,原式=2×12=1.16.(x +1)2-(x -2)(x +2)=2x +5=10,解得x =. 17.(1)S 阴影=(3a +b)(2a +b)-(a +b)2=6a 2+3ab +2ab +b 2-a 2-2ab -b 2=5a 2+3ab(平方米).(2)当a =5,b =2时,5a 2+3ab =5×25+3×5×2=125+30=155(平方米).18.(1)根据题意,得(2x -a)(3x +b)=6x 2+(2b -3a)x -ab =6x 2+11x -10;(2x +a)(x +b)=2x 2+(a +2b)x +ab =2x 2-9x +10,所以⎩⎪⎨⎪⎧2b -3a =11,a +2b =-9. 解得⎩⎪⎨⎪⎧a =-5,b =-2.(2)正确的算式为:(2x -5)(3x -2)=6x 2-19x +10.。
整式的乘法教材重难点研习研习点1:单项式与单项式相乘1、单项式与单项式相乘的法则:单项式与单项式相乘,只要把它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式。
2、理解单项式与单项式相乘的法则时应注意:(1)法则的推导是运用了同底数幂的乘法性质和乘法的交换律和结合律,是根据已有的知识进行计算后再进行概括得到的,所以,没有必要对法则进行死记硬背;(2)法则包括乘式里的系数、相同字母和不同字母三个部分;(3)单项式的乘法在整式乘法中占有重要的地位,熟练地进行单项式的乘法运算是学好多项式乘法和多项式的混合运算的关键。
典例1 填空:(1))3(32n m b a b a -⋅-=__________. (2))102()107(62⨯⋅⨯=____________. 【研析】(1)综合运用有理数的乘法、幂的运算性质、单项式与单项式相乘的法则求解;(2)利用单项式与单项式相乘的法则计算,结果要用科学记数法来表示。
解:(1)233++n m b a ; (2)1.4×109.研习点2:单项式与多项式相乘1、单项式与多项式相乘的法则: 单项式与多项式相乘,只要将单项式分别乘以多项式的各项,再将所得的积相加.2、理解单项式与多项式相乘的法则时应注意:(1)根据分配律将单项式分别乘以多项式的各项,可归结为单项式的乘法;(2)积的符号问题是易错点,要认真观察;(3)单项式与多项式相乘的结果是一个多项式,其项数与因式中的项数相同.【探究·思考】你能用不同的方法计算如图的所示的长方形面积吗?让我们一起开始探究:给出探究的过程、结果,并总结出乘法公式的几何解释。
典例2 计算)123()(2--⋅-ab bc b a 【研析】直接根据单项式与多项式相乘的法则计算.解:)123()(2--⋅-ab bc b a =b a b a c b a 2232223++-; 研习点3:多项式与多项式相乘1、多项式与多项式相乘的法则: 多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.2、理解和运用多项式与多项式相乘的法则时应注意如下几点:(1)要防止两个多项式相乘,直接写出结果时“漏项”.检查的方法是:两个多项式相乘,在没有合并同类项之前,积的项数应该是这两个多项式项数的积.如:))((n m b a ++,积的项数应是2×2=4,即有4项 bn bm an am +++.当然,若有同类项,则应合并同类项,得出最简结果.(2)多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定积中各项的符号.【探索·发现】计算 (1) (x+3)(x+4) (2) (x-1)(x+3)由以上计算的结果找出规律,观察下图,填空:(x+p)(x+q)=( )2+( )x+( )典例3 计算(1))1)(13(-+x x ;(2))1)((2--+xy x y x . 【研析】多项式乘以多项式,按照多项式乘以多项式的法则计算,注意不要漏项、丢符号.解:(1)123133)1)(13(22--=-+-=-+x x x x x x x (2))1)((2--+xy x y x =232223xy y x x y xy y x x y x x ---=--+--练一练1:若x=123456789×123456786,y=123456788×123456787,x与y的大小关系是()A.x=y B.x>y C.x<y D.不能确定2:试用a、b、c、d表示如图所示的阴影部分的面积.3:若2,41==ba时,用简便方法求abbabababa++-+-+3322))((的值4:填空:不等式组⎪⎩⎪⎨⎧-<---<--)32(21412)2()52(12)1(2xxxxxxxx的解集是_______________.参考答案1.C.提示:提示:123456789=123456786+3,123456788=123456787=12.解答:acbccabcbaccab21212121))((2122+--=-+--或))((21)(21cdabcdbc--+++=acbccab212121212+--.3.解答:abbabababa++-+-+3322))((=abb+32当2,21==ba时,原式=abb+32=21722123=⨯+⨯4.x>9;提示:分别解出每一个不等式,再求出它们的公共部分。
七年级下册第二章整式的乘法1.同底数幂相乘,底数不变,指数相加。
a n?a m=a m+n(m,n是正整数)例:2.幂的乘方,底数不变,指数相乘。
(a n)m=a mn(m,n是正整数)例:3.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
(ab)n=a n b n(m,n是正整数)例:4.单项式与单项式相乘,把它们的系数、同底数幂分别相乘。
例:5.单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加。
a(m+n)=am+an6.多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加。
(a+b)(m+n)=am+an+bm+bn例:7.平方差公式,即两个数的和与这两个数的差的积等于这两个数的平方差。
(a+b)(a-b)=a2-b2 (公式右边:符号相同项的平方-符号相反项的平方)例:8.完全平方公式口诀:头平方和尾平方,头尾两倍在中央,中间符号是一样。
(a+b)2=a2+2ab+b2 =a2+b2+2ab (a-b)2=a2-2ab+b2=a2+b2-2ab例:9.公式的灵活变形:✍(a+b)2+(a-b)2=(a2+2ab+b2)+(a2-2ab+b2)=2a2+2b2,✍(a+b)2-(a-b)2=(a2+2ab+b2)-(a2-2ab+b2)=2ab+2ab=4ab,✍a2+b2=(a+b)2-2ab,④a2+b2= (a-b)2+2ab,⑤(a+b)2=(a-b)2+4ab,⑥(a-b)2=(a+b)2-4ab01各个击破命题点1幂的运算【例1】若a m+n·a m+1=a6,且m+2n=4,求m,n的值.【思路点拨】已知m+2n=4,只要再找到一个关于m,n的二元一次方程即可组成方程组求解.可根据同底数幂的乘法法则,由等式左右两边a的指数相等即可得到.【解答】【方法归纳】对于乘方结果相等的两个数,如果底数相等,那么指数也相等.1.(徐州中考)下列运算正确的是( )A.3a2-2a2=1 B.(a2)3=a5C.a2·a4=a6D.(3a)2=6a22.若2x=3,4y=2,则2x+2y的值为________.命题点2多项式的乘法【例2】化简:2(x-1)(x+2)-3(3x-2)(2x-3).【解答】【方法归纳】在计算多项式乘法时,要注意不漏项,不重项.多项式与多项式相乘,结果仍是多项式,在合并同类项之前,积的项数等于两个多项式项数的积.3.(佛山中考)若(x+2)(x-1)=x2+mx+n,则m+n=( )A.1 B.-2C.-1 D.24.下列各式中,正确的是( )A.(-x+y)(-x-y)=-x2-y2B.(x2-1)(x-2y2)=x3-2x2y2-x+2y2C.(x+3)(x-7)=x2-4x-4D.(x-3y)(x+3y)=x2-6xy-9y2命题点3适用乘法公式运算的式子的特点【例3】下列多项式乘法中,可用平方差公式计算的是( )A.(2a+b)(2a-3b) B.(x+1)(1+x)C.(x-2y)(x+2y) D.(-x-y)(x+y)【方法归纳】能用平方差公式进行计算的两个多项式,其中一定有完全相同的项,剩下的是互为相反数的项,其结果是相同项的平方减去相反项的平方.5.下列多项式相乘,不能用平方差公式的是( )A.(-2y-x)(x+2y)B.(x-2y)(-x-2y)C.(x-2y)(2y+x)D.(2y-x)(-x-2y)6.下列各式:①(3a-b)2;②(-3a-b)2;③(-3a+b)2;④(3a+b)2,适用两数和的完全平方公式计算的有________(填序号).命题点4利用乘法公式计算【例4】先化简,再求值:(2a-b)(b+2a)-(a-2b)2+5b2.其中a=-1,b=2.【思路点拨】把式子的前两部分分别运用平方差公式和完全平方公式化简.【解答】【方法归纳】运用平方差公式时,要看清两个因式中的相同项和相反数项,其结果是相同项的平方减去相反数项的平方.7.下列等式成立的是( )A.(-a-b)2+(a-b)2=-4abB.(-a-b)2+(a-b)2=a2+b2C.(-a-b)(a-b)=(a-b)2D.(-a-b)(a-b)=b2-a28.若(a2+b2+1)(a2+b2-1)=15,那么a2+b2的值是________.9.计算:(1)(a+b)2-(a-b)2-4ab;(2)[(x+2)(x-2)]2;(3)(a+3)(a-3)(a2-9).命题点5乘法公式的几何背景【例5】(1)如图,请用两种不同的方式表示图中的大正方形的面积;(2)你根据上述结果可以得到一个什么公式?(3)利用这个公式计算:1022.【思路点拨】根据图形可以得到:图形的面积有两种计算方法,一种是根据正方形的面积等于边长的平方计算;另一种方法是图形中两个长方形面积与两个正方形的面积的和,即可得到公式;然后利用公式计算即可.【解答】【方法归纳】根据同一个图形的面积的两种表示,所得到的代数式的值相等,由此可得到对应的代数恒等式.10.将图1中阴影部分的小长方形变换到图2位置,根据两个图形的面积关系可以得到一个关于a、b的恒等式为( )图1 图2 A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b2C.(a+b)(a-b)=a2-b2D.a(a-b)=a2-ab11.(枣庄中考)图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是( )A.2ab B.(a+b)2C.(a-b)2D.a2-b202整合集训一、选择题(每小题3分,共24分)1.(钦州中考)计算(a3)2的结果是( )A.a9B.a6C.a5D.a2.(巴彦淖尔中考)下列运算正确的是( )A.x3·x2=x5B.(x3)2=x5C.(x+1)2=x2+1 D.(2x)2=2x23.如果a2n-1·a n+5=a16,那么n的值为( )A.3 B.4C.5 D.64.下列各式中,与(1-a)(-a-1)相等的是( )A.a2-1 B.a2-2a+1C.a2-2a-1 D.a2+15.如果(x-2)(x+3)=x2+px+q,那么p、q的值为( )A.p=5,q=6 B.p=-1,q=6C.p=1,q=-6 D.p=5,q=-66.(-x+y)( )=x2-y2,其中括号内的是( )A.-x-y B.-x+yC.x-y D.x+y7.一个长方体的长、宽、高分别是3a-4、2a、a,它的体积等于( )A.3a3-4a2B.a2C.6a3-8a D.6a3-8a28.已知a=814,b=275,c=97,则a,b,c的大小关系是( )A.a>b>c B.a>c>bC.a<b<c D.b>c>a二、填空题(每小题4分,共16分)9.若a x=2,a y=3,则a2x+y=________.10.计算:3m2·(-2mn2)2=________.11.(福州中考)已知有理数a,b满足a+b=2,a-b=5,则(a+b)3·(a-b)3的值是________.12.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,请写出所有可能的单项式为________.三、解答题(共60分)13.(12分)计算:(1)(-2a2b)3+8(a2)2·(-a)2·(-b)3;(2)a(a+4b)-(a+2b)(a-2b)-4ab;(3)(2x-3y+1)(2x+3y-1).14.(8分)已知a+b=1,ab=-6,求下列各式的值.(1)a2+b2;(2)a 2-ab +b 2.15.(10分)先化简,再求值:(1)(常州中考)(x +1)2-x(2-x),其中x =2;(2)(南宁中考)(1+x)(1-x)+x(x +2)-1,其中x =12.16.(10分)四个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪a b c d ,定义⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,这个记号就叫做2阶行列式. 例如:⎪⎪⎪⎪⎪⎪123 4=1×4-2×3=-2 . 若⎪⎪⎪⎪⎪⎪x +1 x +2x -2 x +1=10,求x 的值.17.(10分)如图,某校有一块长为(3a +b)米,宽为(2a +b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像.(1)用含a 、b 的代数式表示绿化面积并化简;(2)求出当a=5米,b=2米时的绿化面积.18.(10分)小华和小明同时计算一道整式乘法题(2x+a)(3x+b).小华把第一个多项式中的“a”抄成了-a,得到结果为6x2+11x-10;小明把第二个多项式中的3x抄成了x,得到结果为2x2-9x+10.(1)你知道式子中a,b的值各是多少吗?(2)请你计算出这道题的正确结果.参考答案各个击破【例1】 由已知得a 2m +n +1=a 6,所以2m +n +1=6,即2m +n =5.又因为m +2n =4,所以m =2,n =1.【例2】 原式=2(x 2+2x -x -2)-3(6x 2-9x -4x +6)=-16x 2+41x -22. 【例3】 C【例4】 原式=(4a 2-b 2)-(a 2-4ab +4b 2)+5b 2=3a 2+4ab.当a =-1,b =2时,原式=3×(-1)2+4×(-1)×2=-5.【例5】 (1)方法一:(a +b)2.方法二:a 2+2ab +b 2.(2)(a +b)2=a 2+2ab +b 2.(3)1022=(100+2)2=1002+2×100×2+22=10 404. 题组训练1.C 6.②④9.(1)原式=a 2+2ab +b 2-a 2+2ab -b 2-4ab =0.(2)原式=(x 2-4)2=x 4-8x 2+16.(3)原式=(a 2-9)(a 2-9)=a 4-18a 2+81. 整合集训1.B 000 12.±4x 或4x 413.(1)原式=-8a 6b 3-8a 6b 3=-16a 6b 3.(2)原式=a 2+4ab -(a 2-4b 2)-4ab =a 2+4ab -a 2+4b 2-4ab =4b 2.(3)原式=[2x -(3y -1)][2x +(3y -1)]=4x 2-(3y -1)2=4x 2-(9y 2-6y +1)=4x 2-9y 2+6y -1.14.(1)原式=(a +b)2-2ab =1+12=13.(2)原式=(a +b)2-3ab =12-3×(-6)=1+18=19.15.(1)原式=x 2+2x +1-2x +x 2=2x 2+1.当x =2时,原式=8+1=9. (2)原式=1-x 2+x 2+2x -1=2x.当x =12时,原式=2×12=1.16.(x +1)2-(x -2)(x +2)=2x +5=10,解得x =. 17.(1)S 阴影=(3a +b)(2a +b)-(a +b)2=6a 2+3ab +2ab +b 2-a 2-2ab -b 2=5a 2+3ab(平方米).(2)当a =5,b =2时,5a 2+3ab =5×25+3×5×2=125+30=155(平方米).18.(1)根据题意,得(2x -a)(3x +b)=6x 2+(2b -3a)x -ab =6x 2+11x -10;(2x +a)(x +b)=2x 2+(a +2b)x +ab =2x 2-9x +10,所以⎩⎪⎨⎪⎧2b -3a =11,a +2b =-9. 解得⎩⎪⎨⎪⎧a =-5,b =-2.(2)正确的算式为:(2x -5)(3x -2)=6x 2-19x +10.。