高中数学人教a版选修2-3 第二章 随机变量及其分布 2.3-2.3.1学业分层测评 word版含答案
- 格式:doc
- 大小:140.50 KB
- 文档页数:6
§2.1.1离散型随机变量一、教学目标1.复习古典概型、几何概型有关知识。
2.理解离散型随机变量的概念,学会区分离散型与非离散型随机变量。
3. 理解随机变量所表示试验结果的含义,并恰当地定义随机变量.重点:离散型随机变量的概念,以及在实际问题中如何恰当地定义随机变量.难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究.二、复习引入:1.试验中不能的随机事件,其他事件可以用它们来,这样的事件称为。
所有基本事件构成的集合称为,常用大写希腊字母表示。
2.一次试验中的两个事件叫做互斥事件(或称互不相容事件)。
互斥事件的概率加法公式。
3. 一次试验中的两个事件叫做互为对立事件,事件A的对立事件记作,对立事件的概率公式4.古典概型的两个特征:(1) .(2) .5.概率的古典定义:P(A)= 。
6.几何概型中的概率定义:P(A)= 。
三、预习自测:1.在随机试验中,试验可能出现的结果,并且X是随着试验的结果的不同而的,这样的变量X叫做一个。
常用表示。
2.如果随机变量X的所有可能的取值,则称X为。
四、典例解析:例1写出下列各随机变量可能取得值:(1)抛掷一枚骰子得到的点数。
(2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数。
(3)抛掷两枚骰子得到的点数之和。
(4)某项试验的成功率为0.001,在n次试验中成功的次数。
(5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手的射击次数X的可能取值例2随机变量X为抛掷两枚硬币时正面向上的硬币数,求X的所有可能取值及相应概率。
变式训练一只口袋装有6个小球,其中有3个白球,3个红球,从中任取2个小球,取得白球的个数为X,求X的所有可能取值及相应概率。
例3△ABC中,D,E分别为AB,AC的中点,向△ABC内部随意投入一个小球,求小球落在△ADE 中的概率。
五、当堂检测1.将一颗均匀骰子掷两次,不能作为随机变量的是:()(A)两次出现的点数之和;(B)两次掷出的最大点数;(C)第一次减去第二次的点数差;(D)抛掷的次数。
高中数学选修2-3知识点总结第一章 计数原理知识点:1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。
2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。
3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4、排列数: ),,()!(!)1()1(N m n n m m n n m n n n A m∈≤-=+--= 5、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
6、组合数:)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n-=+--== )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--== ;m n n m n C C -= m n m n m n C C C 11+-=+7、二项式定理:()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n +=++++++---011222…… 8、二项式通项公式展开式的通项公式:,……T C a b r n r n r n r r +-==101()第二章 随机变量及其分布知识点:1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。
2.1.1离散型随机变量知识目标:1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.能力目标:发展抽象、概括能力,提高实际解决问题的能力.情感目标:学会合作探讨,体验成功,提高学习数学的兴趣.教学重点:随机变量、离散型随机变量、连续型随机变量的意义教学难点:随机变量、离散型随机变量、连续型随机变量的意义授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:本章是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和统计的一些知识.学习这些知识后,我们将能解决类似引言中的一些实际问题教学过程:一、复习引入:展示教科书章头提出的两个实际问题(有条件的学校可用计算机制作好课件辅助教学),激发学生的求知欲某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可能由0,1,……10这11个数表示;某次产品检验,在可能含有次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件,1件,2件,3件,4件,即可能出现的结果可以由0,1,2,3,4这5个数表示在这些随机试验中,可能出现的结果都可以用一个数来表示.这个数在随机试验前是否是预先确定的?在不同的随机试验中,结果是否不变?观察,概括出它们的共同特点二、讲解新课:思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) .在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y,ξ,η,…表示.思考2:随机变量和函数有类似的地方吗?随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } .利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢?定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) .离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,….思考3:电灯的寿命X 是离散型随机变量吗?电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量.在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量:⎧⎨≥⎩0,寿命<1000小时;Y=1,寿命1000小时.与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上(2)若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量三、讲解范例例1. 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果 (1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η 解:(1) ξ可取3,4,5ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5(2)η可取0,1,…,n ,…η=i ,表示被呼叫i 次,其中i=0,1,2,…例2. 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”所以,“ξ>4”表示第一枚为6点,第二枚为1点例3 某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费η关于行车路程ξ的关系式;(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟? 解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2 (2)由38=2ξ+2,得ξ=18,5×(18-15)=15. 所以,出租车在途中因故停车累计最多15分钟. 四、课堂练习:1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ其中的ξ是连续型随机变量的是( ) A .①; B .②; C .③; D .①②③2.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则( ) A .3n =; B .4n =; C .10n =; D .不能确定 3.抛掷两次骰子,两个点的和不等于8的概率为( ) A .1112; B .3136; C .536; D .112 4.如果ξ是一个离散型随机变量,则假命题是( )A. ξ取每一个可能值的概率都是非负数;B. ξ取所有可能值的概率之和为1;C. ξ取某几个值的概率等于分别取其中每个值的概率之和;D. ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和答案:1.B 2.C 3.B 4.D五、小结 :随机变量离散型、随机变量连续型随机变量的概念随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=a ξ+b(其中a 、b 是常数)也是随机变量 六、课后作业: 七、板书设计(略)八、教学反思:1、怎样防止所谓新课程理念流于形式,如何合理选择值得讨论的问题,实现学生实质意义的参与.2、防止过于追求教学的情境化倾向,怎样把握一个度.2.1.2离散型随机变量的分布列教学目标:知识与技能:会求出某些简单的离散型随机变量的概率分布。
人教版高中选修2-3第二章随机变量及其分布课程设计1. 课程简介本章主要讲解随机变量的概念及其分布,包括离散型和连续型随机变量,常见的分布如二项分布、正态分布等。
该课程适用于高中选修2-3课程学习,需要学生掌握基本的概率统计方法和数学知识。
2. 教学目标本章课程教学目标如下:•理解随机变量的概念及其特点;•掌握离散型随机变量及其分布,例如二项分布、泊松分布等;•掌握连续型随机变量及其分布,例如正态分布、指数分布等;•学会应用概率统计方法进行问题求解。
3. 教学重点和难点本章课程教学重点和难点如下:•随机变量的概念和特点;•离散型和连续型随机变量的概念和特点;•常见的离散型和连续型随机变量的分布特征和应用。
4. 教学内容及时间安排本章课程教学内容及时间安排如下:教学内容时间安排随机变量的概念和特点 1 课时离散型随机变量及其分布 2 课时连续型随机变量及其分布 2 课时常见随机变量的分布及应用 1 课时5. 教学方法本章课程教学采用以下方法:•讲授:通过讲解理论和解题方法,让学生掌握基本知识和应用能力;•课堂练习:通过课堂练习,帮助学生巩固知识和提高解题能力;•课前预习:督促学生在课前预习,提前掌握相关知识,利于课堂提问和交流。
6. 学生评价方式本章课程学生评价方式包括以下几个方面:•课堂表现:包括听课态度、课堂提问和参与度等;•课后作业:针对每一节课的作业,包括单项选择题、计算题和应用题等;•期中考试:对本章节进行考核,包括知识点的理解和应用能力的检验;•期末考试:对本章节进行复习和总结,综合考核学生的能力。
7. 教学资源本章课程教学资源包括以下几个方面:•人教版高中数学选修2-3教材及相关资料;•草稿纸、笔、计算器等学习工具;•电脑投影仪及相关软件等教学设备。
8. 总结通过本章课程的学习,学生可以理解和掌握随机变量的概念及其分布特征,掌握基本的概率统计方法,并能够应用概率统计方法进行问题求解。
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.设随机变量X ~B (40,p ),且E (X )=16,则p 等于( ) A .0.1 B .0.2 C .0.3 D .0.4 【解析】 ∵E (X )=16,∴40p =16,∴p =0.4.故选 D. 【答案】 D
2.随机抛掷一枚骰子,则所得骰子点数ξ的期望为( ) A .0.6 B .1 C .3.5
D .2
【解析】 抛掷骰子所得点数ξ的分布列为
所以E (ξ)=1×16+2×16+3×16+4×16+5×16+6×1
6=3.5. 【答案】 C 3.设ξ的分布列为
又设η=2ξ+5,则E (A.76 B.176 C.173
D.323
【解析】 E (ξ)=1×16+2×16+3×13+4×13=17
6,所以E (η)=E (2ξ+5)=2E (ξ)+5=2×176+5=32
3.
【答案】 D
4.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是1
3,遇到红灯时停留的时间都是2 min ,这名学生在上学路上因遇到红灯停留的总时间Y 的期望为( )
A.13 B .1 C.43
D.83
【解析】 遇到红灯的次数X ~B ⎝ ⎛
⎭⎪⎫4,13,∴E (X )=43.
∴E (Y )=E (2X )=2×43=8
3. 【答案】 D
5.设随机变量X 的分布列为P (X =k )=1
4,k =1,2,3,4,则E (X )的值为( ) A .2.5 B .3.5 C .0.25 D .2
【解析】 E (X )=1×14+2×14+3×14+4×1
4=2.5. 【答案】 A 二、填空题
6.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为X ,则E (X )=________. 【导学号:97270049】
【解析】 X 可能的取值为0,1,2,P (X =0)=(1-0.9)×(1-0.85)=0.015,P (X =1)=0.9×(1-0.85)+0.85×(1-0.9)=0.22,P (X =2)=0.9×0.85=0.765,所以E (X )=1×0.22+2×0.765=1.75.
【答案】 1.75
7.(2016·邯郸月考)一个均匀小正方体的六个面中,三个面上标有数字0,两个面上标有数字1,一个面上标有数字2.将这个小正方体抛掷2次,则向上的数之积的数学期望是________.
【解析】 随机变量X 的取值为0,1,2,4,P (X =0)=34,P (X =1)=1
9,P (X =2)=19,P (X =4)=136,因此E (X )=49.
【答案】 4
9
8.如图2-3-2,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E (X )=________.
图2-3-2
【解析】 依题意得X 的取值可能为0,1,2,3,且P (X =0)=33125=27
125,P (X =1)=9×6125=54125,P (X =2)=3×12125=36125,P (X =3)=8125.故E (X )=0×27125+1×54125+2×36125+3×8125=65.
【答案】 6
5 三、解答题
9.某俱乐部共有客户3 000人,若俱乐部准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问俱乐部能否向每一位客户都发出领奖邀请?
【解】 设来领奖的人数ξ=k (k =0,1,…,3 000),
∴P (ξ=k )=C k 3 000(0.04)k (1-0.04)
3 000-k
, 则ξ~B (3 000,0.04),那么E (ξ)=3 000×0.04=120(人)>100(人). ∴俱乐部不能向每一位客户都发送领奖邀请.
10.(2015·重庆高考)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.
(1)求三种粽子各取到1个的概率;
(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.
【解】 (1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计
算公式有P(A)=C12C13C15
C310=
1
4.
(2)X的所有可能值为0,1,2,且
P(X=0)=C38
C310=
7
15,P(X=1)=
C12C28
C310=
7
15,
P(X=2)=C22C18
C310=
1
15.
综上知,X的分布列为
故E(X)=0×7
15+1×
7
15+2×
1
15=
3
5(个).
[能力提升]
1.甲、乙两台自动车床生产同种标准件,X表示甲车床生产1 000件产品中的次品数,Y表示乙车床生产1 000件产品中的次品数,经一段时间考察,X,Y 的分布列分别是:
据此判定()
A.甲比乙质量好B.乙比甲质量好
C.甲与乙质量相同D.无法判定
【解析】E(X)=0×0.7+1×0.1+2×0.1+3×0.1=0.6,
E(Y)=0×0.5+1×0.3+2×0.2+3×0=0.7.
由于E(Y)>E(X),
故甲比乙质量好.
【答案】 A
2.某船队若出海后天气好,可获得5 000元;若出海后天气坏,将损失2 000元;若不出海也要损失1 000元.根据预测知天气好的概率为0.6,则出海的期望
效益是( )
A .2 000元
B .2 200元
C .2 400元
D .2 600元
【解析】 出海的期望效益E (ξ)=5 000×0.6+(1-0.6)×(-2 000)=3 000-800=2 200(元).
【答案】 B
3.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为2
3,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=1
12,则随机变量X 的数学期望E (X )=________.
【解析】 ∵P (X =0)=112=(1-p )2×13,∴p =1
2.随机变量X 的可能值为0,1,2,3,因此P (X =0)=112,P (X =1)=23×⎝ ⎛⎭⎪⎫122+2×13×⎝ ⎛⎭⎪⎫122=13,P (X =2)=23×⎝ ⎛⎭⎪⎫122×2+13
×⎝ ⎛⎭⎪⎫122=5
12,P (X =3)=23×⎝ ⎛⎭
⎪⎫122=16,因此E (X )=1×13+2×512+3×16=53. 【答案】 53
4.(2015·山东高考)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).
在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.
(1)写出所有个位数字是5的“三位递增数”;
(2)若甲参加活动,求甲得分X 的分布列和数学期望E (X ).
【解】 (1)个位数字是5的“三位递增数”有125,135,145,235,245,345.
(2)由题意知,全部“三位递增数”的个数为C 39=84,随机变量X 的取值为:
0,-1,1,因此,
P (X =0)=C 3
8C 39
=2
3,
P(X=-1)=C24
C39=
1
14,
P(X=1)=1-1
14-
2
3=
11
42.
所以X的分布列为
则E(X)=0×2
3+(-1)×
1
14+1×
11
42=
4
21.。