新场气田泡沫排水采气工艺应用研究
- 格式:pdf
- 大小:199.14 KB
- 文档页数:3
泡沫排水采气工艺的应用摘要:应用泡沫排水采气工艺在提高安全性、改善采气效率、降低瓦斯爆炸风险和减少环境影响等方面具有重要的必要性,有助于提高煤矿开采的可持续性和安全性。
本文通过列举实际案例与分析资料,围绕泡沫排水采气工艺展开研究,并对该种工艺的实际应用进行分析,以期可以为从业人员开展操作提供依据。
关键词:泡沫排水采气工艺;气田;水含量超标1应用泡沫排水采气工艺的必要性应用泡沫排水采气工艺在煤矿开采中具有多方面的必要性,主要包括提高安全性、改善采气效率、降低瓦斯爆炸风险以及减少环境影响。
泡沫可以有效抑制瓦斯的爆炸,减缓火源的蔓延速度,提高矿井的火灾安全性。
泡沫可以降低煤尘爆炸的可能性,对于煤矿井下的安全防范起到积极作用。
泡沫可以减少煤与岩石之间的摩擦,降低瓦斯的涌出速度,减轻矿井的瓦斯压力。
泡沫的应用可以改善排水液体的透明度,提高排水效率,减少煤层水的渗透。
泡沫作为一种特殊介质,可以改善煤层的透气性,提高瓦斯的采收率。
泡沫中的气泡能够稀释瓦斯浓度,减缓瓦斯爆炸的蔓延速度,提高矿井爆炸的控制能力。
泡沫可以形成一种防爆的屏障,减缓瓦斯爆炸传播的速度,提高矿井的防爆能力。
泡沫排水工艺可以减少对地下水的需求,降低对水资源的浪费。
泡沫排水工艺能够减少排水中的污染物,对环境的影响较小。
2消泡原理消泡是指通过某些化学物质或物理手段,将原本容易形成泡沫的液体中的泡沫破坏或抑制的过程。
在煤矿行业,消泡技术通常用于控制泡沫在排水、采气等过程中的影响。
消泡剂可以改变液体表面的张力,使其降低,从而破坏泡沫结构。
表面活性物质通过与液体分子相互作用,减少表面张力,使气泡破裂。
消泡剂的引入可以改变液体的极性,使其不再适合形成稳定的气泡结构。
某些消泡剂能够在气泡膜上形成一层薄膜,改变其表面性质,使其不再具有稳定的泡沫结构,导致气泡破裂。
通过引入一些高分子量的物质,如聚合物,可以增加液体的黏度,阻碍气泡的运动和相互聚集,从而破坏泡沫结构。
泡沫排采工艺在涪陵页岩气田的应用摘要:页岩气的排水采气工艺是伴随着近些年页岩气勘探开发的快速发展,在常规排水采气工艺基础上结合页岩气藏产气产水特征的基础上移植而来的。
在泡沫排水采气初期效果较好,随着气井开采程度的增加,受气田水干扰的低压井会越来越多,部分气井进入低压生产阶段,微弱产水未及时排除都有可能造成气井积液停产或无法连续生产,由于设备故障以及泡排剂选择不当使得泡排效果有所降低,泡排工艺的优化势在必行。
关键词:页岩气;泡沫排水;优化1、泡沫排采工艺原理泡沫排水采气工艺是通过向油管中加入起泡剂,借助气流的搅拌作用,起泡剂与井底的积液混合形成低密度泡沫,从而降低临界携液流量30%~50%,达到提高携液能力、排出井筒积液目的。
2、泡沫排采工艺应用研究气田现有气井607口,泡排工艺气井57口,泡排站点遍布全区。
随着气井开采程度的增加,受气田水干扰的低压井越来越多,应用泡沫排采工艺的气井逐年上升。
受现有泡排工艺的影响,泡排技术在涪陵页岩气田推广存在诸多限制,泡排工艺的应用未达到预期效果。
结合现场实际情况,选择焦页**站为典例进行泡排工艺技术优化,解决人工劳动强度大、加注效果不理想、泡排药剂使用效果与生产运行存在矛盾等问题,减少因泡排工艺不当引起的设备故障停机率,提升泡排装置自动化、信息化水平,以提高泡沫排采工艺在涪陵页岩气田的安全运行水平。
2.1泡沫排采工艺流程改造原有泡排工艺流程存在问题有:因消泡剂硅油析出堵塞管线造成计量泵憋压损坏;消泡不及时,泡沫进入后续流程造成严重安全隐患,比如压缩机高报警停机,甚至随采气干线进入脱水站污染三甘醇溶液等。
在研究了原有泡排流程之后,将消泡剂出口从原有药剂罐底部抬高至底部10cm处,避免硅脂在管线弯头处沉降,造成管线堵塞;在出口处安装一种支撑性能好的泡排装置过滤器,该过滤器是一个高20公分、直径10公分,“子弹头”式的容器(图1),容器下端设置排污管线及控制阀门,排污管线连接至压缩机排污池,容器上端设置快开盲板,容器采用环形过滤网。
泡沫排水采气在气田开发中应用探究摘要:在我国构建生态文明社会的进程中,天然气发挥着重要的作用。
十四五期间对天然气的需求将越来越大,天然气作为一种不可再生资源,如何实现天然气的高效开采就显得尤为重要。
排水采气是提高天然气采收率的重要措施。
目前排水采气工艺使用较多的主要为电潜泵、柱塞、气举等工艺技术,与其他工艺技术相比泡沫排水采气技术具有操作简单、适应性广、成本简单等优势,近年来受到了国内外广泛关注。
该文对泡沫排水采气技术进行了研究,重点分析了起泡剂的筛选评价。
关键词:泡沫排水采气;气田开发;研究及应用引言目前排水采气工艺技术体系主要有电潜泵、柱塞、气举等工艺技术,与其他工艺技术相比泡沫排水采气技术具有操作简单、适应性广、成本简单等优势,近年来受到了国内外广泛关注。
泡沫排水采气工艺技术的核心是配制、筛选合适的起泡剂,以达到高收益、高采出程度,实现气田高效开发的目的。
本文对起泡剂的筛选进行了研究。
1.泡剂优化研究1.1影响起泡剂效果因素起泡剂主要成分为表面活性剂,且能有效的抗甲醇、抗高矿化度地层水、抗油,产生稳定的泡沫体系,起泡和泡沫稳定性均和表面活性剂定向吸附性有关。
具体来说,表面活性剂能够定向吸附在气水两相界面上,因此,要求表面活性剂对两种相态的流体都具有亲附性,这样才能使表面活性剂在两种不同物质间处于平衡,并按照一定的方式排列[1]。
研究表明,表面活性剂性能与分子结构有直接的关联。
目前发现一些表面活性剂在具有甲醇、高矿化度及含油的水气两相流体中,起泡性能变差,不能良好的形成稳定的泡沫。
由于甲醇原本就是一种消泡剂,容易铺展在已经形成的泡沫表面,顶替掉原来已经形成的表面活性剂分子膜,而甲醇分子无法在两相之间产生力的平衡,造成形成的泡沫膜很快就破裂。
高矿化度地层水对起泡性能的影响体现在表面活性剂一旦处于高含盐液体中,电解质离子强度加大,降低了表面活性剂在气水界面的吸附效果,并影响表面活性剂水化效果。
1.2新型起泡剂研制结合国外对于泡排剂研发先进经验,在泡排剂耐盐性能、适应甲醇起泡性能方面,通过简便方法对合成的表面活性剂进行筛选,将主要活性物质与助配剂进行复配,最后确定抗高矿化度、抗甲醇、抗油的起泡剂体系。
泡沫排水采气工艺在气田的应用2青海油田钻采工艺研究院,甘肃省敦煌市,7362003青海油田采气一厂,青海省格尔木市,8160004青海油田采气一厂,青海省格尔木市,816000摘要:泡沫排水采气工艺主要是针对产水气田开发研究的一项有效助采工艺技术,具备着施工简单、投入成本低、收益快、对日常生产没有影响的特征。
针对有水气田采取泡沫排水采气工艺,可以排除井底的积液,增加气井的产量,同时对维持气井的稳定生产以及提升采收率有重要的作用。
关键词:泡沫排水;采气工艺;气田前言:伴随着经济发展对能源以及环境的要求,天然气在能源中占得比例是越来越大,当前我国开采的气田大多都应用水驱气田,伴随着气藏的开发压力降低,产出的水不能及时排出,井筒中不断沉积增加气藏静水回压,降低气井产气的能力,假如积液没有及时排除,长期会导致气井停产,排水采气是解决气井井筒积液的有效工艺对策。
一、泡沫排水采气机理以及泡沫助采剂的选择应用泡沫注采剂主要是应用泡沫效应以及分散效应、洗涤效应、减阻效应实现注采。
选择泡沫助采剂的时候要注意:泡沫携液量比较大,也就是液体返出程度比较高;气泡能力比较强,或者是鼓泡高度达,通常都是以模拟流态法为准;泡沫稳定性恰当,如果稳定性较差,很有可能达不到将水带到地面的目标;相反,如果稳定性比较强,会给地面消泡,分离的时候更为困难[1]。
选择现场的时候,要按照气井产能状态以及流态选择。
二、泡沫排水采气工艺技术原理开采天然气与开采其他流动矿藏一样,需要经过三个步骤:第一,从产层到井底在多孔介质中的流动。
第二,从井底到井口在垂直管道中的流动。
第三,从井口到下游用户水平技术管道中流动。
针对产水气田来讲,在天然气流动期间,不同程度伴有底层水进入井筒中。
假如气流有足够的能量,会随时将产层水带出井口;如果气流能量不足,产层水将逐渐在井筒中以及井底近区聚集,产生积液,致使气井水淹导致停喷[2]。
如果气井产水会出现两个直接的恶果,首先是井筒积液以及增加回压、气井生产能力受到威胁。
气田泡沫排水采气起泡剂研究进展摘要:本文以气田泡沫排水采气起泡剂为主要研究对象,对常规离子类型起泡剂所包含的阴离子类型起泡剂、阳离子类型起泡剂、两性离子类型起泡剂和非离子类型起泡剂、高分子聚合物类型起泡剂的适用条件和范围进行研究。
关键词:气田;泡沫排水采气;起泡剂引言随着人们日常生产、生活对能源的需求量不断增加,气田开采规模和数量随之增加,为确保气田资源的充分开采,需要应用起泡剂进行排水采气,提升产量。
针对不同的气田需要使用不同类型的起泡剂。
本文着重对起泡剂的发展和适用条件进行着重分析。
1常规离子类型起泡剂常规类型气田和非常规类型的致密气田、岩气田、煤层气田所应用的常规离子类型起泡剂包括阳离子类型、阴离子类型和两性离子类型,其中前两者的应用较多。
首先,阳离子类型起泡剂,该类型起泡剂融入到溶液中能够水解大量阳离子,其发展历史较短,相比于阴离子类型起泡剂在矿场中的使用量较少,有关研究、文献资料较少。
该类型起泡剂内主要为含氮有机胺衍生盐,较为常用的为胺盐类和季铵盐类。
相关研究人员研发出季铵盐类型的阳离子起泡剂,气泡浓度最佳值2.5g/L,其气泡能力和泡沫的稳定性均较为优异,温度因素影响较小。
温度是25℃时,浓度约0.5mg/L,此类型起泡剂在5%至6%的盐酸溶液内的缓释率比较高,达到90%。
通常情况下阳离子类型的起泡剂具备良好的抗盐性能,而阳离子类型起泡剂起泡、稳泡性能比较差,抗高温性能有限,容易乳化。
因为分子间排布规律与分子极性头比较大,很难形成致密表面膜。
同时,阳离子类型起泡剂的来源十分稀少,具有严格的合成工艺,价格比较昂贵,在大型气田泡沫采气排水中应用较少。
其次,阴离子类型起泡剂。
在溶液中能够水解出大量的阴离子,阴离子类型起泡剂具有悠久的发展史,种类丰富,在矿场的使用量较大。
较为常见的阴离子类型起泡剂包括椰子油烷基硫酸盐、脂肪酸皂等。
相关研发人员对阴离子类型起泡剂的F体系泡沫性能与影响因素进行研究,总结出:质量分数是0.5%,F体系泡沫体积、半衰期最大,溶液内镁离子、钙离子、钠离子等阳离子对起泡剂泡沫性能所产生影响较小[1]。
92当气井出现积液时,对气井的开采造成严重的伤害。
主要表现在以下几个方面:(1)降低气相渗透率,气井产量下降较快;(2)管柱中气水两相流动,增加阻力,缩短气井自喷期;(3)对管柱造成腐蚀,造成窜漏问题。
因此对气井排水显得尤为重要,本文对泡沫排水采气进行了研究[1]。
1 泡沫排水剂优选两相泡沫的性质综合反映在起泡沫倍数、稳定性、分散性和结构力学(流变性)等参数上。
一般优质高效泡沫的起泡沫倍数大、稳定性强,泡沫细而致密,。
单一成份泡沫剂的性能很难达到理想的水平,泡沫配方有起泡沫剂、稳泡沫剂和助剂。
对泡沫剂起协同作用的物质有不同成分的活性剂、无机盐类、高分子聚合物、醇类。
高分子聚合物主要通过增加体系的粘度来增加泡沫膜厚度和膜弹性,而一些活性剂是通过与主剂的不同电性交替排列,增加膜分子密度,减少气体穿透,增加泡沫稳定性[2,3,4]。
泡沫配方的室内评价主要是对发泡剂起泡能力进行评价。
泡沫体系性能的评价一般用起泡沫能力(发泡高度)和泡沫的稳定性(泡沫半衰期)来表征。
本次实验对3种不同配方的起泡剂进行了发泡试验结果如表1所示,证明较高浓度、泡沫性能较好的起泡剂在较低浓度下也有较好的起泡和稳泡性能。
其中X-4起泡剂的发泡量最大、稳泡时间最长。
因此,将X4起泡剂作为泡沫排水剂。
表1 不同发泡剂发泡、稳泡实验数据表序号浓度(%)起泡剂实验温度(℃)起泡量(ml)半衰期(min)10.5X-2304501602X-3304801883X-4304902102 排水采气泡沫剂应用选取试验现场具有代表性的产水气井M1井、M8井。
试验前,由于气井产水量大,井底积液较多,天然气无法产出而导致关井,进行泡沫排液后进行复产,油压升高,套压下降,日产气量增加3100—3300方,通过泡沫排液使得气井携液能力加强,保证了气井的稳产。
3 总结(1)当气井出现积液时,对气井的开采造成严重的伤害,严重影响气井的产量。
(2)通过室内实验优选X-4作为泡沫排水剂。
气井泡沫排水采气工艺及优化对策摘要:泡排工艺是低压低产井重要排液措施,目前大量气井进入低产低压阶段。
目前井口压力低于1 MPa的占54%,1 MPa~2 MPa的占32%,2 MPa以上的占14%。
泡沫排水采气工艺利用向井筒注入起泡剂,使之与积液混合后,产生大量低密度含水泡沫,大大降低井筒的能量损失,减少液体的“滑脱”,从而提高气井的排液能力。
关键词:泡排工艺;低压低产井;排液能力;泡排注入方式泡沫排水采气是低压低产气井中应用广泛的一项工艺。
针对研究气田气井生产特征,首先根据临界携泡产量明确了储层泡排工艺适用范围;然后建立了极限油套压差与井口压力的关系,从而有效指导加药时机选择;进而根据实验优选了最优泡排剂浓度,药剂A最优浓度0.5%~1.0%,药剂B的最优浓度1%~2%,同时辅助了不同的泡排注入方式,最后开展了现场试验及大规模应用,排液增产效果良好。
1 泡排工艺适用界限工艺适用总体范围:日产液量≤100 m3/d,井深≤3500 m,井底温度≤120 ℃,对井斜无较大限制。
除此以外,关键在于矿化度的影响及泡排临界携液产量的确定,可以通过生产统计进行确定。
通常随着地层水矿化度增加,泡排剂效果逐渐变差,但总体影响程度不大。
按泡沫密度180 kg/m3,井口油压1 MPa条件下,气藏埋深500 m~1200 m,矿化度1000 ppm~20000 ppm,临界携泡产量为2265m3/d。
当产气量高于临界携泡产量时,可采用泡排工艺技术进行排液,当产气量低于临界携泡产量,泡排效果不佳,建议配套其它排液措施。
2 泡排工艺参数优化2.1 加注时机生产现场主要通过油套压差判断气井积液情况,从而开展泡排工艺实施。
基于此提出了极限油套压差的概念,并以此来指导加药时机。
当产气量明显下降,积液明显增加,此时对应的井口油套压差即为极限油套压差。
选取了53口典型泡排井,拟合极限油套压差与井口压力的关系如下(图1):面临待施工井,首先根据井口压力,根据拟合公式(1)计算极限油套压差,根据该压差即可确定出合理加药时机。
泡沫排水采气工艺技术探究摘要:天然气开采不同于石油开采,经常在井壁和井底出现积液过多的情况,阻碍采气工作,造成气井减产或过早停产。
而排液采气技术可以较好地解决这一问题,本文通过对排液采气工艺技术适应的气井条件进行分析,进而对排液采气工艺技术的特点、原理和操作流程等进行了探究。
关键词:地质要素排液采气技术探究近年来,我国天然气的开采和使用量不断加大,对于采气工艺技术的要求也越来越高。
为了提高天然气产量,实现气井的高产稳产,需要对采气工艺技术进行探究和分析。
气井开采后在井内容易出现积液现象,影响气井的产量和寿命,而排液采气是解决这一问题的技术保障,所以,需要对出现积液的气井进行排液开采。
本文将通过对排液采气工艺技术的分析,对采气工艺技术进行探究。
一、排液采气技术及适应的气田地质特征我国适合采用排液采气工艺技术的气田,一般都具有封闭性弱和弹性水驱的特征。
需要具备封闭性,是因为较强的封闭性和定容性等特征可以使气井排液采气更加利于操作。
另外,适合排液采气技术的气田需要具备气井自身产水有限的条件。
气井内部的液滴在分布上受到裂缝的影响,一般都是沉积在气井内部裂缝系统的内部封闭区间内。
在气井内壁沿着裂缝流动的积液,可以通过气井内部的自然能量和人工升举等技术进行排液,而气井的井底积液,因为气井内部的地层水在井底区域内聚集,非常便于通过人工升举和机抽排水等技术进行排液采气。
我国的天然气资源相对而言采气难度较高,现在已经开发的气田,基本上都是低孔低渗的弱弹性水驱气田,不利于高效采气。
特别是气井进入中后期开发阶段,这种类型的气井非常容易受到内部积液的影响而提前停产或大幅度减产,即使是正常类型的气井,进入中后期后也会受到内部积液的影响。
为了应对内部积液对气井开采寿命和产量的这种消极影响,需要通过采取技术手段保证气井积液的产生和气体的流出相互协调,这样就可以实现将气井内部井壁或井底的积液排除井口,提高气井的采气量和采收率,并延长气井的开采寿命。