全国优秀特级教师优质中学数学教学实录汇编椭圆的简单几何性质(系列课)
- 格式:doc
- 大小:288.49 KB
- 文档页数:4
2. 2.2椭圆的几何性质【教学内容解析】1.平面解析几何的基本思想是在平面上引进“坐标”概念,并借助坐标在平面上的点和有序数对(x,y)之间建立一一对应的关系.于是,平面上的一条曲线就可以由带两个变量的一个代数方程来表示.这样,我们就可以利用方程来研究几何对象之间的关系和其本身的几何性质,即2.圆锥曲线是高中数学平面解析几何中的核心内容,也是一类重要的数学模型,其研究方法充分体现了解析几何的基本思想,在天文、物理等其它学科技术领域中占有重要地位,在生产或生活实际中有着大量应用.3.椭圆的几何性质是在学生学习了椭圆的定义和标准方程之后,第一次真正意义上感受解析几何的基本思想一一从方程出发研究椭圆的几何性质.是继必修二第二章《平面解析几何初步》之后,进一步渗透并应用这种思想,是后续学习双曲线、抛物线的知识铺垫、能力基础和方法指导,是数形结合的数学思想方法的典范,也是进一步完善学生的知识结构、深化数学思想方法、提升多种数学素养的重要载体.在本章中起着承上启下、完善建构、形成范例的作用.4.能根据椭圆的标准方程获得椭圆的几何性质,发现椭圆方程与椭圆几何性质的关系,揭示椭圆几何性质的形成过程是本节课的教学重点.【教学目标设置】1.能根据椭圆方程初步理解椭圆的范围、对称性、顶点、离心率等简单几何性质;能解释椭圆标准方程中a,b,c的几何意义;2.在探究椭圆性质的活动中,经历从图形直观抽象几何性质的过程,提取出利用代数方法研究几何性质的一般方法,建立离心率模型;3.在这过程中,进一步感受数形结合、函数与方程、类比归纳等数学思想方法的丰富内涵.4.树立严谨求实的理性精神,获得自主探究的成功和喜悦,提高数学学习兴趣.【学生学情分析】(1)学生己有的认知基础本节课的授课对象是四星级高中高二年级的学生,己经知道了直线和圆的相关知识、椭圆的定义和标准方程;理解数形结合思想、数形转化方法的重要作用,初步感知了解析几何的基本任务,具有一定的图形分析和代数推理能力.同时在函数和不等式的学习过程中己经积累了利用等量关系寻找不等关系、图像的对称性等研究函数性质的基本经验.这些都为本节课提供了充分的基础知识和思想方法准备.(2)达成目标所需要的认知基础要达成本节课的目标,这些己有的知识、能力和经验基础不可或缺,但这毕竟是他们第一次利用代数方程研究曲线的几何性质,经验缺乏,研究目标不明确,抽象建立离心率模型的素养不够.所以还需要具备观察、概括、抽象、推理等能力,能运用数形结合、类比归纳等数学思想,以及独立思考、合作交流、反思质疑等良好的数学学习习惯.(3)教学难点与突破策略基于达成目标的认知困难,本节课的教学难点是:1.发现和揭示椭圆方程与椭圆几何性质的关系,搭建“数”与“形”的桥梁;2.椭圆离心率的发现与探究,突破“定性”到“定量”的转化;突破难点的相应策略如下:1.通过画图、辨图,不断制造认知冲突,从解决问题需要出发,建立学生通过曲线方程研究几何性质的直接经脸;2.引导学生经过操作确认、思辨论证的过程初步建立2与椭圆圆扁程度的对应aIf r关系,再利用2与'的等量关系,建立离心率的模型,并结合几何画板动态演示,a a丰富学生的直观感悟与经历;3.发动学生通过问题串进行交流、汇报,展示思维过程,相互启发.【教学策略分析】L精心设置问题系列自然驱动从明确解析几何的基本任务入手,精心设置问题串,引导学生操作、观察、比较、猜想、推理,解构教材,学习知识,形成能力,发展认识.2,充分开展学生活动自主探究站在学生的角度,从学生己有的认知出发,给学生提供了课堂参与的机会和自我领悟的空间,让学生在动手操作、观察比较、类比辨析、交流合作中理解知识,掌握研究方法.3,适时提炼思想方法自觉升华在利用方程探究几何性质的过程中,教师在适当的时候对过程方法实时总结或迁移,由形到数,再以数释形,数形结合始终贯穿其中并逐层递进,帮助学生在交流和反思中领悟数学思想方法在数学学习中的指导作用.【教学过程分析】引言:美国数学教育家莫里斯•克莱茵说:解析几何彻底改变了数学的研究方法,即通过坐标系,把几何问题代数化.而建立曲线方程,便是代数化的手段之一.前面两节课,利用椭圆的定义(是什么?),我们画出了椭圆的形状,推导出了椭圆的标准方程(是什么?).【学生活动】回忆、思考、口答.【设计意图】通过复习回顾,激活作为本节课逻辑起点的基础知识;通过对解析几何本质的揭示,初步明确本节课的研究内容.一、情境引入,明确方向问题1除了利用定义,你能根据椭圆方程三十汇=1画出它的简图吗?25 16【学生活动】学生在坐标纸上尝试画出椭圆,展台展示学生的作品,引导学生欣赏, 点评,交流.【设计意图】中学数学教育的首要任务是培养数学直观.通过画图辨图,与学生已有的椭圆印象对比,让学生发现问题,进而关注椭圆的一些重要特性,从而明确研究椭圆几何性质的主要内容;通过“为什么”的追问,自然引导学生从方程本身的角度去考虑,从而明确研究的主要方法.二、问题驱动合作探究问题2 一般地,以椭圆£+E=ig>b>o)为例,你准备研究它的哪些性质?如何a' b-研究?【学生活动】学生自主探究,感知“几何性质”研究的方向和方法,得出结论,说明理由探究h我们能否从椭圆方程本身来探讨椭圆的范围呢?方法提炼:通过观察方程形式特点,由方程构造不等式,体现了研究几何问题的“代数”方法,其实质是:己知± + £ = l(a〉b>0),求%),的取值范围.a- b~探究2:椭圆具有怎样的对称性?能否用代数法说明?方法提炼:图形对称的本质是点的对称:对于曲线上任意一点P(x,y),轴> P'(-x,y)也在曲线上二>图形关于y轴对称.探究3:研究曲线上的某些关键点,可以确定曲线的位置和变化趋势.你觉得该椭圆上会有哪些关键点?方法提炼:分析四点的特性,形成顶点的概念.顶点是曲线与对称轴的交点,而不是曲线与坐标轴的交点.类比迁移二次函数图像的顶点.自主思考,相互交流,探究结论.教师适当点拨引导,深化认识.范围和对称性的探究,经历了由直观(图形)、推理(数量)、抽象(性质)的思维过程;顶点概念的建立,则是先直观、后类比、再建模,体现了研究问题的方法论思想.例1:椭圆异£=1的长轴长为,短轴长为,顶点坐标是【学生活动】准确计算,熟练回答.【设计意图】由方程得性质,体现了本节课重要知识点和研究方法的基本应用,以及练习的反馈和诊断功能.探究4请在刚才的坐标纸上较精确地画出第二个椭圆才, L【学生活动】列表描点,结合性质,精画椭圆.【设计意图】再画椭圆,让学生体脸利用性质画图的必要性和有效性,另一方面也是离心率概念形成的自然过渡.问题3观察所画椭圆上+ 21 = 1和上+*=1,它们在形状上有什么显著不同? 25 16 25 9 问题3.1这两个椭圆的圆扁不同是由方程中的哪个量的变化引起的?问题3.2你能说出两个比当+与=1更“扁”的椭圆吗?25 9问题3.3是不是方程中的。
2.2椭圆椭圆的简单几何性质(第1课时)(人教A版高中课标教材数学选修2-1)教学设计授课教师:乔树华天津市宁河区芦台第一中学2018年10月《椭圆的简单几何性质》(第一课时)教学设计天津市宁河区芦台第一中学乔树华一、教学内容解析1.内容本节课学习椭圆的几何性质,主要包括范围、长轴、短轴、对称性、离心率,以及性质的应用.2.内容解析本节课是《普通高中课程标准实验教科书数学》人教A版选修2-1第二章《圆锥曲线与方程》中2.2《椭圆》的第二课时,主要内容是研究椭圆的几何性质. 椭圆的对称性、长轴、短轴描述了椭圆的形状特征,椭圆的范围描述了椭圆的大小,椭圆的离心率是用数值刻画椭圆扁平程度的量.从单元内容看,本单元主要包括三种圆锥曲线的定义、标准方程和性质,以及坐标法的应用,在学习的过程中要深入对数形结合思想的理解.本节课是在学生熟悉了直线和圆的方程、椭圆的定义及其标准方程的基础上,并具有初步运用方程研究曲线的方法的活动经验后,第一次系统地运用代数与几何相结合的方法研究曲线的性质.它为之后研究双曲线、抛物线的几何性质、运用“以数解形”的方法解决几何问题等内容提供了数学模型和方法指导,因此本节课对体会单元核心思想方法具有举足轻重的地位和作用.本节内容蕴含了丰富的数学思想方法,突出体现了数形结合、分类讨论及类比推理的思想和用代数法研究曲线性质的数学方法.基于以上分析,确定本节课的教学重点是:利用椭圆的标准方程研究椭圆的简单几何性质,理解“以数解形”的数形结合思想.二、教学目标设置1.教学目标(1)在动手画椭圆的过程中,发现并提出椭圆对称性、大小、圆扁程度等几何性质的问题,发展学生发现问题提出问题的能力,培养学生数学抽象的能力.(2)通过对椭圆图形特征的研究,分析椭圆的范围、长轴、短轴、对称性的性质,发展学生分析几何图形和直观想象的能力.(3)结合方程分析椭圆性质,以数解形,提升学生对数形结合思想的理解.(4)通过离心率的探究,使学生经历观察、分析、归纳、概括的思维过程和动手操作的实践过程,发展学生数学逻辑推理的能力.2.目标解析(1)设计画椭圆图形,可以提高学生研究曲线时动手作图的基本技能,并让学生从作图的过程中初步了解椭圆的各项几何性质,发展学生直观想象和数学抽象的数学核心素养,培养学生分析问题和解决问题的操作性思维能力.(2)研究曲线性质时,首先从图形角度研究,可以提高学生发现问题的能力,并让学生体会几何直观在研究曲线性质中的作用.(3)通过方程对椭圆的几何性质的探究,学生进一步感受用代数方法解决几何问题的数形结合的思想,在由数释形的过程中,培养学生的探究习惯,发展学生的理性思维.(4)在椭圆离心率的探究过程中,通过实验发现规律,结合老师的引导点拨,让学生去实现对离心率的发现和理解,培养学生严谨的治学态度和不断发现问题的能力,以及运用所学知识解决新问题的能力.三、学生学情分析学生已经熟悉和掌握椭圆的定义及其标准方程,学生有动手体验和探究的兴趣,有一定的观察分析和逻辑推理的能力,但这是学生第一次通过方程研究曲线的几何性质,研究思路并不是很清晰.对于范围、对称性、顶点三个性质,通过老师的点拨引导,学生比较容易掌握.离心率概念比较抽象,学生缺乏研究此类问题的经验.本节课的教学难点是:学生对椭圆的核心性质——离心率的认识与理解.本单元内容的教学,要使学生充分经历“操作、观察、分析、抽象、概括”的学习过程.即从生活中抽象图形的模型,动手操作画图象,观察曲线的特点,探究曲线的方程,根据方程研究曲线.教学中,充分运用类比学习、螺旋提升的方法,不断形成完整的解析几何研究方法和学习策略.在运用方程讨论曲线性质时,主要以独立探究为主,离心率的发现过程要为学生创设适当的情境,使学生在最近发展区中发现问题、解决问题.对于坐标法的理解,教师要为学生创造循序渐进地理解数形结合思想的条件,以代数与几何为什么结合、怎么结合、结合时注意什么等问题为抓手,帮助学生深刻理解此数学思想方法.四、教学策略分析根据本节课教学内容的特点,为了更直观、形象地突出重点,突破难点,激发学生的学习兴趣,在课堂教学中让学生通过动手操作画椭圆,亲历知识的生成过程,力求借助信息技术手段,以“几何画板”软件为平台,通过对椭圆的核心性质离心率e 的变化的演示,观察椭圆圆扁程度的变化,让学生体会运用“数形结合”的思想方法建立起高中数学的两条主线——代数主线和几何主线间的密切联系,同时利用展台将学生的研究成果进行实时呈现,能够使本节课重点研究的椭圆的简单几何性质的四方面——椭圆的范围、对称性、顶点及离心率问题及时得到很好的解决.具体来说包括:1.任务驱动教学法:利用问题串作引导,引发学生积极思考并积极探究;2.演示教学法:学生实物投影展示和教师几何画板动态演示相结合,提高课堂效率的同时兼顾解答的规范性;3.启发式教学法:在研究范围和离心率时,教师做积极启发并与学生自主探究与合作讨论相结合突破难点;4.学法:以小组合作为基本活动模型,采用自主学习法,结合合作探究法,讨论法,归纳总结法与交流展示法.五、教学过程设计(一) 创设情境、建构概念1.情境创设:让学生观察建筑中国国家大剧院,它与湖中倒影的正视图呈椭圆形,进而引出课题.2.知识回顾:椭圆的标准方程:当焦点在x 轴时,)0(12222>>=+b a by a x 当焦点在y 轴时,)0(12222>>=+b a bx a y 【设计意图】回顾上节课所学内容,巩固知识并为本节课所学做铺垫.3.活动创设课前布置预习作业:你能否利用所学知识,在同一坐标系中画出方程1162522=+y x 和192522=+y x 所表示的曲线.课上分组展示学生的成果,并让学生观察他们有什么几何特征.预设可能出现的情况:预设1:先判断其为椭圆,再利用定义画图;预设2:先判断其为椭圆,寻找到与坐标轴的交点,画椭圆;评价预设:寻找画图的关键点,提高画图容易度.预设3:先判断其对称性,只需精确画出其第一象限的图象;评价预设:发现椭圆的对称性,可以给画图带来方便.预设4:从函数角度出发,利用描点法作图.评价预设:将其转化为函数,利用函数图象的画法作图.【设计意图】数学是现实世界的反映.从学生感兴趣的问题出发,创设思维情境,让学生在动手操作的过程中重温方程和曲线的关系,直观感受椭圆的几何特征,自然引出本节课的课题.(二)独思共议,引导探究通过画具体的椭圆,由特殊到一般,提出一般的椭圆会有哪些性质.以椭圆)0(12222>>=+b a by a x 为例研究椭圆的几何性质. 探究一.椭圆的范围 问题1:椭圆大小如何刻画? 问题2:该椭圆上点的横坐标的取值范围是什么?纵坐标呢(预设:学生会利用图形观察得知,老师要给予肯定:图形观察很直观)问题3: 你能否用方程说明该范围?追问:范围可以由不等关系求出,如何建立y x ,的不等关系?(先独立思考2分钟再进行小组合作,后进行小组展示成果)从方程上看: 预设1:因为012222≥-=a x b y 所以122≤ax ,故可得a x a ≤≤-,同理可得b y b ≤≤-. 预设2:由椭圆方程)0(12222>>=+b a b y a x 中实数平方的非负性可得122≤a x ,122≤by , 所以a x a ≤≤-,b y b ≤≤-.o预设3:利用三角换元:设θθsin ,cos ==by a x ,则θθsin ,cos b y a x ==, 所以a x a ≤≤-,b y b ≤≤-.教师总结点评:利用方程中变量的非负性,判断其它变量范围的方法,是解析几何中利用方程研究曲线范围的一般方法.【设计意图】通过椭圆的标准方程确定椭圆的范围,使学生感受利用椭圆方程研究椭圆几何性质的方法,理解椭圆)0(12222>>=+b a by a x 位于直线a x ±=和b x ±=所围成的矩形内,为描点法作图提供了参考,体会利用坐标法研究曲线几何性质的优越性.探究二.椭圆的对称性问题1:椭圆具有怎样的对称性?师生活动:学生可以直观感受椭圆的对称性,并引导学生用椭圆的标准方程对其进行研究.学生在必修2《直线的方程》和《圆的方程》的学习中经历过对曲线对称性的探究过程,此外学生还可以类比函数的奇偶性的研究方法得到椭圆的对称性,并给出椭圆中心的定义.预设:学生可能会从图形和方程的角度得到.(教师通过几何画板演示)(此问题对学生具有相当的难度,老师指明图形对称的本质是点的对称,在学生回答过程中,要强调在椭圆上“任取一点”) 问题2:能否用椭圆的方程说明该对称性?(小组讨论2分钟,找代表发言)(教师动画展示)椭圆上任取点),(y x P ,关于y 轴的对称点),('y x P -也在椭圆上,说明椭圆关于y 轴对称,关于x 轴的对称点),(''y x P -也在椭圆上,说明椭圆关于x 轴对称,关于原点的对称点),('''y x P --也在椭圆上,说明椭圆关于原点对称.即坐标轴x 轴和y 轴是椭圆的对称轴,原点)0,0(O 是椭圆的对称中心,称为椭圆的中心.强调:利用曲线上任意一点关于坐标轴和原点的对称点仍在曲线上来判断曲线的对称性,也是利用方程研究曲线对称性的一般方法.问题3:研究曲线 的对称性【设计意图】学生可以直观感受椭圆的对称性,并引导学生用椭圆的标准方程对122=-y x其进行研究.教师通过信息技术的引入,让学生理解图形对称性的本质是构成图形的点的对称性,即利用曲线上点的坐标的对称性,可以实现曲线的对称性.并通过练习题,让学生学以致用,体会研究曲线对称性的一般方法.探究三.椭圆的顶点问题1:观察椭圆图形,他有哪些特殊点?问题2:这些点的坐标是什么?利用学生描点画图时的特殊点,引入椭圆的顶点,让学生感受图形中某些特殊点在确定曲线位置时的作用,从而得到顶点定义,即椭圆与对称轴x 轴和y 轴的四个交点.并指出长轴,短轴和长半轴长,短半轴长等相关概念.【设计意图】让学生明确顶点等相关概念,理解顶点与对称性的关系.探究四.椭圆的形状——认识椭圆的离心率e问题1:用什么量可以刻画椭圆的扁平程度?学生活动:小组合作,利用椭圆的定义画椭圆,(小组合作讨论,相互交流,小组展示)预设1:a c ;预设评价:学生可能从椭圆的定义出发,发现画椭圆时ac 的变化对椭圆形状的影响.预设2:ab .预设评价:学生可能观察预习作业中两个椭圆的扁平程度得到. 师生活动:小组展示探究成果.学生观察当a 保持不变时,随着c 的改变,椭圆圆扁程度的变化,发现椭圆随着a c 的增大而变扁,随着a c 的减小而变圆.教师利用几何画板动态展示,并给出离心率的概念,并引导学生求出椭圆离心率的范围,【设计意图】让学生从具体问题中抽象出离心率的定义,信息技术的引入不仅可以使学生体会到定义的科学性、严谨性,让学生深刻地理解定义,更有助于培养学生的数学抽象、逻辑推理等数学素养,不断积累数学活动的经验.问题2:离心率的大小如何影响椭圆的扁平程度?预设:e 越接近于0,则c 越接近于0,即22c a b -=越接近于a , 椭圆越接近于圆; e 越接近于1,则c 越接近于a ,即22c a b -=越接近于0,椭圆越扁.(让学生用逼近的思想想象当0→e 时,椭圆接近于圆,当1→e 时,椭圆接近于一条线段.)【设计意图】利用等价转化的思想刻画椭圆的扁平程度,加深学生对椭圆的核心性质离心率e 的认识与理解.(三)类比联想,知识迁移类比焦点在x 轴上的椭圆的几何性质,得到焦点在y 轴上的椭圆的几何性质,让学生体会数学研究中的类比推理的过程与方法.【设计意图】让学生体会椭圆焦点位置的变化对其性质的影响,提升学生的逻辑推理素养,并为后续双曲线和抛物线的学习奠定基础.(四)巩固新知,提升能力例题分析:例1.椭圆400251622=+y x 的长轴长是________,短轴长是_________,焦点坐标是________,焦距是__________,顶点坐标是__________,离心率是________.例2.在椭圆)0(12222>>=+b a b y a x 中,已知B OF 2∆为等腰直角三角形,求椭圆的离心率.问题:你能从三角函数的角度理解离心率对椭圆形状的影响吗? 【设计意图】通过例题分析,巩固椭圆的几何性质,例2旨在引导学生深刻理解椭圆离心率的几何意义,实现认识上的又一次飞跃.(五)回顾反思,归纳总结学生和老师共同回顾、梳理、总结本节课所学的数学知识、思想、方法.(1)椭圆的几何性质(2)用坐标法研究曲线性质的过程与方法(3)所用的数学思想方法:数形结合、化归转化、类比推理师生活动:先由学生总结所学内容,教师补充说明,特别是通过本节课所经历的知识的探究过程,体会类比与数形结合的数学思想.通过本节课,让学生看到数学在生活中的应用,意识到还有很多与椭圆相关的知识需要去探究,从而不断地激发学生的数学学习兴趣.【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.(六)目标测试,当堂反馈1.已知椭圆方程为6622=+y x ,它的长轴长是__________,短轴长是___________, 焦点坐标是________,焦距是________,顶点坐标是_________,离心率是________.2.椭圆以坐标轴为对称轴,离心率32=e ,长轴长为6,则椭圆的标准方程为( ) (A)1203622=+y x (B)15922=+y x (C)15922=+y x 或15922=+x y (D)1203622=+x y 或1203622=+y x 【设计意图】通过目标检测,可以了解学生对知识的理解和掌握情况,为教学评价提供依据,其中第2题旨在体会分类讨论思想在数学中的应用.接着展示图片:展示椭圆在建筑与天文等方面的应用,让学生看到数学在生活中的应用,意识到还有很多与椭圆相关的知识需要去探究,从而不断激发学生的学习兴趣.(七)布置作业,巩固所学实践作业:查阅椭圆在建筑学与天文学方面应用的资料,每组写一份调研小报告. 分层作业:必做:课本49P 习题2.2A 组2,3,4,5题选做:A 组第9题【设计意图】作业分层布置,力求让不同基础的学生都拥有成功学习的体验.必做题主要考查学生对本节课重点知识的掌握情况,检查学生运用所学知识解决问题的能力,实践作业的设置是为了让学生体验如何检索、搜集资料进行数学学习,这是本节课所学内容的提高与拓展,可以更好地培养学生分析问题和解决问题的能力.。
椭圆的简单几何性质(系列课)浙江省象山中学 蒋 亮一、教案描述:椭圆的简单几何性质包括椭圆的范围、对称性、顶点、离心率、椭圆的第二定义等等,教材中单独地把它分成几块拿出来讨论,显得极不自然。
特别是椭圆的第二定义,教材通过一个例子给出,思路不蹈常规,这一切都是教材的简洁性决定的。
我在教学设计中,创设了问题情境,把这些内容有机地串联起来,整个过程如同一次重大战役,环环紧扣,层层深入,促进学生思维的展开,增强创新意识的培养。
过程如下:(一)、以问题为中心,注重过程教学。
首先,设计如下情境,提出反常规的问题。
师:上几节课,我们导出了椭圆的标准方程,整个过程严谨周密,现摘录如下: 设M ()y x ,是椭圆上任意一点,焦点F 1和F 2的坐标分别是()0,c -,()0,c (图1)。
由椭圆的定义可得: ()())1(22222a y c x y c x =+-+++ 将这个方程移项,两边平方得 ())2(222y c x a cx a +-=- 两边再平方,整理得)3()0(12222>>=+b a by a x 问题1:为什么将(3)式作为椭圆的标准方程?对于这一问题学生首先会感到奇怪,似乎(3)式作为标准方程那是顺理成章的,进而会展开热烈的讨论,教师总结一下大致有以下几点理由:1、(3)式简捷,具有对称的美感。
2、(3)式为我们提供了求椭圆轨迹的标准方程,方便用待定系数法求解轨迹的方程。
3、根据解析几何用曲线的方程研究曲线的几何性质这一特点,(3)式方便研究椭圆的几何性质。
针对上述理由3,教师可以组织学生就如何利用(3)式从整体上把握椭圆的曲线的形状,展开讨论。
这样便自然引出:范围、对称性、顶点、离心率等课文要求的内容。
若要进一步研究椭圆的曲线,自然需要列表、描点、连线等常用手段,于是课文中的例1便自然出来了。
上述讨论需要一个课时左右。
(二)以探究为热点,培养创新意识。
由于有了第一节课的基础,本节课教师的问题设计显然容易且自然多了。
高中数学新课程标准教材数学教案( 2019 — 2020学年度第二学期 )学校:年级:任课教师:数学教案 / 高中数学 / 高二数学教案编订:XX文讯教育机构《椭圆的简单几何性质》听课实录教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于高中高二数学科目, 学习后学生能得到全面的发展和提高。
本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。
在预习教材中的例 4 的基础上,证明:若分别是椭圆的左、右焦点,则椭圆上任一点p ()到焦点的距离(焦半径),同时思考当椭圆的焦点在 y 轴上时,结论如何?(此题意图是引导学生去进一步探究,为进一步研究椭圆的性质做准备)本堂课是在学生学习了椭圆的定义、标准方程的基础上,根据方程研究曲线的性质。
按照学生的认知特点,改变了教材中原有安排顺序,引导学生从观察课前预习所作的图形入手,从分析对称开始,循序渐进进行探究。
由教师点拨、指导,学生研究、合作、体验来完成。
本节课借助多媒体手段创设问题情境,指导学生研究式学习和体验式学习(兴趣是前提)。
例如导入,通过“神州五号”这样一个人们关注的话题引入,有利于激发学生的兴趣。
再如,这节课是学生第一次利用曲线方程研究曲线性质,为了解决这一难点,在课前设计中改变了教材原有研究顺序,让学生从观察一个具体椭圆图形入手,从观察到对称性这一宏观特征开始研究,符合学生的认知特点,调动了学生主动参与教学的积极性,使他们进行自主探究与合作交流,亲身体验几何性质的形成与论证过程,变静态教学为动态教学。
在研究范围这一性质时,课前设计中,只要学生能根据不等式知识解出就可以了,但学生采用了多种方法研究,这时教师没有打断他的思路,而是引导帮助他研究,鼓励学生创新,从而也实现了以学生为主,为学生服务。
在离心率这一性质的教学中,充分利用多媒体手段,以轻松愉悦的动画演示,化解了知识的难点。
椭圆的简单几何性质(1)课堂实录教学过程一、创设情境引导目标与内容教师: 2003 年 10 月 15 日是每一个中国人为之骄傲的日子(课件展示飞船绕地球运行模拟图),大家还记得这一天吗?学生:神州五号飞船发射成功。
教师:对,神州五号载人飞船顺利发射升空,实现了几代中国人遨游太空的梦想。
你知道照片上这个人吗?(屏幕打出杨利伟照片)学生:杨利伟教师:他是我们民族的英雄,我们应向他学习。
通过前面的学习我们知道,飞船在变轨前是沿着地球中心为一个焦点的椭圆轨道运行的,如果告诉你飞船的轨道方程,你怎样作出飞船的轨迹呢?这个问题的实质是什么?学生:已知一个椭圆的方程,画出这个椭圆。
教师:让学生拿出预习中用描点法画出所示的图形,同时计算机给出作图过程,纠正学生作图中存在的问题后给出:这种作图方法虽然比较准确,同学们通过作图体会到了什么?学生:麻烦。
教师:有简单的方法吗?如果有,需要知道什么呢?学生:研究曲线的特点。
教师:对,如果我们能根据椭圆的方程,探讨出它的几何特征,那么作图就很方便了。
这节课我们就一起来学习椭圆的简单几何性质(引出课题)教师:前面我们学习了椭圆的哪些知识?学生:学习了定义和标准方程。
教师:你还记得标准方程吗?这节课就以( a > b > 0 )为例来研究。
二数学建构( 1 )范围引导学生用多种方法探究,汇报研究成果并用实物投影展示或到黑板板书。
学生 D :由利用两个实数的平方和为 1 ,结合不等式知识得≤且≤,则有 -a ≤ x ≤ a , -b ≤ y ≤ b. 教师:很好,谁还有不同意见?学生 E :利用三角换元,令θ,θ,θ∈ R 。
由弦函数有界可得范围。
教师:这个想法也不错,谁还有不同见解?学生 F :从中解出,利用≥ 0 可得 y 的取值范围,同样可得 x 的取值范围。
教师:这种想法也不错,谁还有不同见解?此时学生陷入深思中,教师及时点拨,前面我们学习过函数的定义域、植域,这对你研究椭圆的范围有何启示呢?学生议论纷纷,有的开始动笔推导,有的几个人一起在商量。
§8。
2 椭圆的简单几何性质一、教学目标(一)知识教学点通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用.(二)能力训练点通过对椭圆的几何性质的教学,培养学生分析问题和解决实际问题的能力.(三)学科渗透点使学生掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决随之而来的一些问题,如弦、最值问题等.二、教材分析1.重点:椭圆的几何性质及初步运用.(解决办法:引导学生利用方程研究曲线的性质,最后进行归纳小结.)2.难点:椭圆离心率的概念的理解.(解决办法:先介绍椭圆离心率的定义,再分析离心率的大小对椭圆形状的影响,)3.疑点:椭圆的几何性质是椭圆自身所具有的性质,与坐标系选择无关,即不随坐标系的改变而改变.(解决办法:利用方程分析椭圆性质之前就先给学生说明.)三、活动设计提问、讲解、阅读后重点讲解、再讲解、演板、讲解后归纳、小结.四、教学过程(一)复习提问1.椭圆的定义是什么?2.椭圆的标准方程是什么?3.椭圆中a,b,c的关系是?学生口述,教师板书.(二)几何性质根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是b>0)来研究椭圆的几何性质.说明:椭圆自身固有几何量所具有的性质是与坐标系选择无关,即不随坐标系的改变而改变.1.范围即|x|≤a,|y|≤b,这说明椭圆在直线x=±a和直线y=±b 所围成的矩形里(图2—18).注意结合图形讲解,并指出描点画图时,就不能取范围以外的点.2.对称性先请大家阅读课本椭圆的几何性质2.设问:为什么“把x换成—x,或把y换成—y?,或把x、y同时换成—x、-y时,方程都不变,所以图形关于y轴、x轴或原点对称的”呢?事实上,在曲线的方程里,如果把x换成-x而方程不变,那么当点P(x,y)在曲线上时,点P关于y轴的对称点Q(—x,y)也在曲线上,所以曲线关于y轴对称.类似可以证明其他两个命题.同时向学生指出:如果曲线具有关于y轴对称、关于x轴对称和关于原点对称中的任意两种,那么它一定具有另一种对称.如:如果曲线关于x轴和原点对称,那么它一定关于y轴对称.事实上,设P(x,y)在曲线上,因为曲线关于x轴对称,所以点P1(x,-y)必在曲线上.又因为曲线关于原点对称,所以P1关于原点对称点P2(-x,y)必在曲线上.因P(x,y)、P2(—x,y)都在曲线上,所以曲线关于y轴对称.最后指出:x轴、y轴是椭圆的对称轴,原点是椭圆的对称中心即椭圆中心.3.顶点只须令x=0,得y=±b,点B1(0,—b)、B2(0,b)是椭圆和y轴的两个交点;令y=0,得x=±a,点A1(—a,0)、A2(a,0)是椭圆和x 轴的两个交点.强调指出:椭圆有四个顶点A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b).教师还需指出:(1)线段A1A2、线段B1B2分别叫椭圆的长轴和短轴,它们的长分别等于2a 和2b ;(2)a 、b 的几何意义:a 是长半轴的长,b 是短半轴的长; 这时,教师可以小结以下:由椭圆的范围、对称性和顶点,再进行描点画图,只须描出较少的点,就可以得到较正确的图形.根据前面所学有关知识画出下列图形 (1)1162522=+y x (2)142522=+y x 4.离心率教师直接给出椭圆的离心率的定义:等到介绍椭圆的第二定义时,再讲清离心率e 的几何意义. 先分析椭圆的离心率e 的取值范围: ∵a >c >0,∴ 0<e <1.再结合图形分析离心率的大小对椭圆形状的影响:(2)当e 接近0时,c 越接近0,从而b 越接近a,因此椭圆接近圆; (3)当e=0时,c=0,a=b 两焦点重合,椭圆的标准方程成为x2+y2=a2,图形就是圆了.标准方程范围 |x|≤ a ,|y |≤ b对称性关于x 轴、y 轴成轴对称;关于原点成中心对称22221(0)xy a b a b+=>>离心率同前 a 、b 、c 的关系a²=b²+c²同前(三)应用为了加深对椭圆的几何性质的认识,掌握用描点法画图的基本方法,给出如下例1.例1已知椭圆16x2+25y2=400,它的长轴长是: 。
3.1.2椭圆的简单几何性质(第二课时)(人教A版选择性必修数学第一册第三章圆锥曲线的方程)一、教学目标1.掌握椭圆的第二定义;2.能够自主探究椭圆的简单几何性质.二、教学重难点1.推导椭圆的第二定义和焦半径公式;2.研究椭圆几何性质的思路与方法.三、教学过程1.复习巩固活动:完成下表【活动预设】由学生完成上表【设计意图】带领学生复习上节课学习的椭圆的简单几何性质. 2.课堂探究 2.1 探究1活动:已知椭圆E:x 216+y 212=1,F 1、F 2分别为椭圆E 的左、右焦点. P 为椭圆E 上一动点,O 为坐标原点.探究:当P 在何位置时,|OP|最小?P 又在何位置时,|OP|最大?【活动预设】由学生自主完成问题1:如果椭圆方程变为一般方程:x 2a 2+y 2b 2=1(a >b >0),结论又会如何呢? 【预设的答案】当P 在短轴顶点时,|OP|min =b ;当P 在长轴顶点时,|OP|max =a . 【设计意图】渗透从特殊到一般的思想 2.2 探究2活动:已知椭圆E:x 216+y 212=1,F 1、F 2分别为椭圆E 的左、右焦点. P 为椭圆E 上一动点. 探究:当P 在何位置时,|PF 1|最小?P 又在何位置时,|PF 1|最大?【活动预设】由学生自主完成问题2:上述|PF 1|=12|x 0+8|,|x 0+8|有什么几何意义?【预设的答案】代表P(x 0,y 0)到直线x =−8的距离 【设计意图】渗透数形结合的思想问题3:也就是说|PF 1|=12|PM|,椭圆上任意一点P(x 0,y 0),它到左焦点的距离和它到直线x =−8的距离之比为常数12,那么对于一般的椭圆是否有类似的性质呢?我们考虑下面的一般情况:已知椭圆E:x 2a 2+y 2b 2=1(a >b >0),F 1、F 2分别为椭圆E 的左、右焦点. P 为椭圆E 上一动点. 探究:当P 在何位置时,|PF 1|最小?P 又在何位置时,|PF 1|最大?【预设的答案】设P(x 0,y 0),则PF 12=(x 0+c)2+y 02 因为y 02=b 2(1−x 02a 2) 所以PF 12=(x 0+c)2+b 2(1−x 02a 2)=(a 2−b 2)x 02a2+2cx 0+b 2+c 2=c 2a 2 x 02+2cx 0+a 2=c 2a 2(x 0+a 2c )2即|PF 1|=ca |x 0+a 2c |设直线l 1:x =−a 2c ,P 到直线l 1的距离为PM ,则|PF 1|=ca |PM|,|PF 1||PM|=ca =e 【设计意图】渗透从特殊到一般的思想. 2.3 概念形成椭圆E:x 2a 2+y 2b 2=1(a >b >0),F 1、F 2分别为椭圆E 的左、右焦点,P(x 0,y 0)为椭圆E 上一动点.左准线l 1:x =−a 2c ,右准线l 2:x =a 2c 椭圆第二定义:P 到左焦点的距离|PF 1|与它到左准线l 1:x =−a 2c 的距离|PM 1|的比为离心率e ,即|PF 1||PM 1|=e =ca ; P 到右焦点的距离|PF 2|与它到右准线l 2:x =a 2c 的距离|PM 2|的比为离心率e ,即|PF 2||PM 2|=e =ca .焦半径公式:|PF 1|=c a (a 2c +x 0)= a +ex 0,|PF 2|=c a (a 2c −x 0)= a−ex 0|PF 1|min =a−c , |PF 1|max =a +c .3.课堂巩固例:动点M(x,y)与定点F(4,0)的距离和M 到定直线l:x =254的距离的比是常数45,求动点M 的轨迹.(x−4)2+y 2|x−254|=45所以25[(x−4)2+y 2]=16(x−254)2化简得:9x 2+25y 2=225 所以x 225+y 29=1【设计意图】引出椭圆第二定义拓展:动点M 到定点F 的距离与到定直线l 的距离之比是一个常数,动点M 的轨迹是否也是椭圆呢?【设计意图】留给学生课后自主研究 4.课后探究探究1:已知椭圆E:x 2a 2+y 2b 2=1(a >b >0),F 1、F 2分别为椭圆E 的左、右焦点. P 为椭圆E 上一动点. 探究:当P 在何位置时,∠F 1PF 2最大?P 又在何位置时,∠F 1PF 2最小?探究2:已知椭圆E:x 2a 2+y 2b 2=1(a >b >0),A 1、A 2分别为椭圆E 的左、右顶点. P 为椭圆E 上一动点. 探究:当P 在何位置时,∠A 1PA 2最大?P 又在何位置时,∠A 1PA 2最小?【设计意图】鼓励学生利用课余时间自主探究 5.课堂小结思考:这节课我们主要学习了什么内容?体现了哪些数学思想方法?【设计意图】梳理本节课所学内容,总结数学思想方法.。
椭圆的简单几何性质引言椭圆是一种重要的几何图形,具有许多独特的性质和应用。
本文将介绍椭圆的简单几何性质,并通过听课实录的形式,逐步解析椭圆的特点和性质。
第一节椭圆的定义与基本特点教师:同学们,下面我们来学习椭圆的定义和基本特点。
首先,我们需要了解椭圆的定义。
请听:椭圆的定义椭圆是平面上到两个固定点F1和F2的距离之和为常数2a的点的轨迹,记为E。
椭圆的基本特点椭圆的特点包括: - 焦点:椭圆的两个固定点F1和F2称为焦点,它们到椭圆上任意一点的距离之和为常数2a。
- 长轴:连接焦点的直线段称为椭圆的长轴,长度为2a。
- 短轴:与长轴垂直且通过椭圆中心的直线段称为椭圆的短轴,长度为2b。
- 离心率:离心率e是一个常数,满足e=c/a,其中c为焦点到椭圆中心的距离。
- 半焦距离:焦点到椭圆中心的距离称为半焦距离,记为c。
第二节椭圆的几何性质教师:现在,我们来探讨一些椭圆的几何性质。
请听:椭圆的对称性•椭圆具有对称性:对于椭圆上的任意一点P,以椭圆中心O为中心,以焦点F1和F2为焦点做圆,该圆与椭圆相切于点P。
椭圆的轴线•椭圆与直线轴线:椭圆的长轴和短轴互相垂直,并且长轴和短轴的中点都在椭圆的中心。
•椭圆的离心角:连接椭圆上一点和两个焦点的线段与椭圆的法线之间的夹角称为离心角,离心角等于其对焦半径之比。
椭圆的切线和法线•椭圆的切线方程:对于椭圆上一点P(x, y),过该点的切线方程为ax x_1+byy_1=a^2,其中(x1, y1)为切点坐标。
•椭圆的法线方程:对于椭圆上一点P(x, y),过该点的法线方程为bxx_1+ayy_1=b^2,其中(x1, y1)为法线与椭圆的切点坐标。
椭圆的焦点性质•椭圆的焦点性质1:椭圆上任意一点P到焦点F1和F2的距离之和等于常数2a,即PF1 + PF2 = 2a。
•椭圆的焦点性质2:对于椭圆上的任意一条弦AB,焦点F1和F2到该弦的距离的和等于常数2a,即AF1 + BF1 = AF2 + BF2 = 2a。
椭圆的简单几何性质(系列课)
一、教案描述:
椭圆的简单几何性质包括椭圆的范围、对称性、顶点、离心率、椭圆的第二定义等等,教材中单独地把它分成几块拿出来讨论,显得极不自然。
特别是椭圆的第二定义,教材通过一个例子给出,思路不蹈常规,这一切都是教材的简洁性决定的。
我在教学设计中,创设了问题情境,把这些内容有机地串联起来,整个过程如同一次重大战役,环环紧扣,层层深入,促进学生思维的展开,增强创新意识的培养。
过程如下:
(一)、以问题为中心,注重过程教学。
首先,设计如下情境,提出反常规的问题。
师:上几节课,我们导出了椭圆的标准方程,整个过程严谨周密,现摘录如下: 设M ()y x ,是椭圆上任意一点,焦点F 1和F 2的坐标分别是()0,c -,()0,c (图1)。
由椭圆的定义可得: ()())1(2222
2a y c x y c x =+-+++ 将这个方程移项,两边平方得 ())2(222y c x a cx a +-=- 两边再平方,整理得
)3()0(122
22>>=+b a b
y a x 问题1:为什么将(3)式作为椭圆的标准方程?
对于这一问题学生首先会感到奇怪,似乎(3)式作为标准方程那是顺理成章的,进而会展开热烈的讨论,教师总结一下大致有以下几点理由:
1、(3)式简捷,具有对称的美感。
2、(3)式为我们提供了求椭圆轨迹的标准方程,方便用待定系数法求解轨迹的方程。
3、根据解析几何用曲线的方程研究曲线的几何性质这一特点,(3)式方便研究椭圆的几何性质。
针对上述理由3,教师可以组织学生就如何利用(3)式从整体上把握椭圆的曲线的形状,展开讨论。
这样便自然引出:范围、对称性、顶点、离心率等课文要求的内容。
若要进一步研究椭圆的曲线,自然需要列表、描点、连线等常用手段,于是课文中的例1便自然出来了。
上述讨论需要一个课时左右。
(二)以探究为热点,培养创新意识。
由于有了第一节课的基础,本节课教师的问题设计显然容易且自然多了。
师:上节课我们讨论了(3)式作为椭圆标准方程的诸多优点,自然我们会有:
问题2:将(3)式作为椭圆的标准方程有什么缺点?
M F 2 F 1 y O x
(图1)
对于这一问题学生感到有些困难,教师可以和学生一起比较圆的标准方程的优点后,发现(3)式无法揭示椭圆上的动点到定点的距离之和等于定长2a 这一本质属性,相比之下(1)式恰好具有这一优点。
于是师生一起可以讨论(1)式的优缺点,具体可得:
1、(1)式充分揭示了椭圆的定义。
2、(1)式难以讨论椭圆的其他几何性质,如范围、对称性、顶点等等。
通过以上讨论,自然产生了:
问题3:是否存在一个方程,同时体现椭圆的第一定义和椭圆的几何性质?自然将目光转向(2)式,将(2)式变形,得 ())4(22x a c a y c x -=+- 即 )5(2ex a MF -= 同理可得 )6(1ex
a MF += 将(2)式再变形,得 ())(22
2x c a a c y c x -=+- 即 ())7(22
2a c x c a y c x =-+-
(5)(6)两式将椭圆上点到焦点的距离转化为只和焦点的横坐标有关的一维算式,充分体现了数学降维思想。
而(7)式正好揭示了椭圆的第二定义,正是书本上例2的意图(图2)。
如此处理教材,自然流畅,既能完成教学任务,又充分地揭示了知识的发生过程,通过被人们所遗弃的(2)式,挖掘出如此宝贵的教学成果,这会让学生兴奋不已。
在品尝创新果实的同时也培养了学生的创新能力,以上讨论约一教时。
(三)、以反思为主调,奏响创新旋律。
务必指出,反思是创新的源泉。
通过前二节课的探索,特别是第二课时获得一系列创新成果以后,教师更要引导学生养成良好的反思习惯,打破思维定势,争取更大的突破。
师:总结上二节课的讨论,我们发现对(1)式的每一次变形,都会收到一系列令人激动的科学成果,那么自然会有:
问题4:(1)式还有其他变形吗?如果有又能得到什么收获呢?
此时,学生的思维已被激活,讨论特别的活跃,热情空然的高涨,通过讨论可获得一系列成果如下:
成果一:将(1)两边平方,整理可得:
()())8(22222222b a y x y c x y c x +=+++-∙++
(8)式揭示了椭圆的又一本质属性:
P
x M y
O F 2
(图2) M
22221b a MO MF MF +=+,
即,椭圆上动点到两焦点的距离之积,
和它到椭圆中心距离的平方之和等于常数(图3)。
成果二:将(5)(6)代入(8)式可得: )9(22ex b MO +=
若将动点到中心的长度称为椭圆的半径,那么(9)式给出了椭圆半径的计算方法,它只和该点的横坐标有关,同样起到降维作用。
成果三:若将(1)式的两边乘以()()2222y c x y c x +--++,整理可得: ()())10(22222a c x y c x y c x =+--++
(10)式给出了椭圆的又一本质属性:即椭圆上动点到两焦点的距离之差与该点到椭圆的一条对称轴(垂直于焦点所在直线)的距离之比是一个常数。
成果四:在 ,),1(2121α=∠∆MF F MF F 设图中 则由余弦定理可得: )cos 1(24)cos 1(2)(cos 2421221221212
2212ααα
+-=+-+=-+=MF MF a MF MF MF MF MF MF MF MF c
所以 )11(cos 122
21α+=b MF MF 将(11)式代入(8)式可得: )12(2tan 222α
b a MO -=
(12)式给出了椭圆半径与动点到两焦点连线所成角的关系。
应该指出:本节课的创新讨论是无止境的,关键在于培养学生的创新意识,当然由于学生的程度不同,得到的成果也不同,无论如何,教师都应给予充分的肯定。
从对(1)式作变形看,自然也可考虑对其它式子变形,如将(3)式变形成
22
2))((a
b a x a x y -=+-,于是可得,椭圆上动点到两焦点A ()0,a -,B ()0,a 的连线的斜率之积等
于常数,等等。
本内容可以安排1至2课时。
二、教案分析
(一)、教学观念是教学设计的指南针
培养创造性思维是素质教育的主要任务之一。
突破旧的教学模式,精心设计教学环节,多给学生以创新的条件、机遇和氛围,突出知识的发生、形成、探索过程,寓创新意识于课堂教学之中,这是本节内容教学设计的主思想、主旋律。
(图3) x
y O F 1 F 2
本教案一反常规的教学过程,在注重知识落实的同时,更注重的是过程,通过一系列问题的创设,将课本教学内容有机地联系起来,一切显得那么的自然和谐、合情合理、引人入胜,这与教师的教学观念是密切相关的。
从这堂课的整体效果看,因从暴露思维的角度组织材料,所以学生学得轻松愉快,主动参与教学活动的热情高涨,变被动接受为主动学习,提高了学习效果。
在教师的适当点拨下,学生在力所能及的发现中可以领略到数学的魅力,激发了他们的学习兴趣。
从教师的教学理念看,特别注重提高思维能力和创新意识的培养,于是设计出一个又一个富有成果的、有价值的问题。
给学生以探索的机会,创造的热情,从而提高了素质。
我们说演绎推理能力的培养,无疑是重要的,但对于寻找真理、发现真理和探索真理而言,更要重视合乎情理的推理能力的培养。
这一切,传统的数学教学未予重视,于是说要设计一个好的教案,转变教学观念更是关键、是方向盘、是指南针。
(二)挖掘教材是教学设计的必修课。
现行教学教材是由很多教学教育专家经过反复修改、讨论才编就的,它的每一项内容乃至每一条题目,都有其精心的考虑。
当然,编写者不可能也无必要把他们的所有想法都写进教材,这就要求我们深入钻研教材,充分挖掘教材的潜能,实际教学时,做到既源于课本,又高于课本、活于课本,以培养学生的创造性的思维能力和解决实际问题的能力。
本教案从一个反常规的问题入手,扣开了学生的创新思维,可能在学生的心目中,甚至在许多教师的心底里认为(3)式作为椭圆的标准方程是天经地义的,从来没有想过为什么要把(3)式作为标准方程,也从来没有想过(3)式的许多不足和缺陷。
本课时正是在这一逆向思维的基础上,一下子吸引了学生的注意力,激活了他们的好奇心,整节内容设计成几课时,犹如一部优秀的电视连续剧,让人留恋忘返、欲止不能。
本教案的成功之处是充分的挖掘了教材的潜能,站在学生的层面上设计教学过程,把知识点的掌握转化为探索过程,并把探求的领域一次次地扩大,一次次地深入,这种有浅入深、由表及里、由小见大的教学设计方案,符合学生的心理特征和人们的一般的认知规律,值得借鉴和推广。