LED节能灯驱动电路图介绍
- 格式:doc
- 大小:61.00 KB
- 文档页数:4
LED驱动电源电路分析今天给大家简单分析一个(LED驱动)电路,供大家学习。
一,先从一个完整的LED驱动(电路原理)图讲起。
本文所用这张图是从网上获取,并不代表具体某个(产品),主要是想从这个图中,跟大家分享目前典型的恒流驱动电源原理,同时跟大家一起分享大牛对它的理解,希望可以帮到大家。
那么本文只做定性分析,只讨论(信号)的过程,对具体电压(电流)的参数量在这里不作讨论。
图1某款LED驱动电路原理图二、原理分析为了方便分析,把图1分成几个部分来讲1:输入过压保护主要是雷击或者市冲击带来的浪涌。
如果是(DC)电压从“+48V、GNG”两端进来通过R1的电阻,此电阻的作用是限流,若后面的线路出现短路时,R1流过的电流就会增大,随之两端压降跟着增大,当超过1W时就会自动断开,阻值增加至无穷大,从而达到保护输入电路+48V不受到负载的影响)限流后进入整流桥。
图2输入过压(保护电路)R1与RV构成了一个简单过压保护电路,RV是一个压敏元件,是利用具有非线性的(半导体)材料制作的而成,其伏安特性与稳压(二极管)差不多,正常情况显高阻抗状态,流过的电流很少,当电压高到一定的时候(主要是指尖峰浪涌,如打雷的时候高脉冲串通过市电串入进来),压敏RV会显现短路状态,直接截取整个输入总电流,使后面的电路停止工作,此时,由于所有电流将流过R1和RV,因R1只有1W的功率,所以瞬间可以开路,从而保护了整个电路不被损坏。
2、整流滤波电路当交流AC输入时,则桥式整流器是利用二极管的单向导通性进行整流的最常用的电路,将交流电转变为直流电。
当直流DC(+48V)电压直接进入整流桥BD时,输出一个上正下负的直流电压,如果+48V(电源)本身也是直流的,那整流桥的作用就是对输入起到的是极性保护作用,无论输入是上正下负还是上负下正都不会损坏驱动电源,通过C1C2L1进行滤波,图3是一个LCΠ型滤波电路,目的是将整流后的电压波形平滑的直流电。
LED节能灯的工作原理节能灯主要是通过镇流器给灯管灯丝加热,大约在1160K温度时,灯丝就开始发射电子(因为在灯丝上涂了一些电子粉),电子碰撞氩原子产生非弹性碰撞,氩原子碰撞后获得了能量又撞击汞原子,汞原子在吸收能量后跃迁产生电离图1是一款贴片LED照明灯具的实用电路图,该灯使用220V电源供电,220V交流电经C1降压电容降压后经全桥整流再通过C2滤波后经限流电阻R3给串联的10颗贴片LED提供恒流电源.贴片LED的额定电流为20mA,但是我们在制作节能灯的时候要考虑很多方面的因素对贴片LED的影响,包括光衰和发热的问题,LED的温度对光衰和寿命影响很大,如果散热不好很容易产生光衰,因为LED的特性是温度升高电流就会增大,所以一般在做大功率照明时散热的问题是最重要的,将影响到LED的稳定性,小功率一般都采取自散热方式,所以在电路设计时电流不宜过大.图中R1是保护电阻,R2是电容C1的卸放电阻,R3是限流电阻防止电压升高和温度升高LED的电流增大,C2是滤波电容,实际在LED 电路中可以不用滤波电路,C2是用来防止开灯时的冲击电流对LED的损害,开灯的瞬间因为C1的存在会有一个很大的充电电流,该电流流过LED将会对LED产生损伤,有了C2的介入,开灯的充电电流完全被C2吸收起到了开灯防冲击保护.该电路是小功率灯杯最实用的电路,占用体积小可以方便的装在空间较小的灯杯里,现在被灯杯产品广泛的采用.优点:恒流源,电源功耗小,体积小,经济实用.但是在设计时降压电容要采用耐压在400V以上的涤纶电容或CBB电容,滤波电容要用耐压250v以上.此电路适合驱动7-12只20mA的贴片LED1、LED发光机理:PN结的端电压构成一定势垒,当加正向偏置电压时势垒下降,P区和N区的多数载流子向对方扩散。
由于电子迁移率比空穴迁移率大得多,所以会出现大量电子向P区扩散,构成对P区少数载流子的注入。
这些电子与价带上的空穴复合,复合时得到的能量以光能的形式释放出去。
220V交流电源供电的电容限流式LED节能灯图1、高亮LED应用电路图集1.采用220V交流电源的电阻限流式小射灯或台灯图1电路的特点是制作简单,根据本地区电源电压的高低,一般可用管子90-100只串联。
管子的数量如果太少效率相对就较低。
限流电阻R根据电源电压和管子的数量适当调整以控制发光管的电流,一般不要超过20mA。
对于电源电压不稳定和波动较大的地区,发光管的电流也会跟着电压的波动而有所波动,这是它的缺点。
限流电阻R的功率要求2W以上,以免发热损坏(发光管数量越少,R的阻值就要越大且功率也要越大)。
本电路总耗电功率不足6W。
如果用于制作射灯,则宜选用聚光型的发光管,如果用于制作一般照明台灯,则宜选用散光型的发光管。
/2、2、采用恒流源电路的220V交流电源小射灯或节能照明灯图2是采用恒流源的电路,虽然电路多用了几个元件,增加了一些成本,但使用效果要比只用电阻限流的电路好得多,即使电压波动较大,电路仍然能保持电流恒定不变,这对发光管的寿命是非常有利的,本电路中的主要元件三极管,要求其耐压要400V以上,功率也要10W以上的大功率管,如MJE13003、MJE13005等,并且要加上散热片,滤波电容C容量为4.7uF,耐压要有400V以上,发光管电流的大小由R2调整决定,为方便调整可用可变电阻调整后再换上相同阻值的固定电阻,本电路可带发光管数量少则十几只,最多可达到90多只,在此范围内的电流都能基本保持恒定不变。
本电路使用发光管数量也不可太少,越少其效率也越低。
本电路总耗电功率约6W。
3、采用220V交流电源的电容限流式节能照明灯图3电路的优点是成本较低体积较小,电路的电流也相对恒定,通过管子的电流大小主要由C1决定。
本电路具有完善的三重防冲击电流设计,能最大限度的保护发光管的安全。
即R2防开灯时的大电流对整流管的冲击;电容C2起滤波并和R2、R3共同起防开灯时大电流对发光管的冲击;R3还起着防短时间内反复开关灯对发光管的高电压高电流冲击。
110v节能灯电路原理图一般设计110V的EB比220V的EB难度要高点,尤其是高功率因数的,下面以几副常规的原理图引领大家进入文章的主题.图1 220V通用线路图2 100-110V倍压线路图3 100-110V直接驱动线路A图4 100-110V直接驱动线路A为何110V的EB比220V的EB难度要高,最直接的影响是灯的启动问题,尤其是整灯在高温低压时,容易出现灯管不能成功启动,只有两边灯丝发红。
原因是在高温时磁环和三极管的驱动能力降低,以至灯启动电压和灯启动电流供应不足而不能使灯管成功引燃。
灯启动电压和启动电流供应不足也影响低温低压时灯的启动。
另外,要想EB输出相同的功率,110V的EB的输出电流自然要比220V 的输出电流大一倍,输出电流受控的关键点是EB的输出电感(也称扼流圈),此电感的选值太大,输出功率不足。
选值太小,便会引至EB的工作频率严重超标,三极管的开关损耗会上升,引至管子发热。
在线路的拓朴上,以上四副原理图是一样的,都是串联谐振正反馈电路,只是有一些巧妙的地方和元器件的数值选取不同。
此电路的最佳工作状态,必须符合:式1式中:Fw为工作频率。
Fo为整个谐振电路的固有频率。
以简单的词语说明就是:工作频率与输出电感和谐振电容的固有频率要相等,电路才能工作于最佳状态,此时负载电路等效于一个电阻,可提高整个EB的效率,降低热损耗,整机性能上升。
图1是常规的220V原理图,图2是110V经过倍压的原理图。
图3为110V 双谐振电容直接驱动原理图,图4是双谐振电容与灯丝交叉的直接驱动原理图。
图1不适宜用在110电路当中,何解?是因为要维持确定的功率,输出电感L2必须选得很小,要符合上式,谐振电容C6将要选取得很大,而C6不能选取得太大,因为太大了,启动电压将降低。
原因是:设有一高频电流流过灯丝,C6增大,等效于C6的电阻减小,C6两端的电压便下降,输出电感和灯丝的压降便上升,C6两端的电压下降,等于灯管电压下降,便很容易出现前文所述的高温不能启动问题。
LED节能灯驱动电路图介绍时间:2010-05-23 14:14来源:未知作者:admin 点击:216次驱动电路的输出特性,白光LED闪光灯的驱动电路可分为恒压型和恒流型;按电路工作原理,可以分为电感升压电路和电荷泵电路。
白光LED是电流驱动型器件,其亮度与电流成比例关系。
在恒压型驱动电路中,往往有一个电阻与白光LED串联,用来设置产生预期白光LED正驱动电路的输出特性,白光LED闪光灯的驱动电路可分为恒压型和恒流型;按电路工作原理,可以分为电感升压电路和电荷泵电路。
白光LED 是电流驱动型器件,其亮度与电流成比例关系。
在恒压型驱动电路中,往往有一个电阻与白光LED串联,用来设置产生预期白光LED正向电流所需的电压。
这种方式有一个缺点,即白光LED正向电压的任何变化都会导致白光LED电流的变化,从而无法保证流过白光LED的电流等于预设置值,也就无法确保白光LED的亮度恒定。
而在恒流型驱动电路中,是通过检测串联在白光LED回路电阻的电压来保证流过白光LED的电流恒定的。
这种方式可以消除由正向电压变化而产生的电流变化,因此白光LED可产生相对恒定的亮度。
由于移动电话的锂离子电池的工作电压范围一般为3.*.2V,而白光LED的正向电压一般为3~4V,且白光LED闪光灯一般为多个白光LED 串、并联在一起,以提供闪光功能所需的光通量,所以在低电压输入、高电压输出的时候,必须采用升压电路将电压升高以驱动白光LED。
驱动白光LED闪光灯时一般采用两种方式升压,一种是采用以电感为储能元件的升压式变换器,另一种是采用以电容为储能元件的电荷泵。
采用以电感为储能元件的升压变换器的优点是效率相对较高。
现在的白光LED闪光灯驱动控制器都集成了控制电路和升压开关管,但是电感和用于续流的肖特基二极管还是外接的,这增加了电路的复杂性、成本和PCB面积。
此外,由于闪光灯驱功电路、LED闪光灯显示屏、移动电话的天线一般位于移动电话上端,与移动电话的射频电路靠得很近,所以有效防止驱动电路电感的EMI干扰也是很重要的问题。
led节能灯电路图如下:led节能灯原理 led节能灯电路图及led节能灯配件3.2信号处理电路根据以上传感器输出信号波形,这里给出一种适合的信号处理电路,如图6所示。
整个电路由传感器、放大电路、滤波电路、正向电压峰值保持电路、窗口电压比较器及数字电平转换电路组成。
图6信号处理电路图放大电路由R2、R3、U2A和R4、R5、U2B所构成的两级倒相比例器组成,增益取值应以能够将传感器的输出信号电压放大至便于处理的1.0~4.5 V为宜。
滤波电路由有源带通滤波电路和π型无源滤波电路两部分组成。
U2C与R6~R8及C3、C4共同组成有源带通滤波电路,带通范围是2.25~9.05 Hz,增益为0.5;R9和C5、C6组成π型无源滤波电路。
传感器输出信号经过放大和滤波处理之后,波形如图5所示。
正向电压峰值保持电路由D1和C7组成,它利用电容对电荷的存储能力使图5中A、B处的峰值在一定的时间内得到保持,而成为单峰值正向脉冲信号,波形如图7所示。
图7单峰值正向脉冲信号波形图U2D和R10、R11及C8组成了又一级倒相比例器,对信号再次放大,以补偿信号在有源带通滤波中的损失,同时使信号反相,便于窗口电压比较器在Vref和V均为正值时的信号处理。
窗口电压比较器由U3A、U3B和R12~R23及D2~D6共同组成,其电压窗口范围是(-Vref-V,-Vref+V)[2]。
对于Vo输出端,当输入比较器的信号电压落在窗口内时,输出约为0V;反之,则输出为+5V。
而对于Vn输出端,当输入电压高于-Vref时输出为0 V;否则,输出为+5 V。
利用Vo、Vn两个输出,再配合由U4A~U4D四个与非门组成的逻辑电路,就可以实现信号处理的最后一步。
如果将电压比较器的窗口位置设定得使不同运动方向产生的信号脉冲峰值在反相后分别进入窗口区及窗口以下区,则在OUT1和OUT2输出端可得到适合于计数处理的逻辑电平信号,波形如图8中所示。
LED节能灯的工作原理及原理图LED节能灯是一种高效、节能的照明设备,其工作原理基于LED(Light Emitting Diode,发光二极管)的特性。
LED是一种半导体器件,通过电流通过时,能够发出可见光。
LED节能灯主要由LED芯片、散热器、电源驱动电路和外壳等组成。
LED节能灯的工作原理如下:1. 电源驱动电路:LED节能灯需要将交流电转换为直流电供给LED芯片。
电源驱动电路通常包括整流器、滤波器和稳压电路等部分,用于将交流电转换为稳定的直流电,以保证LED芯片的正常工作。
2. LED芯片:LED芯片是LED节能灯的核心部件,它是由半导体材料构成的。
当正向电流通过LED芯片时,电子与空穴在半导体材料中复合,产生能量释放,从而发出可见光。
不同的半导体材料和掺杂元素可以发出不同颜色的光。
3. 散热器:LED节能灯的散热器用于散热,保持LED芯片的温度在安全范围内。
LED芯片的发光效率与温度密切相关,过高的温度会降低LED节能灯的寿命和亮度。
散热器通常采用铝合金材料,通过导热设计和散热结构,将LED芯片产生的热量迅速散发出去。
4. 外壳:LED节能灯的外壳起到保护和美观的作用。
外壳通常由塑料或金属材料制成,具有良好的绝缘性和耐腐蚀性。
外壳还可以起到散热和防尘的作用,保证LED节能灯的正常工作。
LED节能灯的原理图如下:```+------------------+| |AC Power Source | | | |+---------+--------+ |||+---------v--------+ | || Rectifier & || Filter || |+---------+--------+ |||+---------v--------+ | || Voltage || Regulator || |+---------+--------+|||+---------v--------+ | || LED Chip | | |+---------+--------+ |||+---------v--------+ | || Heat Sink | | |+---------+--------+ |||+---------v--------+ | || Housing || |+------------------+```在LED节能灯工作时,交流电首先经过整流器和滤波器转换为直流电,然后经过稳压电路稳定电压,供给LED芯片。
LED节能灯的工作原理及原理图LED节能灯是一种高效、耐用且节能的照明设备,它的工作原理基于发光二极管(LED)的电致发光效应。
LED节能灯的原理图包括电源、驱动电路和LED灯珠。
1. 电源:LED节能灯使用直流电源供电,通常采用交流电源通过整流电路转换为直流电源。
直流电源可以来自电池、太阳能电池板或交流电源通过转换器转换而来。
2. 驱动电路:驱动电路是将直流电源转换为适合LED灯珠工作的电流和电压的电路。
驱动电路通常包括稳压电路、升压电路和电流控制电路。
- 稳压电路:LED灯珠对电压的要求较高,稳压电路可以确保LED灯珠获得稳定的电压供应。
常见的稳压电路有线性稳压电路和开关稳压电路。
- 升压电路:LED灯珠通常需要较高的工作电压,升压电路可以将低电压转换为所需的高电压。
常用的升压电路有升压变换器和电感升压电路。
- 电流控制电路:LED灯珠对电流的要求较高,电流控制电路可以确保LED灯珠获得稳定的电流供应。
常见的电流控制电路有恒流源和电流反馈控制电路。
3. LED灯珠:LED灯珠是LED节能灯的核心组件,它是基于半导体材料制造的发光二极管。
LED灯珠通过电致发光效应将电能转化为可见光。
LED灯珠的结构包括P型半导体和N型半导体,当通过正向电压时,电子从N型半导体跃迁到P型半导体,释放出能量并产生光。
LED节能灯的工作原理是:当电源接通后,电流经过驱动电路供给LED灯珠,LED灯珠发出可见光。
LED节能灯的亮度和颜色可以通过控制电流和电压来调节。
LED节能灯具有快速启动、长寿命、低能耗、无汞等优点,因此被广泛应用于室内照明、车辆照明、户外照明等领域。
以下是LED节能灯的原理图示例:```+------------------------+| || 电源 || |+-----------+------------+||||||||||+-----------+------------+| || 驱动电路 | | |+-----------+------------+ ||||||||||+-----------+------------+ | || LED灯珠 | | |+------------------------+ ```以上是LED节能灯的工作原理及原理图的详细说明。
常见led驱动电源电路设计大全(十款电路设计原理图详解)★★★led驱动电源电路设计(一)LED电源有很多种类,各类电源的质量、价格差异非常大,这也是影响产品质量及价格的重要因素之一。
LED驱动电源通常可以分为三大类,一是开关恒流源,二是线性IC电源,三是阻容降压电源。
1、开关恒流源采用变压器将高压变为低压,并进行整流滤波,以便输出稳定的低压直流电。
开关恒流源又分隔离式电源和非隔离式电源,隔离是指输出高低电压隔离,安全性非常高,所以对外壳绝缘性要求不高。
非隔离安全性稍差,但成本也相对低,传统节能灯就是采用非隔离电源,采用绝缘塑料外壳防护。
开关电源的安全性相对较高(一般是输出低压),性能稳定,缺点是电路复杂、价格较高。
开关电源技术成熟,性能稳定,是目前LED照明的主流电源。
图1:开关恒流隔离式日光灯管电源图2:开关恒流隔离电源原理图图3:开关恒流源电源图4:开关恒流非隔离电源原理图。
2、线性IC电源采用一个IC或多个IC来分配电压,电子元器件种类少,功率因数、电源效率非常高,不需要电解电容,寿命长,成本低。
缺点是输出高压非隔离,有频闪,要求外壳做好防触电隔离保护。
市面上宣称无(去)电解电容,超长寿命的,均是采用线性IC电源。
IC驱电源具有高可靠性,高效率低成本优势,是未来理想的LED驱动电源。
图5:线性IC电源图6:线性IC电源原理图3、阻容降压电源采用一个电容通过其充放电来提供驱动电流,电路简单,成本低,但性能差,稳定性差,在电网电压波动时及容易烧坏LED,同时输出高压非隔离,要求绝缘防护外壳。
功率因数低,寿命短,一般只适于经济型小功率产品(5W以内)。
功率高的产品,输出电流大,电容不能提供大电流,否则容易烧坏,另外国家对高功率灯具的功率因数有要求,即7W以上的功率因数要求大于0.7,但是阻容降压电源远远达不到(一般在0.2-0.3之间),所以高功率产品不宜采用阻容降压电源。
市场上,要求不高的低端型的产品,几乎全部是采用阻容降压电源,另外,一些高功率的便宜的低端产品,也是采用阻容降压电源。
led灯驱动电源电路图大全(六款模拟电路设计原理图详解)led灯驱动电源电路图(一)电路工作原理LED楼道灯的电路如下图所示。
电路由电容降压电路、整流电路、LED发光电路和光电控制电路等部分组成。
220V交流电经电容C1、R1降压限流后在A、B两点的交流电压约为15V,由VD1~VD4.进行整流,在C2上得到约14V的直流电压作为高亮度发光二极管VD5~VD8的工作电压,发光二极管的工作电流约为14mA。
由于电容C1不消耗有功功率,泄放电阻消耗的功率可忽略不计,因此整个电路的功耗约为15&TImes;0.014≈0-2(W)。
为了进一步节省电能和延长高亮度发光二极管的使用寿命,电路中加入了由光敏电阻R2、电阻R3和三极管VT1等组成的光电控制电路,在夜晚光敏电阻R2的阻值可达100K以上,这时C2两端的电压经R2、R3分压后提供给VT1基极的直流偏置电压很小,VT1截止,对发光二极管的工作没有任何影响;白天时,由于光电效应的作用,R2的阻值可减小到1OK以下,这时VT1导通并接近饱和,由于通过C1的电流最大只能达到15mA,由于VTl的分流,C2上的电压可下降到4V以下。
led灯驱动电源电路图(二)LED驱动电源的具体要求LED是低压发光器件,具有长寿命、高光效、安全环保、方便使用等优点。
对于市电交流输入电源驱动,隔离输出是基于安全规范的要求。
LED驱动电源的效率越高,则越能发挥LED高光效,节能的优势。
同时高开关工作频率,高效率使得整个LED驱动电源容易安装在设计紧凑的LED灯具中。
高恒流精度保证了大批量使用LED照明时的亮度和光色一致性。
10W以下功率LED灯杯应用方案目前10W以下功率LED应用广泛,众多一体式产品面世,即LED 驱动电源与LED灯整合在一个灯具中,方便了用户直接使用。
典型的灯具规格有GU10、E27、PAR30等。
针对这一应用,我们设计了如下方案(见图1)图1:基于AP3766的LED驱动电路原理图该方案特点如下:1.基于最新的LED专用驱动芯片AP3766,采用原边控制方式,无须光耦和副边电流控制电路,实现隔离恒流输出,电路结构简单。
LED节能灯驱动电路图介绍
时间:2010-05-23 14:14来源:未知作者:admin 点击:216次
驱动电路的输出特性,白光LED闪光灯的驱动电路可分为恒压型和恒流型;按电路工作原理,可以分为电感升压电路和电荷泵电路。
白光LED是电流驱动型器件,其亮度与电流成比例关系。
在恒压型驱动电路中,往往有一个电阻与白光LED
串联,用来设置产生预期白光LED正
驱动电路的输出特性,白光LED闪光灯的驱动电路可分为恒压型和恒流型;按电路工作原理,可以分为电感升压电路和电荷泵电路。
白光LED 是电流驱动型器件,其亮度与电流成比例关系。
在恒压型驱动电路中,往往有一个电阻与白光LED串联,用来设置产生预期白光LED正向电流所需的电压。
这种方式有一个缺点,即白光LED正向电压的任何变化都会导致白光LED电流的变化,从而无法保证流过白光LED的电流等于预设置值,也就无法确保白光LED的亮度恒定。
而在恒流型驱动电路中,是通过检测串联在白光LED回路电阻的电压来保证流过白光LED的电流恒定的。
这种方式可以消除由正向电压变化而产生的电流变化,因此白光LED可产生相对恒定的亮度。
由于移动电话的锂离子电池的工作电压范围一般为3.*.2V,而白光LED的正向电压一般为3~4V,且白光LED闪光灯一般为多个白光LED 串、并联在一起,以提供闪光功能所需的光通量,所以在低电压输入、高电压输出的时候,必须采用升压电路将电压升高以驱动白光LED。
驱动白光LED闪光灯时一般采用两种方式升压,一种是采用以电感为储能元件的升压式变换器,另一种是采用以电容为储能元件的电荷泵。
采用
以电感为储能元件的升压变换器的优点是效率相对较高。
现在的白光LED闪光灯驱动控制器都集成了控制电路和升压开关管,但是电感和用于续流的肖特基二极管还是外接的,这增加了电路的复杂性、成本和PCB面积。
此外,由于闪光灯驱功电路、LED闪光灯显示屏、移动电话的天线一般位于移动电话上端,与移动电话的射频电路靠得很近,所以有效防止驱动电路电感的EMI干扰也是很重要的问题。
图1是采用电感升压变换器驱动标准白光LED的典型应用电路。
电荷泵采用电容作储能元件,且不需要外接电感,因此不存在电磁干扰的问题。
此外,整个解决方案所占PCB的面积也较小,但相对来说效率较低。
由于闪光灯工作时间非常短,持续时间一般为100~300ms,所以其效率对电池使用时间的影响不是太大。
图2是采用电荷泵驱动标准白光LED的应用电路。
图1 采用电感升压变换器驱动标准白光LED的应用电路
图2 采用电荷泵驱动标准白光LED的应用电路
在白光LED驱动电路的设计中,有两个参数会影响设计方案的选择,一个是白光LED正向电压,另一个是电源的工作电压。
电感式升压变换器通常用于驱动串联的白光LED,它能够产生充是的输出电压,以提供可被编程的驱动白光LED电流。
采用这种驱动方法时,因为无论正向电压高低,所有的白光LED都能获得相同的电流,又因为白光LED的亮度与流经白光LED的正向电流成正比,所以白光LED阵列的亮度非常均衡、和谐。
电荷泵可以产生值为输入电压整数倍的输出电压。
若要提高其扩大倍数,需增加泵电容和开关电路,因此电荷泵的实际输出电压被限制为了2倍的输入电压。
虽然有些电荷泵能够提供分数倍输出电压(1.5倍),但是需要2个泵电容。
因为2倍压是最方便的升压倍数,考虑到白光LED典型的正向电压,则电荷泵方法主要用于驱动并联的白光LED。
因为每个并联支路的白光LED必须独立控制,这必然会导致白光LED阵列之间出现轻微的亮度失谐,这种亮度失谐现象在电荷泵驱动方法中是不可避免的。
与整数倍压电荷泵驱动方法相比,电感升压变换器的效率更高。
改用分数倍压电荷泵虽然可以提高性能,但是其远不如电感升压变换器设计方案。
因为在电感升压变换器设计中,白光LED是串联的,所以升压控制器与白光LED之间只需两条PCB走线。
这在设计上是一个很重要的优势,例如,如果白光LED的数量发生了变化,或者单独安装在一个相机闪光模块上,则电感升压变换器的设计很容易适应这种变化,而采用电荷泵方案的PCB必须完全重新设计。