一次函数正比例函数教案
- 格式:docx
- 大小:212.92 KB
- 文档页数:4
一次函数与正比例函数教案教案标题:一次函数与正比例函数教案教案目标:1. 学生能够理解一次函数与正比例函数的概念和特征。
2. 学生能够区分一次函数与正比例函数的区别。
3. 学生能够应用一次函数与正比例函数解决实际问题。
教学资源:1. 教材:包含一次函数与正比例函数的相关知识点和例题。
2. 教具:白板、马克笔、计算器。
3. 实例:一次函数与正比例函数的实际应用例子。
教学步骤:引入:1. 引导学生回顾函数的基本概念,并提问是否了解一次函数和正比例函数的定义和特征。
2. 引导学生思考一次函数和正比例函数的区别,并鼓励他们提出自己的观点。
探究:1. 通过一个具体的例子,引导学生理解一次函数的定义和特征。
例如:y = 2x + 3。
- 解释其中的斜率和截距的含义。
- 让学生画出函数图像,并观察斜率和截距对图像的影响。
2. 通过另一个具体的例子,引导学生理解正比例函数的定义和特征。
例如:y = 3x。
- 解释比例系数的含义。
- 让学生画出函数图像,并观察比例系数对图像的影响。
巩固:1. 让学生自主完成一些练习题,巩固对一次函数和正比例函数的理解和应用能力。
2. 提供一些实际问题,让学生运用一次函数和正比例函数解决问题。
例如:根据某商品的价格与数量的关系,求解不同数量下的价格。
拓展:1. 引导学生思考一次函数和正比例函数在实际生活中的应用,并让他们找出更多的例子。
2. 鼓励学生探索其他类型的函数,并比较它们与一次函数和正比例函数的区别。
总结:1. 总结一次函数和正比例函数的定义和特征。
2. 强调一次函数和正比例函数在解决实际问题中的应用。
3. 鼓励学生继续探索函数的更多知识和应用。
评估:1. 设计一些评估题目,检查学生对一次函数和正比例函数的理解和应用能力。
2. 观察学生在课堂练习和实际问题解决中的表现。
一次函数与正比例函数教案一、教学目标1. 理解正比例函数的定义及其图像特征。
2. 掌握一次函数的定义及其图像特征。
3. 能够区分正比例函数和一次函数,并正确应用。
4. 培养学生的数学思维能力和问题解决能力。
二、教学重点与难点1. 教学重点:正比例函数和一次函数的定义及其图像特征。
2. 教学难点:一次函数的图像特征和应用。
三、教学准备1. 教学材料:教材、黑板、投影仪、教学卡片、练习题。
2. 教学工具:直尺、圆规、彩笔。
四、教学过程1. 导入:通过生活中的实例,如购物时商品的价格与数量的关系,引入正比例函数和一次函数的概念。
2. 讲解:讲解正比例函数的定义及其图像特征,一次函数的定义及其图像特征。
通过示例和图形的展示,让学生直观地理解正比例函数和一次函数的图像特征。
3. 练习:让学生通过练习题,运用所学的正比例函数和一次函数的知识,解决问题。
五、教学评价1. 课堂参与度:观察学生在课堂上的积极参与程度,提问和回答问题的积极性。
2. 练习题的正确率:检查学生完成练习题的正确率,评估学生对正比例函数和一次函数的理解程度。
3. 学生作品:评估学生在课堂活动中的作品,如绘图和解决问题的能力。
六、教学拓展1. 引入实际问题:通过展示一些实际问题,如物体运动的速度与时间的关系,让学生运用一次函数和正比例函数的知识解决问题。
2. 函数图像的变换:讲解一次函数图像的平移和缩放变换,让学生理解函数图像的变换规律。
七、课堂活动1. 分组讨论:将学生分成小组,让他们讨论一次函数和正比例函数在实际生活中的应用,并展示给全班同学。
2. 游戏:设计一个有关一次函数和正比例函数的游戏,让学生在游戏中加深对函数的理解和应用。
八、课后作业1. 完成教材中的相关练习题。
2. 选择一个实际问题,运用一次函数和正比例函数的知识解决,并将解题过程和答案写在作业本上。
九、教学反馈1. 课后与学生交流:通过与学生的交流,了解学生在课堂上的学习情况,以及对一次函数和正比例函数的理解程度。
一次函数的图象教案(优秀4篇)一次函数篇一〖教学目标〗◆1、理解正比例函数、一次函数的概念。
◆2、会根据数量关系,求正比例函数、一次函数的解析式。
◆3、会求一次函数的值。
〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。
◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。
〖教学过程〗比较下列各函数,它们有哪些共同特征?提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。
定义:一般地,函数叫做一次函数。
当时,一次函数就成为叫做正比例函数,常数叫做比例系数。
强调:(1)作为一次函数的解析式,其中中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中符合什么条件?(2)在什么条件下,为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?例1:求出下列各题中与之间的关系,并判断是否为的一次函数,是否为正比例函数:(1)某农场种植玉米,每平方米种玉米6株,玉米株数与种植面积之间的关系。
(2)正方形周长与面积之间的关系。
(3)假定某种储蓄的月利率是0.16%,存入1000元本金后。
本钱与所存月数之间的关系。
此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。
解:(1)因为每平方米种玉米6株,所以平方米能种玉米株。
得,是的一次函数,也是正比例函数。
(2)由正方形面积公式,得,不是的一次函数,也不是正比例函数。
(3)因为该种储蓄的月利率是0.16%,存月所得的利息为,所以本息和,是的一次函数,但不是的正比例函数。
练习:1.已知若是的正比例函数,求的值。
2.已知是的一次函数,当时,;当时,(1)求关于的一次函数关系式。
(2)求当时,的值。
例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至XX元部分的税率为10% (1)设全月应纳税所得额为元,且。
初中一次函数教学设计范文(通用10篇)初中一次函数教学设计 1一、教学目标:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质;3、弄清一次函数与正比例函数的区别与联系。
4、掌握直线的平移法则简单应用。
5、能应用本章的基础知识熟练地解决数学问题。
二、教学重、难点:重点:初步构建比较系统的函数知识体系。
难点:对直线的平移法则的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
基础训练:1、写出一个图象经过点(1,— 3)的函数解析式为:。
2、直线y = — 2X — 2 不经过第象限,y随x的增大而。
3、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。
4、已知正比例函数 y =(3k—1)x,若y随x的增大而增大,则k是:。
5、过点(0,2)且与直线y=3x平行的直线是:。
6、若正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:。
7、若y—2与x—2成正比例,当x=—2时,y=4,则x= 时,y = —4。
8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,则b的值为。
9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
初二数学教案《一次函数》(优秀10篇)一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
为您带来了10篇《初二数学教案《一次函数》》,如果能帮助到亲,我们的一切努力都是值得的。
一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容) 2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)(1)列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;(2)多长时间以后,小丸子的银行存款才能买随身听?分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱解:(1)(2)1680=500+90x解得x=13.…所以还需要14个月,小丸子才能买随身听例3、已知函数是正比例函数,求的值分析:本题考察的是正比例函数的概念解:说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上4、小结由学生对本节课知识进行总结,教师板书即可。
一次函数与正比例函数教案【教案】一次函数与正比例函数教学目标:1. 理解一次函数和正比例函数的概念和特点;2. 能够根据给定的问题建立一次函数或正比例函数的数学模型;3. 掌握一次函数和正比例函数的图像特点和性质。
教学重点:1. 一次函数和正比例函数的定义和特点;2. 一次函数和正比例函数的图像特点;3. 理解数学模型的建立过程。
教学难点:1. 能够能够根据给定的问题建立一次函数或正比例函数的数学模型;2. 理解数学模型的建立过程。
教学准备:1. 教师准备课件和黑板;2. 学生准备笔记本和学习资料。
教学过程:Step 1 引入:1. 在黑板上写出以下问题:a) 如果一辆汽车以每小时 60 公里的速度行驶,4 小时能行驶多远?b) 如果一辆汽车以每小时 50 公里的速度行驶,几小时能够到达 500 公里的目标地?2. 提问:你能找到这两个问题的相似之处吗?Step 2 导入概念:1. 向学生介绍一次函数和正比例函数的概念。
2. 在黑板上写出一次函数和正比例函数的定义。
Step 3 一次函数的图像特点:1. 讲解一次函数的图像特点:表示一次函数 y=kx+b 的图像为一条直线。
2. 展示一次函数图像特点的例子,并进行解释。
3. 在黑板上绘制一条一次函数的图像,并强调对应关系。
Step 4 正比例函数的图像特点:1. 讲解正比例函数的图像特点:表示正比例函数 y=kx 的图像为通过原点的直线。
2. 展示正比例函数图像特点的例子,并进行解释。
3. 在黑板上绘制一条正比例函数的图像,并强调对应关系。
Step 5 建立数学模型:1. 给出一些需求或问题,让学生根据给定的条件建立一次函数或正比例函数的数学模型。
2. 学生根据问题进行分组讨论,其中一名组员写在黑板上。
Step 6 练习:1. 号召全班一起讨论并解决一些实际问题,让学生运用所学的知识建立数学模型并求解。
2. 选择一些学生上台进行演示,并进行点评和讲解。
《一次函数与正比例函数》教案一、教材分析(一)教材的地位和作用《一次函数与正比例函数》八年级上册第四章第二节的内容,一次函数是初中阶段研究的较为简单、应用较为广泛的函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。
同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。
三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。
(二)教学目标知识与技能目标:(1)理解一次函数和正比例函数的概念;(2)能根据所给条件写出简单的一次函数表达式.过程与方法目标:(1)经历一次函数概念的抽象过程,体会模型思想,从实际问题中得到函数关系式,并感受它们之间的一种依存关系。
(2)能根据所给的实际生活背景,列出简单的一次函数关系式。
情感态度与价值观目标:通过具体问题的解决,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.在探索过程中体验成功的喜悦,树立学习的自信心.教学重点、难点:重点:从具体情境中列出相应的一次函数表达式,从而抽象出一次函数的概念。
难点:根据具体情境所给的信息确定一次函数的表达式二、教法与学法:在本节课的教学中我准备采用的教学方法主要是引导——自学交流的方式。
根据学生的理解能力和生理特征,一方面运用现实生活实例,引发学生的兴趣,使他们的注意力集中到解决现实生活问题上,另一方面通过学生小组合作交流、展示,尽可能充分发挥学生的主动性。
通过本节课的学习,使学生学会在独立思考的基础上与同伴进行交流、讨论,培养学生的合作意识,感受数学源于生活有应用于生活。
三、教学过程设计下面是我说课的重点,也就是教学过程的设计,整节课我共设为六个环节:第一个环节是复习回顾:1、什么叫函数:在某个变化过程中,有两个 x和y,如果给定一个x值,相应地就确定一个y值,那么我们称y是x的函数,其中x是 ,y是 .2、函数的三种表达方式有:、、。
3、已知一个长方形的面积为y,长为5,宽为x,则长方形的面积表示为y= . 设计意图:复习函数的概念及其表达方式。
北师大版数学八年级上册2《一次函数与正比例函数》教案3一. 教材分析《一次函数与正比例函数》是北师大版数学八年级上册第2单元的内容。
本节课主要介绍了一次函数与正比例函数的概念、性质及其应用。
通过本节课的学习,学生能够理解一次函数与正比例函数的本质联系,掌握一次函数与正比例函数的图象和性质,并能运用一次函数与正比例函数解决实际问题。
二. 学情分析学生在七年级已经学习了正比例函数的基础知识,对正比例函数的概念和性质有一定的了解。
但学生在理解一次函数与正比例函数的联系方面可能存在一定的困难。
因此,在教学过程中,教师需要注重引导学生发现一次函数与正比例函数之间的内在联系,并通过丰富的实例让学生感受一次函数与正比例函数在实际生活中的应用。
三. 教学目标1.知识与技能:理解一次函数与正比例函数的概念,掌握一次函数与正比例函数的性质;能够运用一次函数与正比例函数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,探索一次函数与正比例函数的关系;学会用数学的眼光观察现实世界,提高运用数学解决实际问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,激发学生学习数学的积极性;培养学生合作交流的能力,提高学生的团队协作意识。
四. 教学重难点1.重点:一次函数与正比例函数的概念、性质及其应用。
2.难点:一次函数与正比例函数的本质联系。
五. 教学方法1.情境教学法:通过生活实例引入一次函数与正比例函数的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生发现一次函数与正比例函数之间的内在联系,培养学生的思维能力。
3.小组合作学习:学生进行小组讨论,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教师准备:对本节课的内容进行深入研究,了解一次函数与正比例函数的相关知识。
2.学生准备:回顾七年级学习过的正比例函数知识,预习本节课的内容。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如购物时商品的优惠券使用、行程问题等,引导学生发现这些问题都可以用一次函数与正比例函数来解决。
14.3正比例函数、一次函数
知识点1 一次函数、正比例函数
1、如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
2、特别情况:当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。
这时,y 叫做x 的正比例函数。
知识点2一次函数、正比例函数的图象
题型1 点在函数图象上;函数的性质
1、有下列函数:①y=6x-5 , ②y=5x, , ③y=x+4, ④y=-4x+3。
其中过原点的直线是_________;函数y随x 的增大而增大的是___________;函数y随x的增大而减小的是______;图象过第一、二、三象限的是_____。
2、
3、直线y=-2x-2 不经过第_________象限,y随x的增大而_________。
4、已知正比例函数 y=(3k-1)x,,若y随x的增大而增大,则k的取值范围:________________。
5、如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:______________。
题型2 函数解析式的确定
1、如果一次函数y=kx-3k+6的图象经过原点,那么k的值为________。
2、写出一个图象经过点(1,- 3)的函数解析式:________________________。
3、若正比例函数y=(1-2m)x的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是:________________。
4、若y-2与x-2成正比例,当x=-2时,y=4,则x=________时,y = -4。
【练习】
1、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为_______。
2、过点(0,2)且与直线y=3x平行的直线是:_______________________
第1题自己画图第2题自己画图
3、已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式。
4、过点(0,2)且与直线y=3x平行的直线是:
14.3正比例函数、一次函数——续知识点1一次函数、正比例函数的图象
知识点2 图像的平移:
当b>0时,将直线y=kx 的图象向上平移b 个单位; 当b<0时,将直线y=kx 的图象向下平移b 个单位.
知识点3 图象的画法
1)现在已经知道b kx y +=是直线
2)两点确定一条直线
知识点4 两直线的交点 方法:联立方程组求x 、y
例题:已知两直线y =x+6 与y =2x-4交于点P ,求P 点的坐标?
知识点5 正比例函数、一次函数图象之间的关系
一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移). ——上加 下减
知识点6 一次函数与二元一次方程组
(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=b
c
x b a +-
的图象相同. (2)二元一次方程组⎩⎨⎧=+=+2
22111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b c x b a +-和y=2222b c
x b a +-的图象交
点.
知识点7 直线y=k 1x+b 1与y=k 2x+b 2的位置关系 (1)两直线平行:k 1=k 2且b 1≠b 2 (2)两直线相交:k 1≠k 2
(3)两直线重合:k 1=k 2且b 1=b 2 知识点8 待定系数法
① 设方程为y=kx +b ;②代入已知条件,得二元一次方程组;③解;④故所求直线解析式为…… 即:①设;②代;③解;④答
已知一条直线过(1,5)点,且与x 轴交点横坐标为6,求此直线的解析式。
(思考:若改为“且与x 轴交点到原点距离为6”,则如何?)。