1.示范教案(3.1.1 倾斜角与斜率)
- 格式:doc
- 大小:133.00 KB
- 文档页数:6
3.1.1直线的倾斜角与斜率-教案解析 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN直线的倾斜角与斜率●三维目标1.知识与技能(1)理解直线的倾斜角和斜率概念.(2)经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率公式.2.过程与方法(1)探索确定直线位置的几何要素,感受倾斜角这个反映倾斜程度的几何量的形成过程.(2)通过教学,使学生从生活中坡度的概念自然迁移到数学中直线的斜率,感受数学概念来源于生活实际,数学概念的形成是自然的,从而渗透辩证唯物主义思想.(3)充分利用倾斜角和斜率是从数与形两方面刻画直线相对于x轴倾斜程度的两个量这一事实,渗透数形结合思想.3.情感、态度与价值观(1)通过对直线倾斜角的概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.(2)通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合的思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.●重点难点重点:直线的倾斜角、斜率的概念和公式.难点:倾斜角与斜率的关系及斜率公式的导出过程.重难点突破:以确定直线位置的几何要素为切入点,通过让学生“实验——猜想——操作——定义”四个环节,给出直线倾斜角的概念,重点之一得以解决;然后从学生熟知的概念“坡角”入手,充分利用学生已有的知识,引导学生把这个同样用来刻画倾斜程度的量与倾斜角联系起来,并通过坡度的计算方法,引入斜率的概念,难点之一得以解决;对于斜率公式的导出过程,教学时可采用数形结合及分类讨论思想,化几何问题为代数运算,从而化难为易,突破难点.(教师用书独具)●教学建议鉴于本节知识概念抽象、疑难点较多的特点,教学时,可采用观察发现、启发引导、探索实验相结合的教学方法,把概念化抽象为直观,突出概念的形成过程,另在直线斜率公式教学的导出过程中,应渗透几何问题代数化的解析几何研究思想.引导学生将直线的位置问题(几何问题)转化为倾斜角问题,进而转化为倾斜角的正切即斜率问题(代数问题)进行解决,使学生进一步体会“数形结合”的思想方法.●教学流程创设问题情境,引出问题:确定直线位置的几何要素是什么?⇒引导学生通过实验、观察、思考形成倾斜角的概念教学,进而得出确定直线位置的几何要素.⇒通过引导学生回答所提问题理解斜率的概念及斜率与倾斜角的关系,导出斜率公式.⇒通过例1及其变式训练,使学生理解直线的倾斜角的概念.⇒通过例2及其变式训练,使学生掌握直线的斜率公式.⇒借助直线的斜率公式及倾斜角的内在联系,完成例3及其变式训练,使学生的知识进一步深化.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.理解直线的倾斜角与斜率的概念.(重点)2.掌握倾斜角与斜率的对应关系.(难点、易错点)3.掌握过两点的直线的斜率公式.(重点)直线的倾斜角1.在平面直角坐标系中,只知道直线上的一点,能不能确定一条直线呢?【提示】不能.2.在平面直角坐标系中,过定点P (2,2)的四条直线如图所示,每条直线与x 轴的相对倾斜程度是否相同?【提示】 不同. 1.倾斜角的定义(1)当直线l 与x 轴相交时,取x 轴作为基准,x 轴正方向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.(2)当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. 2.倾斜角的范围直线的倾斜角α的取值范围为0°≤α<180°.3.确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点及它的倾斜角.直线的斜率与倾斜角的关系如图(1)(2),在日常生活中,我们常用“升高量与前进量的比”表示“坡度”.1.上图(1)(2)中的坡度相同吗? 【提示】 不同,因为32≠22.2.上图中的“坡度”与角α,β存在等量关系吗?【提示】 存在,图(1)中,坡度=tan α,图(2)中坡度=tan β. 1.直线的斜率把一条直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k表示,即k=tan_α.2.斜率与倾斜角的对应关系图示倾斜角(范围)α=0°0°<α<90°α=90°90°<α<180°斜率(范围)0k>0不存在k<0过两点的直线的斜率公式直线过两点P1(x1,y1),P2(x2,y2),其斜率k=y2-y1 x2-x1(x1≠x2).直线的倾斜角的理解转45°,得到直线l1,那么l1的倾斜角为()A.α+45°B.α-135°C.135°-αD.当0°≤α<135°时,倾斜角为α+45°;当135°≤α<180°时,倾角为α-135°【思路探究】画出图象辅助理解,由于条件中未指明α的范围,所以需综合考虑α的可能取值,以使旋转后的直线的倾斜角在大于或等于0°而小于180°的范围内.【自主解答】根据题意,画出图形,如图所示:因为0°≤α<180°,显然A,B,C未分类讨论,均不全面,不合题意.通过画图(如图所示)可知:当0°≤α<135°,l1的倾斜角为α+45°;当135°≤α<180°时,l1的倾斜角为45°+α-180°=α-135°.故选D.【答案】 D1.解答本题要注意根据倾斜角的概念及倾斜角的取值范围解答.2.求直线的倾斜角主要根据定义来求,其关键是根据题意画出图形,找准倾斜角,有时要根据情况分类讨论.一条直线l与x轴相交,其向上的方向与y轴正方向所成的角为α(0°<α<90°),则其倾斜角为()A.αB.180°-αC.180°-α或90°-α D.90°+α或90°-α【解析】如图,当l向上方向的部分在y轴左侧时,倾斜角为90°+α;当l向上方向的部分在y轴右侧时,倾斜角为90°-α.故选D.【答案】 D求直线的斜率(1)(-3,0),(-2,3);(2)(1,-2),(5,-2);(3)(3,4),(-2,9);(4)(3,0);(3,3).【思路探究】依据直线的斜率公式求解,注意公式使用的条件.【自主解答】(1)直线的斜率k=3-0-2-(-3)=3=tan 60°,此直线的斜率为3,倾斜角为60°.(2)直线的斜率k =-2+25-1=0,此直线的斜率为0,故倾斜角为0°.(3)直线的斜率k =9-4-2-3=-1=tan 135°,此直线的斜率为-1,倾斜角为135°.(4)因为两点的横坐标都为3,故直线斜率不存在,倾斜角为90°.已知A (x 1,y 1),B (x 2,y 2)两点,求直线AB 斜率和倾斜角的步骤: (1)当x 1=x 2时,直线斜率不存在,其倾斜角为90°;(2)当x 1≠x 2时,直线的斜率k =y 2-y 1x 2-x 1,倾斜角α利用k =tan α求得.已知直线l 经过两点M (-2,m ),N (m,4),若直线l 的倾斜角为45°,求实数m 的值.【解】 由直线l 的倾斜角为45°,可知直线l 的斜率k =tan 45°=1, 又直线l 经过两点M (-2,m ),N (m,4), 故k =4-m m +2.由4-mm +2=1得m =1.斜率与倾斜角的应用1122,3三点,求x 2,y 1的值.【思路探究】 直线l 的倾斜角已知可以求出其斜率且P 1、P 2、P 3均在直线l 上,故任两点的斜率均等于直线l 的斜率,从而可以解出x 2,y 1的值.【自主解答】 ∵α=45°, ∴直线l 的斜率k =tan 45°=1, ∵P 1,P 2,P 3都在直线l 上, ∴kP 1P 2=kP 2P 3=k .∴5-y 1x 2-2=1-53-x 2=1, 解之得:x 2=7,y 1=0.用斜率公式可解决三点共线问题:如果三点A (2,1),B (-2,m ),C (6,8)在同一条直线上,求m 的值. 【解】 k AB =m -1-2-2=1-m 4,k AC =8-16-2=74.∵A 、B 、C 三点共线,∴k AB =k AC .即1-m 4=74,∴m=-6.因忽略直线斜率不存在的情况致误求经过A (m,3),B (1,2)两点的直线的斜率,并指出倾斜角α的取值范围. 【错解】 由斜率公式可得k =3-2m -1=1m -1.①当m >1时,k =1m -1>0,所以直线的倾斜角α的取值范围是0°<α<90°. ②当m <1时,k =1m -1<0,所以直线的倾斜角α的取值范围是90°<α<180°.【错因分析】 在上述解题过程中遗漏了m =1的情况,当m =1时,斜率不存在.【防范措施】 斜率公式k =y 2-y 1x 2-x 1的适用前提条件为x 1≠x 2,因此在含字母的点的坐标中,需计算直线的斜率时,要保证斜率公式有意义.【正解】 当m =1时,直线的斜率不存在,此时直线的倾斜角α=90°. 当m ≠1时,由斜率公式可得k =3-2m -1=1m -1.①当m >1时,k =1m -1>0,所以直线的倾斜角α的取值范围是0°<α<90°. ②当m <1时,k =1m -1<0,所以直线的倾斜角α的取值范围是90°<α<180°.1.倾斜角是一个几何概念,它直观地描述并表现了直线对于x 轴正方向的倾斜程度. 2.直线的斜率是直线倾斜角的正切值,但两者并不是一一对应关系.学会用数形结合的思想分析和理解直线的斜率同其倾斜角的关系.3.运用两点P 1(x 1,y 1),P 2(x 2,y 2)求直线斜率k =y 2-y 1x 2-x 1应注意的问题:(1)斜率公式与P 1,P 2两点的位置无关,而与两点横、纵坐标之差的顺序有关(即x 2-x 1,y 2-y 1中x 2与y 2对应,x 1与y 1对应).(2)运用斜率公式的前提条件是“x 1≠x 2”,也就是直线不与x 轴垂直,而当直线与x 轴垂直时,直线的倾斜角为90°,斜率不存在.1.下图中α能表示直线l 的倾斜角的是( )图3-1-1A .①B .①②C .①③D .②④ 【解析】 结合直线l 的倾斜角的概念可知①③可以,选C. 【答案】 C2.已知直线l 的倾斜角为30°,则直线l 的斜率为( ) A.33 B. 3 C .1 D.22【解析】 由题意可知,k =tan 30°=33. 【答案】 A3.已知A (2,3)、B (-1,4),则直线AB 的斜率是________. 【解析】 直线AB 的斜率k =4-3-1-2=-13.【答案】 -134.已知三点A (a,2),B (3,7),C (-2,-9a )在同一条直线上,求实数a 的值.【解】 ∵A 、B 、C 三点共线,且3≠-2, ∴BC 的斜率存在,∴AB 的斜率存在,且k AB =k BC , ∵k AB =7-23-a =53-a ,k BC =-9a -7-2-3=9a +75,∴53-a=9a +75,∴25=27a +21-9a 2-7a , 即9a 2-20a +4=0, 解得a=2或a=29.一、选择题图3-1-21.如图3-1-2,直线l 的倾斜角为( ) A .45° B .135° C .0° D .不存在【解析】 由图可知,直线l 的倾斜角为45°+90°=135°. 【答案】 B2.若A 、B 两点的横坐标相等,则直线AB 的倾斜角和斜率分别是( ) A .45°,1 B .135°,-1 C .90°,不存在 D .180°,不存在【解析】 由于A 、B 两点的横坐标相等,所以直线与x 轴垂直,倾斜角为90°,斜率不存在.故选C.【答案】 C3.(2013·周口高一检测)过点M (-3,2)、N (-2,3)的直线的斜率是( )A .1B .-1C .2 D.32 【解析】 过点M 、N 的直线的斜率k =3-2-2+3=-1.【答案】 B4.若图3-1-3中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则有( )图3-1-3A .k 1<k 2<k 3B .k 2<k 3<k 1C .k 1<k 3<k 2D .k 2<k 1<k 3【解析】 设直线l 1,l 2,l 3的倾斜角分别为α1,α2,α3,由图可知α3<α2<90°<α1,故相应斜率的关系为k 1<0<k 3<k 2.【答案】 C5.下列各组中的三点共线的是( ) A .(1,4),(-1,2),(3,5) B .(-2,-5),(7,6),(-5,3) C .(1,0),(0,-13),(7,2)D .(0,0),(2,4),(-1,3)【解析】 对于A ,∵4-21-(-1)≠5-23+(-1),故三点不共线;对于B ,∵6-(-5)7-(-2)≠3-6-5-7,故三点不共线;对于C ,∵-13-00-1=2-(-13)7,故三点共线;对于D ,∵4-02-0≠3-0-1-0,故三点不共线.【答案】 C 二、填空题6.斜率的绝对值等于3的直线的倾斜角为________.【解析】 设直线的倾斜角为α,由题意可知tan α=±3,∴α=60°或120°. 【答案】 60°或120°7.已知点A (1,2),若在坐标轴上有一点P ,使直线P A 的倾斜角为135°,则点P 的坐标为________.【解析】 由题意知k P A =-1,若P 点在x 轴上,则设P ( m,0),则0-2m -1=-1,若P 点在y 轴上,则设P (0,n ),则n -20-1=-1,解得m =n =3,故P 点坐标为(3,0)或(0,3).【答案】 (3,0)或(0,3) 8.在下列叙述中:①若一条直线的倾斜角为α,则它的斜率k =tan α; ②若直线斜率k =-1,则它的倾斜角为135°; ③若A (1,-3)、B (1,3),则直线AB 的倾斜角为90°;④若直线过点(1,2),且它的倾斜角为45°,则这条直线必过(3,4)点; ⑤若直线的斜率为34,则这条直线必过(1,1)与(5,4)两点.所有正确命题的序号是________.【解析】 ①当α=90°时,斜率k 不存在,故错误; ②当倾斜角的正切值为-1时,倾斜角为135°,故正确; ③直线AB 与x 轴垂直,斜率不存在,倾斜角为90°,故正确; ④直线过定点(1,2),斜率为1,又4-23-1=1,所以直线必过(3,4),故④正确;⑤斜率为34的直线有无数条,所以直线不一定过(1,1)与(5,4)两点,故错误.【答案】 ②③④ 三、解答题9.如图3-1-4所示,直线l 1的倾斜角α1=30°,直线l 1⊥l 2,求l 1,l 2的斜率.图3-1-4【解】 l 1的斜率k 1=tan α1=tan 30°=33. ∵l 2的倾斜角α2=90°+30°=120°, ∴l 2的斜率为k 2=tan 120°=-tan 60°=- 3. 10.在同一坐标系下,画出满足下列条件的直线: (1)直线l 1过原点,斜率为1; (2)直线l 2过点(3,0),斜率为-23;(3)直线l 3过点(-3,0),斜率为-23;(4)直线l 4过点(-3,0),斜率为23.【解】 (1)设A (x 1,y 1)是直线l 1上一点,根据斜率公式有1=y 1-0x 1-0,即x 1=y 1,令x 1=y 1=1,则直线l 1过原点及点A (1,1)两点.(2)同理,设B (x 2,y 2)是直线l 2上一点,则-23=0-y 23-x 2,即y 2=2-23x 2,令x 2=0,得y 2=2,所以直线l 2过点(3,0)及点B (0,2).(3)同理可知,直线l 3过点(-3,0)及(0,-2). (4)同理可知,直线l 4过点(-3,0)及(0,2). 四条直线的图象如图所示.11.已知A (-1,1),B (1,1),C (2,3+1), (1)求直线AB 和AC 的斜率.(2)若点D 在线段AB (包括端点)上移动时,求直线CD 的斜率的变化范围. 【解】 (1)由斜率公式得 k AB =1-11-(-1)=0.k BC =3+1-12-1= 3.k AC =3+1-12-(-1)=33.(2)如图所示.设直线CD 的斜率为k ,当斜率k 变化时,直线CD 绕C 点旋转,当直线CD 由CA 逆时针方向旋转到CB 时,直线CD 与AB 恒有交点,即D 在线段AB 上,此时k 由k CA 增大到k CB ,所以k的取值范围为[33,3].(教师用书独具)过点M (0,-3)的直线l 与以点A (3,0),B (-4,1)为端点的线段AB 有公共点,求直线l 的斜率k 的取值范围.【思路探究】 画图――→斜率公式k =y 2-y 1x 2-x 1倾斜角α的取值范围――→斜率定义k =tan α斜率k 的取值范围 【自主解答】 如图所示,(1)直线l 过点A (3,0)时,即为直线MA ,倾斜角α1为最小值,∵tan α1=0-(-3)3-0=1,∴α1=45°.(2)直线l 过点B (-4,1)时,即为直线MB ,倾斜角α2为最大值, ∵tan α2=1-(-3)-4-0=-1,∴α2=135°.所以直线l 倾斜角α的取值范围是45°≤α≤135°. 当α=90°时,直线l 的斜率不存在;当45°≤α<90°时,直线l 的斜率k =tan α≥1; 当90°<α≤135°时,直线l 的斜率k =tan α≤-1. 所以直线l 的斜率k 的取值范围是 (-∞,-1]∪[1,+∞).1.直线l 过点M ,斜率变化时,可以理解为直线l 绕定点M 旋转,使直线l 与线段AB 的公共点P 从端点A 运动到端点B ,直线l 的倾斜角就由最小值α1变到最大值α2.这是数形结合的思想方法.2.当直线绕定点旋转时,若倾斜角为锐角,逆时针旋转,倾斜角越来越大,斜率越来越大,顺时针旋转,倾斜角越来越小,斜率越来越小;若倾斜角为钝角,也具有同样的规律.但倾斜角是锐角或钝角不确定时,逆时针旋转,倾斜角越来越大,但斜率并不一定随倾斜角的增大而增大.已知直线l 过P (-2,-1),且与以A (-4,2)、B (1,3)为端点的线段相交,求直线l 的斜率的取值范围.【解】 根据题中的条件可画出图形,如图所示: 又可得直线P A 的斜率k P A =-32,直线PB 的斜率k PB =43,结合图形可知当直线l 由PB 变化到与y 轴平行的位置时,它的倾斜角逐渐增大到90°,故斜率的取值范围为[43,+∞);当直线l 由与y 轴平行的位置变化到P A 位置时,它的倾斜角由90°增大到P A 的倾斜角.故斜率的变化范围是(-∞,-32],综上可知,直线l 的斜率的取值范围是(-∞,-32]∪[43,+∞).。
《直线的倾斜角与斜率》教案及说明教案说明:本教案旨在帮助学生理解直线的倾斜角与斜率的概念,掌握计算方法,并能应用于解决实际问题。
通过本教案的学习,学生应能理解直线的倾斜角与斜率之间的关系,并能运用斜率计算直线的倾斜角,反之亦然。
教学目标:1. 理解直线的倾斜角的概念。
2. 掌握计算直线的斜率的方法。
3. 理解直线的斜率与倾斜角之间的关系。
4. 能运用直线的斜率和倾斜角解决实际问题。
教学内容:一、直线的倾斜角1. 直线的倾斜角的定义。
2. 直线的倾斜角的计算方法。
二、直线的斜率1. 直线的斜率的定义。
2. 直线的斜率的计算方法。
三、直线的斜率与倾斜角之间的关系1. 斜率与倾斜角的定义及关系。
2. 斜率与倾斜角的计算方法。
四、运用直线的斜率和倾斜角解决实际问题1. 运用斜率和倾斜角计算直线的长度。
2. 运用斜率和倾斜角计算直线的交点。
五、巩固练习1. 计算给定直线的斜率和倾斜角。
2. 解决实际问题,运用直线的斜率和倾斜角。
教学方法:1. 采用直观演示法,通过图形和实例引导学生理解直线的倾斜角和斜率的概念。
2. 采用讲解法,讲解直线的倾斜角和斜率的计算方法。
3. 采用实践法,让学生通过实际问题解决来运用直线的斜率和倾斜角。
教学评估:1. 课堂练习:学生在课堂上完成给定的练习题,检验对直线的倾斜角和斜率的理解和应用能力。
2. 课后作业:布置相关的作业题,巩固学生对直线的倾斜角和斜率的掌握。
3. 考试:设置有关直线的倾斜角和斜率的考试题目,全面评估学生的掌握情况。
教学资源:1. 教学PPT:提供直观的图形和实例,帮助学生理解直线的倾斜角和斜率的概念。
2. 练习题库:提供丰富的练习题,供学生课堂练习和课后作业。
3. 实际问题案例:提供实际问题,供学生解决,运用直线的斜率和倾斜角。
教学步骤:一、直线的倾斜角1. 引入直线的倾斜角的概念,引导学生理解直线的倾斜角的意义。
2. 讲解直线的倾斜角的计算方法,引导学生掌握计算直线的倾斜角的方法。
直线的倾斜角与斜率教案一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 让学生掌握直线的斜率计算公式,能够计算直线的斜率。
3. 让学生了解直线的倾斜角与斜率之间的关系,能够运用关系解决问题。
二、教学重点与难点:1. 教学重点:直线的倾斜角的概念,直线的斜率计算公式,直线的倾斜角与斜率之间的关系。
2. 教学难点:直线的倾斜角与斜率之间的关系的运用。
三、教学方法:1. 采用问题驱动法,引导学生主动探究直线的倾斜角与斜率之间的关系。
2. 利用数形结合法,让学生在几何图形中观察和理解直线的倾斜角与斜率。
3. 运用实例分析法,让学生通过实际问题运用直线的倾斜角与斜率之间的关系。
四、教学准备:1. 教学课件:直线的倾斜角与斜率的定义及计算公式。
2. 教学素材:几何图形、实际问题。
3. 教学工具:黑板、粉笔、直尺、圆规。
五、教学过程:1. 导入新课:通过复习平面几何中直线的基本概念,引导学生进入直线的倾斜角与斜率的学习。
2. 讲解直线的倾斜角:介绍直线的倾斜角的定义,讲解如何求直线的倾斜角。
3. 讲解直线的斜率:介绍直线的斜率计算公式,讲解如何计算直线的斜率。
4. 探究直线的倾斜角与斜率之间的关系:引导学生通过几何图形和实际问题,探究直线的倾斜角与斜率之间的关系。
5. 巩固知识:通过实例分析,让学生运用直线的倾斜角与斜率之间的关系解决问题。
6. 课堂小结:总结直线的倾斜角与斜率的概念、计算方法和关系。
7. 布置作业:布置有关直线的倾斜角与斜率的练习题,巩固所学知识。
六、教学反思:在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了直线的倾斜角与斜率的概念和计算方法,以及是否能够运用关系解决问题。
如有问题,要及时调整教学方法,提高教学质量。
七、课时安排:本节课安排2课时,第一课时讲解直线的倾斜角和斜率的概念及计算方法,第二课时讲解直线的倾斜角与斜率之间的关系和巩固知识。
八、教学评价:通过课堂讲解、练习题和实际问题解决,评价学生对直线的倾斜角与斜率的掌握程度。
《直线的倾斜角与斜率》教案及说明一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 让学生掌握直线的斜率的概念,能够求出直线的斜率。
3. 让学生能够运用直线的倾斜角和斜率解决实际问题。
二、教学内容:1. 直线的倾斜角的概念。
2. 直线的斜率的概念。
3. 直线的倾斜角与斜率的关系。
4. 求直线的倾斜角和斜率的方法。
5. 直线的倾斜角和斜率在实际问题中的应用。
三、教学重点与难点:1. 直线的倾斜角的概念。
2. 直线的斜率的概念。
3. 直线的倾斜角与斜率的关系。
四、教学方法:1. 采用讲解法,讲解直线的倾斜角和斜率的概念。
2. 采用案例分析法,分析直线的倾斜角和斜率在实际问题中的应用。
3. 采用互动教学法,引导学生参与课堂讨论,提高学生的思维能力。
五、教学过程:1. 导入:通过生活中的实例,引导学生思考直线的倾斜角和斜率的概念。
2. 讲解直线的倾斜角和斜率的概念,让学生掌握直线的倾斜角和斜率的定义。
3. 通过案例分析,让学生了解直线的倾斜角和斜率在实际问题中的应用。
4. 互动环节:引导学生参与课堂讨论,探讨直线的倾斜角和斜率的关系。
5. 总结:对本节课的内容进行总结,强调直线的倾斜角和斜率的重要性。
6. 作业布置:布置有关直线的倾斜角和斜率的练习题,巩固所学知识。
说明:本教案根据学生的实际情况,采用讲解法、案例分析法和互动教学法,旨在让学生掌握直线的倾斜角和斜率的概念,并能运用到实际问题中。
在教学过程中,注意启发学生的思维,培养学生的动手能力。
六、教学评估:1. 课堂讲解过程中,观察学生对直线的倾斜角和斜率概念的理解程度。
2. 案例分析环节,观察学生对实际问题中直线倾斜角和斜率的应用能力。
3. 课堂互动环节,评估学生对直线倾斜角和斜率关系的掌握情况。
七、教学反思:1. 课后对学生的作业进行批改,总结学生在直线的倾斜角和斜率方面的掌握情况。
2. 针对学生存在的问题,调整教学方法,以便更好地让学生理解和掌握直线的倾斜角和斜率。
3.1.1倾斜角与斜率【教学目标】:1. 理解直线的倾斜角的定义,掌握直线倾斜角的范围。
2. 理解直线的斜率,掌握过两点的直线的斜率公式。
3. 掌握直线斜率和倾斜角之间的关系。
教学重点:斜率的概念,用代数方法刻画直线的斜率,过两点的直线斜率的计算公式。
教学难点:直线的斜率和倾斜角的关系,【复习回顾】:问题1.在平面直角坐标系中, 一次函数y=kx+b 的图象是什么?其中 k , 如何? 问题2.我们知道,经过两点有且只有(确定)一条直线,那么,经过一点 的位置是否能够确定?这些直线有什么联系?【数学建构】1. 直线的倾斜角:当直线 I 与X 轴相交时,取X 轴作为基准,X 轴正向与直线 间所成的角a 叫做直线I 的倾斜角.问题3.下列各图中标出的角 a 是直线的倾斜角吗?特别:当直线I 与x 轴平行或重合时,规定 a =0. 问题4.直线倾斜角a 的取值范围是什么? 问题5.在日常生活中,我们常说这个山坡很陡峭,有时也说坡度,这里的陡峭和坡度 说的是山坡与水平面之间的一个什么关系呢? 问题6.如何度量直线的倾斜程度?2. 直线的斜率:倾斜角不是 90。
的直线,它的倾斜角的正切叫做这条直线的斜率,常用表示,即 k=tan a.问题7.我们知道两点确定一条直线,那么已知直线上两点坐标,如何才能求出它的倾 斜角和斜率呢?如:已知A(2 , 3)、B( — 1 , 4),则直线AB 的斜率是多少? 说明:(1)当X 1 = x 2时,公式右边无意义,直线的斜率不存在,倾斜角a = 90°,直线与x 轴垂直;(2) k 与P 1、P 2的顺序无关,即y 1、y 2和X 1、X 2在公式中的前后次序可以同时交换, 但分子与分母不能交换;(3) 斜率k 可以不通过倾斜角而直接由直线上两点的坐标求得;(4) 当y 1 = y 2时,斜率k = 0,直线的倾斜角 a = 0 °,直线与x 轴平行或重合.(5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到 .电 / / f "y f b 的几何意义 P 的直线I I 向上方向之【数学应用】例1、已知 A (3, 2), B (-4, 1), C (0, -1),求直线线AB,BC,CA的斜率,并判断这些直的倾斜角是锐角还是钝角。
3.1.1直线的倾斜角与斜率教案一、教学目标(1)知识与技能:正确理解直线倾斜角和斜率的概念。
理解直线倾斜角的唯一性。
理解直线斜率的存在性。
斜率公式的推导过程,掌握过两点的直线的斜率公式。
(2)过程与方法:经历用代数方法刻画直线斜率的过程,初步掌握过已知两点的直线的斜率计算公式,渗透几何问题代数化的解析几何研究思想和数形结合思想。
(3)情感态度与价值观:通过教学,使学生从生活中的坡度,自然迁移到数学中直线的斜率,感受数学概念来源于实际生活,数学概念的形成是自然的,从而渗透辩证唯物主义思想。
二、教学重点与难点重点:直线倾斜角和斜率的概念以及过两点的直线的斜率公式。
难点:用代数方法推导斜率的过程。
三、教学方法计算机辅助教学与发现法相结合。
即在多媒体课件支持下,让学生在教师引导下,积极探索,亲身经历概念的发现与形成过程,体验公式的推导过程,主动建构自己的认知结构。
四、教学过程(一)创设情境,揭示课题问题1、(出示幻灯片)给出的两点相同吗?从形的角度看,它们有位置之分,但无大小与形状之分。
从数的角度看,如何区分两个点?(用坐标区分)问题2、过这两点可作什么图形?唯一吗?只经过其中一点可作多少条直线?若只想定出其中的一条直线,除了再用一点外,还有其他方法吗?可以增加一个什么样的几何量?由此引导学生归纳,确定直线位置可有两种方式(1)已知直线上两点(2)已知直线上一点和直线的方向(倾斜角、倾斜程度)问题3、角的形成还需一条线,也就是说要有刻画倾斜程度的角,就必须还有一条形成角的参照的直线。
在平面直角坐标系下,以哪条轴线为基准形成刻画倾斜程度的角?(学生可能回答x轴或y轴)以x轴或y轴为基准都可以,习惯上我们用x轴。
选择哪个角来描述直线的倾斜程度,就能保证坐标系下的任何一条直线都有唯一的角与它对应呢?(教师引导学生选取不同的方向来描述角)。
数学概念来刻画事物时,讲求统一美与简洁美,如何用数学语言准确描述这个角呢?(揭示课题)1、倾斜角的定义:在直角坐标系下,以x轴为基准,当直线l与x 轴相交时,x轴正向与直线l向上方向之间所成的角α,叫做直线l的倾斜角。
直线的倾斜角和斜率一教学教案教学目标(1)了解直线方程的概念.(2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率.(3)理解公式的推导过程,掌握过两点的直线的斜率公式.(4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探究能力,运用数学言语表达能力,数学交流与评价能力.(5)通过斜率概念的建立和斜率公式的推导,援助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学建议1.教材分析(1)知识结构本节内容首先依据一次函数与其图像一一直线的关系导出直线方程的概念;其次为进一步研究直线,建立了直线倾斜角的概念,进而建立直线斜率的概念,从而完成了直线的方向或者说直线的倾斜角这一直线的几何属性向直线的斜率这一代数属性的转变;最后推导出经过两点的直线的斜率公式.这些充分表达了解析几何的思想方法.(2)重点、难点分析①本节的重点是斜率的概念和斜率公式.直线的斜率是后继内容展开的主线,无论是建立直线的方程,还是研究两条直线的位置关系,以及商量直线与二次曲线的位置关系,直线的斜率都发挥着重要作用.因此,正确理解斜率概念,熟练掌握斜率公式是学好这一章的关键.②本节的难点是对斜率概念的理解.学生对于用直线的倾斜角来刻画直线的方向并不难接受,但是,为什么要定义直线的斜率,为什么把斜率定义为倾斜角的正切两个问题却并不简单接受.2.教法建议(1)本节课的教学任务有三大项:倾斜角的概念、斜率的概念和斜率公式.学生思维也对应三个高潮:倾斜角如何定义、为什么斜率定义为倾斜角的正切和斜率公式如何建立.相应的教学过程也有三个阶段①在教学中首先是创设问题情境,然后通过商量明确用角来刻画直线的方向,如何定义这个角呢,学生在商量中逐渐明确倾斜角的概念.②本节的难点是对斜率概念的理解.学生认为倾斜角就可以刻画直线的方向,而且每一条直线的倾斜角是唯一确定的,而斜率却不这样.学生还会认为用弧度制表示倾斜角不是一样可以数量化吗.再有,为什么要用倾斜角的正切定义斜率,而不用正弦、余弦或余切哪要解决这些问题,就要求教师援助学生认识到在直线的方程中表达的不是直线的倾斜角,而是倾斜角的正切,即直线方程(一次函数的形式,下同)中X的系数恰好就是直线倾斜角的正切.为了便于学生更好的理解直线斜率的概念,可以借助几何画板设计:(1)α变化一直线变化一中的系数变化(同时注意的变化(2)中的系数变化一直线变化一Q变化(同时注意的变化〕.运用上述正反两种变化的动态演示充分揭示直线方程中系数与倾斜角正切的内在关系,这对援助学生理解斜率概念是极有好处的.③在进行过两点的斜率公式推导的教学中要注意与前后知识的联系,课前要对平面向量,三角函数等有关内容作肯定的复习打算.④在学习直线方程的概念时要通过举例清楚地指出两个条件,最好能用充要条件表达直线方程的概念,强化直线与相应方程的对应关系.为将来学习曲线方程做好打算.(2)本节内容在教学中宜采纳启发引导法和商量法,设计为启发、引导、探究、评价的教学模式.学生在积极思维的根底上,进行充分的商量、争辩、交流、和评价.倾斜角如何定义、为什么斜率定义为倾斜角的正切和斜率公式的建立,这三项教学任务都是在商量、交流、评价中完成的.在此过程中学生的思维和能力得到充分的开展.教师的任务是创设问题情境,引发争论,组织交流,参与评价.教学设计例如直线的倾斜角和斜率教学目标:(1)了解直线方程的概念,正确理解直线倾斜角和斜率概念,(2)理解公式的推导过程,掌握过两点的直线的斜率公式.(3)培养学生观察、探究能力,运用数学言语表达能力,数学交流与评价能力.(4)援助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学重点、难点:直线斜率的概念和公式教学用具:计算机教学方法:启发引导法,商量法教学过程:(一)直线方程的概念如图1,对于一次函数,和它的图像一一直线有下面关系:(1)有序数对(0,1)满足函数,则直线上就有一点A,它的坐标是(0,1).(2)反过来,直线上点B(1,3),则有序实数对(1,3)就满足.一般地,满足函数式的每一对,的值,都是直线上的点的坐标(,);反之,直线上每一点的坐标都满足函数式,因此,一次函数的图象是一条直线,它是以满足的每一对X,y的值为坐标的点构成的.从方程的角度看,函数也可以看作是二元一次方程,这样满足一次函数的每一对,的值“变成了〃二元一次方程的解,使方程和直线建立了联系.定义:以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的全部点坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线就叫做这个方程的直线.以上定义改用集合表述:,的二元一次方程的解为坐标的集合,记作.假设(1) (2),则.问:你能用充要条件表达吗?答:一条直线是一个方程的直线,或者说这个方程是这条直线的方程的充要条件是…….(问题1)请画出以下三个方程所表示的直线,并观察它们的异同.99过定点,方向不同.如何确定一条直线?两点确定一条直线.还有其他方法吗?或者说如果只给出一点,要确定这条直线还应增加什么条件?学生:思考、回忆、答复:这条直线的方向,或者说倾斜程度.(导入)今天我们就共同来研究如何刻画直线的方向.(问题2)在坐标系中的一条直线,我们用怎样的角来刻画直线的方向呢?商量之前我们可以设想这个角应该是怎样的呢?它不仅能解决我们的问题,同时还应该是简单的、自然的.学生:展开商量.学生商量过程中会有错误和不严谨之处,教师注意引导.通过商量认为:应选择α角来刻画直线的方向.依据三角函数的知识,说明一个方向可以有无穷多个角,这里只需一个角即可(开始时可能有学生认为有四个角或两个角),当然用最小的正角.从而得到直线倾斜角的概念.(板书)定义:一条直线1向上的方向与轴的正方向所成的最小正角叫做直线的倾斜角.(教师强调三点:(1)直线向上的方向,(2)轴的正方向,(3)最小正角.)特别地,当与轴平行或重合时,规定倾斜角为0。
《3.1.1直线的倾斜角和斜率(1)》教学实录老师:上课学生:老师好老师:同学们好,前面我们学了立体几何的点、线、面的关系,现在我们要再来学习平面几何,用代数方法来研究图形的几何性质,今天我们就来学习第三章《直线与方程》老师:我们以前接触过直线,现在我们继续来学习直线,我们先来学习《直线的倾斜角与斜率》,同学们先看课本82—83页老师问:对于平面直角坐标系内的一条直线,它的位置由哪些条件确定呢?学生:有的回答:“两个点”、有的回答:“经过的象限”等老师:非常好,两个点确定了一条直线,如果直线结果一、二、三象限能确定一条直线吗?显然不能完全确定,只是直线包含的元素,下面就这点来探讨直线,接下来就引出了倾斜角的定义老师:看黑板上的直线,看他们有什么特征?学生:(1)它们都经过点P. (2)它们的‘倾斜程度’不同. 怎样描述这种‘倾斜程度’的不同?引入直线的倾斜角的概念:老师与学生:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角....老师问:特别地,当直线l与x轴平行或重合时,α是多少?当直线l与x轴垂直时α是多少?学生:α= 0°,α= 90°老师问: 倾斜角α的取值范围是什么?学生:0°≤α<180°.老师总结:因为平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.老师问:直线a∥b∥c, 那么它们的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线.老师:还必须再有什么因素?学生:一个点老师:非常好,确定平面直角坐标系内的一条直线位置的几何要素:一个点...........P.和一个倾斜角α老师问:日常生活中,还有没有表示倾斜程度色量,引入坡度的定义坡度=升高量/前进量,让学生回想爬山和骑车上坡的感觉老师:类似就引出斜率的定义k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. 例如, α=45°时, k = tan45°= 1;α=135°时, k = tan135°= tan(180°- 45°) = - tan45°= - 1.学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度.老师:我们知道两点可以确定一条直线, 你们现在我们来探讨两点确定直线的斜率公式给定两点),(),,(222111y x P y x P ,21x x ≠,如何用两点的坐标来表示直线21P P 的斜率?可用计算机作动画演示: 直线21P P 的四种情况, 并引导学生如何作辅助线,共同完成斜率公式的推导.(略) 斜率公式 1212x x y y k --= 老师:从这个斜率公式,给出任何两点是不是都可以算出斜率? 学生:可以,是唯一的。
第三章直线与方程本章教材分析直线与方程是平面解析几何初步的第一章,用坐标法研究平面上最简单的图形——直线.本章首先在平面直角坐标系中,介绍直线的倾斜角、斜率等概念;然后建立直线的方程:点斜式、斜截式、两点式、截距式等;通过直线的方程,研究直线间的位置关系:平行和垂直,以及两条直线的交点坐标、点到直线的距离公式等.解析几何研究问题的主要方法是坐标法,它是解析几何中最基本的研究方法.坐标法的基本特点是,首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化;解决代数问题,得到结果;分析代数结果的几何含义,最终解决几何问题.本章自始至终贯穿数形结合的思想.在图形的研究过程中,注意代数方法的使用;在代数方法的使用过程中,加强与图形的联系.直线是最基本、最简单的几何图形,它既能为进一步学习做好知识上的必要准备,又能为今后灵活地运用解析几何的基本思想和方法打好坚实的基础.只有学好本章才能为第四章的圆与方程做好准备和铺垫.教学中一定要注重由浅及深的学习规律,多采用变式教学,同时渗透常用的数学思想方法(数形结合、分类讨论、类比、推广、特殊化、化归等),体现由特殊到一般的研究方法,化难为易、化抽象为具体,深入浅出的引导学生自己发现规律,大胆质疑、积极思考、合作探究、激发他们学习的兴趣,教师合理诱导并且及时鼓励,使同学们能愉快的、轻松的学习,并且提高他们应用所学知识解决问题(尤其是实际问题)的能力,真正体现出“在用中学,在学中用,为用而学,学而能用”,这一点也正符合新课标的要求和精神.3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率整体设计教学分析直线是最基本、最简单的几何图形,它既能为进一步学习作好知识上的必要准备,又能为今后灵活地运用解析几何的基本思想和方法打好坚实的基础.事实上,只有透彻理解并熟练掌握直线的倾斜角和斜率这两个基本概念,学生才能对直线及其位置进行定量的研究.对直线的倾斜角和斜率,必须要求学生理解它们的准确涵义和作用,掌握它们的导出,并在运用上形成相应的技能和熟练的技巧.本小节从一个具体的一次函数与它的图象入手,引入直线的倾斜角概念,注重了由浅及深的学习规律,并体现了由特殊到一般的研究方法.引导学生认识到之所以引入直线在平面直角坐标系中的倾斜角和斜率概念,是进一步研究直线方程的需要.三维目标1.理解直线的倾斜角和斜率的定义,充分利用斜率和倾斜角是从数与形两方面刻划直线相对于x 轴倾斜程度的两个量这一事实,在教学中培养学生数形结合的数学思想.2.掌握经过两点P 1(x 1,y 1)和P 2(x 2,y 2)的直线的斜率公式:k=1212x x y y --(x 1≠x 2),培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.3.培养和提高学生联系、对应、转化等辩证思维能力,认识事物之间的相互联系,培养相互合作意识,培养学生思维的严谨性,注意学生语言表述能力的训练.重点难点教学重点:直线的倾斜角和斜率概念以及过两点的直线的斜率公式.教学难点:斜率公式的推导.课时安排1课时 教学过程导入新课思路1.如图1所示,在直角坐标系中,过点P 的一条直线绕P 点旋转,不管旋转多少周,它对x 轴的相对位置有几种情形?教师引入课题:直线的倾斜角和斜率.图1思路2.我们知道,经过两点有且只有(确定)一条直线.那么,经过一点P 的直线l 的位置能确定吗?这些直线有什么联系和区别呢?教师引入课题:倾斜角与斜率.推进新课新知探究提出问题①怎样描述直线的倾斜程度呢?②图2中标出的直线的倾斜角α对不对?如果不对,违背了定义中的哪一条?图2③直线的倾斜角能不能是0°?能不能是锐角?能不能是直角?能不能是钝角?能不能是平角?能否大于平角?④日常生活中,还有没有表示倾斜程度的量?⑤正切函数的定义域是什么?⑥任何直线都有斜率么?⑦我们知道两点确定一条直线,那么已知直线上两点坐标,如何才能求出它的倾斜角和斜率呢?如:已知A(2,3)、B(-1,4),则直线AB 的斜率是多少?活动:①与交角有关.当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.... 可见:平面上的任一直线都有唯一的一个倾斜角,并且倾斜角定了,直线的方向也就定了. ②考虑正方向.③动手在坐标系中作多条直线,可知倾斜角的取值范围是0°≤α<180°.在此范围内,坐标平面上的任何一条直线都有唯一的倾斜角,而每一个倾斜角都能确定一条直线的方向.倾斜角直观地表示了直线对x 轴正方向的倾斜程度.规定:当直线和x 轴平行或重合时,直线倾斜角为0°,所以倾斜角的范围是0°≤α<180°. ④联想小时候玩的滑梯,结合坡度比给出斜率定义,直线斜率的概念.倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示,即k=tanα. ⑤教师介绍正切函数的相关知识.⑥说明:直线与斜率之间的对应不是映射,因为垂直于x 轴的直线没有斜率.(倾斜角是90°的直线没有斜率)⑦已知直线l 上的两点P 1(x 1,y 1),P 2(x 2,y 2),且直线l 与x 轴不垂直,如何求直线l 的斜率?教学时可与教材上的方法一样推出.讨论结果:①用倾斜角.②都不对.与定义中的x 轴正方向、直线向上方向相违背.③直线的倾斜角能是0°,能是锐角,能是直角,能是钝角,不能是平角,不能大于平角. ④有,常用的有坡度比.⑤90°的正切值不存在.⑥倾斜角是90°的直线没有斜率.⑦过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率公式k=1212x x y y --. 应用示例思路1例1 已知A(3,2),B(-4,1),C(0,-1),求直线AB,BC,CA 的斜率,并判断它们的倾斜角是钝角还是锐角.活动:引导学生明确已知两点坐标,由斜率公式代入即可求得k 的值;而当k=tanα<0时,倾斜角α是钝角;而当k=tanα>0时,倾斜角α是锐角;而当k=tanα=0时,倾斜角α是0°.解:直线AB 的斜率k 1=71>0,所以它的倾斜角α是锐角; 直线BC 的斜率k 2=-0.5<0,所以它的倾斜角α是钝角;直线CA 的斜率k 3=1>0,所以它的倾斜角α是锐角.变式训练已知A(1,33),B(0,23),求直线AB 的斜率及倾斜角.解:k AB =3013233=--, ∵直线倾斜角的取值范围是0°—180°,∴直线AB 的倾斜角为60°.例2 在平面直角坐标系中,画出经过原点且斜率分别为1,-1,2及-3的直线a,b,c,l.活动:要画出经过原点的直线a,只要再找出a 上的另外一点M.而M 的坐标可以根据直线a 的斜率确定.解:设直线a 上的另外一点M 的坐标为(x,y),根据斜率公式有:1=00--x y ,所以x=y. 可令x=1,则y=1,于是点M 的坐标为(1,1).此时过原点和点M(1,1),可作直线a.同理,可作直线b,c,l.变式训练1.已知直线的倾斜角,求直线的斜率:(1)α=0°;(2)α=60°;(3)α=90°.活动:指导学生根据定义直接求解.解:(1)∵tan0°=0,∴倾斜角为0°的直线斜率为0.(2)∵tan60°=3,∴倾斜角为60°的直线斜率为3.(3)∵tan90°不存在,∴倾斜角为90°的直线斜率不存在.点评:通过此题训练,意在使学生熟悉特殊角的斜率.2.关于直线的倾斜角和斜率,下列哪些说法是正确的( )A.任一条直线都有倾斜角,也都有斜率B.直线的倾斜角越大,它的斜率就越大C.平行于x 轴的直线的倾斜角是0或π;两直线的倾斜角相等,它们的斜率也相等D.直线斜率的范围是(-∞,+∞)答案:D思路2例1 求经过点A(-2,0),B(-5,3)的直线的斜率和倾斜角.解:k AB =)2(503----=1,即tanα=-1, 又∵0°≤α<180°,∴α=135°.∴该直线的斜率是-1,倾斜角是135°.点评:此题要求学生会通过斜率公式求斜率,并根据斜率求直线的倾斜角.变式训练求过下列两点的直线的斜率k 及倾斜角α.(1)P 1(-2,3),P 2(-2,8);(2)P 1(5,-2),P 2(-2,-2).解:(1)∵P 1P 2与x 轴垂直,∴直线斜率不存在,倾斜角α=90°.(2)k=tanα=52)2(2-----=0,∴直线斜率为0,倾斜角α=0°. 例2 已知三点A 、B 、C ,且直线AB 、AC 的斜率相同,求证:这三点在同一条直线上. 证明:由直线的斜率相同,可知直线AB 的倾斜角与AC 的倾斜角相等,而两直线过公共点A ,所以直线AB 与AC 重合,因此A 、B 、C 三点共线.点评:此题反映了斜率公式的应用,即若有共同点的两直线斜率相同,则可以判断三点共线. 变式训练1.若三点A(2,3),B(3,2),C(21,m)共线,求实数m 的值. 解:k AB =2332--=-1,k AC =2213--m , ∵A 、B 、C 三点共线,∴k AB =k AC .∴2213--m =-1.∴m=29. 2.若三点A(2,2),B(a,0),C(0,b)(ab≠0)共线,则a 1+b1的值等于_____________. 答案:21 例3 已知三角形的顶点A(0,5),B(1,-2),C(-6,m),BC 的中点为D ,当AD 斜率为1时,求m 的值及|AD|的长.分析:应用斜率公式、中点坐标公式、两点间距离公式.解:D 点的坐标为(-25,22-m ), ∴k AD =025522----m =1.∴m=7.∴D 点坐标为(-25,25). ∴|AD|=225)255()25(22=-+. 变式训练过点P(-1,-1)的直线l 与x 轴和y 轴分别交于A 、B 两点,若P 恰为线段A 的中心,求直线l 的斜率和倾斜角.答案:k=-1,倾斜角为43π. 知能训练课本本节练习1、2、3、4.拓展提升已知点A(-2,3),B(3,2),过点P(0,-2)的直线l 与线段AB 有公共点,求直线l 的斜率k 的取值范围.分析:利用数形结合同时注意直线斜率不存在的特殊情形.答案:(-∞,34)∪(-25,+∞). 课堂小结通过本节学习,要求大家:(1)掌握已知直线的倾斜角求斜率;(2)直线倾斜角的概念及直线倾斜角的范围;(3)直线斜率的概念;(4)已知直线的倾斜角(或斜率),求直线的斜率(或倾斜角)的方法.作业习题3.1 A组3、4、5.设计感想本节教学设计注重引导学生通过观察来获得新知,在实际教学中教师要及时引导,加强师生交流,学生通过自主观察、分析还是能得到正确结论的,要给学生充分的思考时间.。