甘肃省威武市凉州区永昌镇和寨九年制学校人教版八年级数学下册导学案16.1二次根式1Word版
- 格式:doc
- 大小:274.50 KB
- 文档页数:3
第十六章 二次根式16.1 《 二次根式(1)》学案课型: 新授课 上课时间: 课时: 1学习内容:二次根式的概念及其运用 学习目标:1(a ≥0)的意义解答具体题目. 2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习 (一)、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________) (二)学生学习课本知识 (三)、探索新知1、知识:子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二次根式,“”称为 .例如:形如 、 、 是二次根式。
形如 、 、 不是二次根式。
2、应用举例例11xx>01x y+x ≥0,y•≥0). 解:二次根式有: ;不是二次根式的有: 。
例2.当x 解:由 得: 当 时,(3)注意:1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。
二、学生小组交流解疑,教师点拨、拓展例3.当x 11x +在实数范围内有意义?例4(1)已知,求xy的值.(答案:2)(2),求a 2004+b 2004的值.(答案:25)三、巩固练习教材练习.四、课堂检测(1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式?1x(2)、填空题1.形如________的式子叫做二次根式.2.面积为5的正方形的边长为________.(3)、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.3.x有()个.A.0 B.1 C.2 D.无数4.已知a、b=b+4,求a、b的值.16.1 《 二次根式(2)》学案课型: 新授课 上课时间: 课时: 2 学习内容:1a ≥0)是一个非负数; 22=a (a ≥0). 学习目标:1(a ≥02=a (a ≥0),并利用它进行计算和化简.2(a ≥0)是一个非负数,用具体数据结合算2=a (a ≥0);最后运用结论严谨解题. 教学过程 一、自主学习 (一)复习引入1.什么叫二次根式?2.当a ≥0叫什么?当a<0 (二)学生学习课本知识 (三)、探究新知1a ≥0)是一个 数。
$16.1二次根式(一)导学案备课时间年()月()日星期(一)学习时间年()月()日星期()学习目标1、理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习重点形如a(a≥0)的式子叫做二次根式的概念。
学习难点利用“a(a≥0)”解决具体问题。
学具使用多媒体课件、小黑板、彩粉笔、三角板等学习内容学习活动设计意图一、创设情境独立思考(课前20分钟)1、阅读课本P 2~3 页,思考下列问题:(1)理解二次根式的概念(2)找出二次根式有意义的条件(3)二次根式的双重非负性是什么?2、独立思考后我还有以下疑惑:(课前写在小黑板上)二、答疑解惑我最棒(约8分钟)甲:乙:丙:丁:同伴互助答疑解惑$16.1二次根式(一)导学案学习活动设计意图 三、合作学习探索新知(约15分钟) 1、小组合作分析问题 2、小组合作答疑解惑 3、师生合作解决问题(1)一个长方形长和宽分别为13cm 和 5cm,则与它面积相等的正方形边长为_____cm 。
(2)若正方形的面积3,则正方形的边长是______ (3)圆形的面积为2 ,则半径为 _______. (4)h=5t 2,则t=_______(5)你认为所得的各式有哪些共同点?答:表示一些正数的算术平方根 (6)什么叫做平方根?如何表示?答:一般地,若一个数的平方等于a ,则这个数就叫做a 的平方根。
根据定义可知 a 的平方根是 ± a ≥0 (7)什么叫做一个数的算术平方根?如何表示? 答: 表示为: (a ≥0)(8)形如 (a ≥0) 的式子叫做二次根式. (9)定义包含三个内容: Ⅰ必需含有二次根号 “”.65235h a aa$16.1二次根式(一)导学案学习活动设计意图Ⅱ被开方数a≥0.Ⅲ a 可以是数,也可以是含有字母的式子.四、归纳总结巩固新知(约15分钟) 1、知识点的归纳总结: (1)二次根式的概念形如 的式子叫做二次根式. (2)二次根式有意义的条件 (3)二次根式的性质:2、运用新知解决问题:(重点例习题的强化训练) 例1.下列式子中,是二次根式的有 _______(填序号) (1)32 (2)6 (3)12- (4)m -(m >0) (5)xy (6)12+a (7) 35例2.当x 是怎样的实数时,下列式子在实数范围内有意义?※二次根式中字母的取值范围的基本依据: (1)开方数不小于零;(2)分母中有字母时,要保证分母不为零。
第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3) 1-m m32+-m m 112+-m m 4522--x x x x 235-+23+x3. 当x 为何值时,分式的值为0? (1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, b a s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80, b a s +2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分x x 57+xx 3217-x x x --221x 802332xx x --212312-+x x母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b 56--, yx 3-, nm --2, nm 67--, yx 43---。
八年级(下)数学导学案教学目录第16章二次根式(9)16.1 二次根式(2)16.2 二次根式的乘除(2)16.3 二次根式的加减(3)阅读与思考海伦——秦九韶公式数学活动小结(2)第17章勾股定理(9)17.1 勾股定理(4)阅读与思考勾股定理的证明17.2 勾股定理的逆定理(3)阅读与思考费马大定理数学活动小结(2)第18章平行四边形(15)18.1 平行四边形(7)18.1.1 平行四边形的性质18.1.2 平行四边形的判定18.2 特殊的平行四边形(6)18.2.1 矩形18.2.2 菱形18.2.3 正方形实验与探究丰富多彩的正方形数学活动小结(2)第19章一次函数(17)19.1 变量与函数(6)19.1.1 变量与函数19.1.2 函数的图象阅读与思考如何测算岩石的年龄19.2 一次函数(7)19.2.1 正比例函数19.2.2 一次函数19.2.3一次函数与方程、不等式信息技术应用用计算机画函数图象19.3 课题学习选择方案(2)数学活动小结(2)第20章数据的分析(12)20.1 数据的集中趋势(6)20.1.1 平均数20.1.2 中位数和众数20.2 数据的波动程度(2)阅读与思考数据波动程度的几种度量20.3课题学习体质健康测试中的数据分析(2)数学活动小结(2)第二十一章 二次根式 16.1 《 二次根式(1)》学案课型: 上课时间: 课时:学习内容:二次根式的概念及其运用 学习目标:1、理解二次根式的概念,并利用a (a ≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程 一、自主学习 (一)、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.(3,3).问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________.(46.) (二)学生学习课本知识 (三)、探索新知 1、知识: 如3、10、46,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二次根式,“”称为 .例如:形如 、 、 是二次根式。
第十六章 二次根式16.1 二次根式第1课时 二次根式的概念学习目标:1.理解二次根式的概念;2.掌握二次根式有意义的条件;3.会利用二次根式的非负性解决相关问题.重点:理解二次根式的概念及有意义的条件.难点:利用二次根式的有意义的条件及其非负性解题.一、知识链接1.什么叫作平方根?2.什么叫作算术平方根?什么数有算术平方根?二、新知预习1. 用带根号的式子填空:(1)如图①的海报为正方形,若面积为2m 2,则边长为 m ;若面积为S m 2,则边长为______ m .(2)如图②的海报为长方形,若长是宽的2倍,面积为6m 2,则它的宽为_____m .(3)一个物体从高处自由落下,落到地面所用的时间 t (单位:s )与开始落下的高度h (单位:m )满足关系 h =5t 2,如果用含有h 的式子表示 t ,那么t 为_____. 2.自主归纳:(1)二次根式的概念:一般地,我们把形如()0a a ____的式子叫作二次根式. “____”称为二次根号.(2)二次根式的双重非负性:二次根式的被开方数为________数,二次根式的值为_________数.自主学习教学备注学生在课前完成自主学习部分图① 图②【变式题】当x是怎样的实数时,下列各式在实数范围内有意义?方法总结:被开方数是多项式时,需要对组成多项式的项进行恰当分组凑成含完全平方的形式,再进行分析讨论.1.下列各式:)1x≥一定是二次根式的个数有( )A.3个B.4个C.5个D.6个2.(1)x的取值范围是___________;(2)若式子12x+-x的取值范围是___________.探究点2:二次根式的双重非负性问题1:当x问题2:a的取值范围是什么?它本身的取值范围又是什么?要点归纳:二次根式的实质是表示一个非负数(或式)的算术平方根.对于任意一个二1)a为被开方数,为保证其有意义,可知a____0;例3 若22(4)0a c--=,求a-b+c的值.方法总结:多个非负数的和为零,则可得每个非负数均为零.初中阶段学过的非负数主要有绝对值、偶次幂及二次根式.例4 已知y8+,求3x+2y的算术平方根.【变式题】已知a,b为等腰三角形的两条边长,且a,b满足4 b=,求此三角形的周长.已知|3x-y-1|和x+4y的平方根.1.下列式子中,不属于二次根式的是()CA.B.2.()A.x>2B.x≥2C.x<2D.x≤23.当x=____取最小值,其最小值为______.第十六章 二次根式16.1 二次根式第2课时 二次根式的性质学习目标:1.经历二次根式的性质的发现过程,体验归纳、猜想的思想方法;2.会运用二次根式的两个性质进行化简计算. 重点:掌握二次根式的两个性质:()()220,a a a a a =≥=.难点:会利用二次根式的性质解题.一、知识回顾1.二次根式的概念是什么?我们上节课学了它的哪些性质?2.使式子()2a 有意义的条件是_______________.二、要点探究 探究点1:()()20a a ≥的性质活动1 如图是一块具有民族风的正方形方巾,面积为a ,求它的边长,并用所求得的边长表示出面积,你发现了什么?活动2 为了验证活动1的结论是否具有广泛性,下面根据算术平方根及平方的意义填空,你又发现了什么?a (a ≥0) 算术平方根 a 平方运算()2a课堂探究自主学习教学备注学生在课前完成自主学习部分配套PPT 讲授1.情景引入 (见幻灯片3-4)2.探究点1新知讲授(见幻灯片5-11)0 24 13...____________________ ...____________________ ...要点归纳:一般地,2a =(a ____0),即一个非负数的算术平方根的平方等于例1(教材P3例2变式题)计算:22(1);(2).⎛ ⎝例2 在实数范围内分解因式:242(1)3;(2)4 4.x y y --+计算:22(1)()(2)(). ;探究点2议一议:下面根据算术平方根的意义填空,你有什么发现?1.计算:=24 ;=22.0 ;=2)54( ; =220 .观察其结果与根号内幂底数的关系,归纳得到:当=>2,0a a 时 .2.计算:=-2)4( ;=-2)2.0( ;=-2)54( ;=-2)20( .观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时 . 3.计算:=20 ;当==2,0a a 时 .要点归纳:将上面得到的结论综合起来,得到二次根式的又一条非常重要的性质:()()()2____0____=0____0.a a a a a ⎧⎪==⎨⎪⎩>,,<即任意一个数的平方的算术平方根等于它本身的绝对值.典例精析例3 (教材P4例3变式题)化简:2(1)10;- 2(2)(3.14).-π方法总结:利用2a a =化简求值时,先应确定a 的正负,再化简. 例4 实数a 、b 在数轴上的对应点如图所示,请你化简:()222.a b a b -+-【变式题】实数a 、b 在数轴上的对应点如图所示,化简:2244a ab b a b +++-.方法总结:利用数轴和二次根式的性质进行化简,关键是要要根据a ,b 的大小讨论绝对值内式子的符号.例5 已知a 、b 、c 是△AB C 的三边长,化简:()()()222.a b c b c a c b a ++-+-+--分析:针对训练 1.计算:22(1)(-2)(2)(-1.2). ;教学备注配套PPT 讲授3.探究点2新知讲授(见幻灯片12-21)利用三角形三边关三边长均为正数,a +b >c两边之和大于第三边,b +c -a >0,c -b -a <02.请同学们快速分辨下列各题的对错:()()()()()()()()2222(1)22(2)22(3)22(4)22-=--=--=---=-探究点3:代数式的定义用基本运算符号(包括加、减、乘、除、乘方和开方)把_______或____________连接起来的式子,我们称这样的式子为代数式. 典例精析例6 (1)一条河的水流速度是2.5 km/h ,船在静水中的速度是 v km/h ,用代数式表示船在这条河中顺水行驶和逆水行驶时的速度;(2)如图,小语要制作一个长与宽之比为5:3的长方形贺卡,若面积为S ,用代数式表示出它的长.方法总结:列代数式的要点:①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、差、积、商及大、小、多、少、倍、分、倒数、相反数等;②理清语句层次明确运算顺序;③牢记一些概念和公式.针对训练1.在下列各式中,不是代数式的是( ) A.7 B.3>2 C .2x D.2223x y + 2.如图是一圆形挂钟,正面面积为S ,用代数式表示出钟的半径为__________.二、课堂小结二次根式的性质 内容性质1一个非负数的算术平方根的平方等于它_______.即()()20.a a a =≥性质2一个数的平方的算术平方根等于它的______.即()()200.a a a a a a ≥⎧⎪==⎨-⎪⎩,<教学备注 配套PPT 讲授4.探究点3新知讲授(见幻灯片22-25)5.课堂小结(见幻灯片30)1.化简16得( )A . ±4B . ±2C . 4D .-42.当1<x <3时,2(3)3x x --的值为( )A.3B.-3C.1D.-1 3.下列式子是代数式的有 ( )①a 2+b 2; ②ab ; ③13; ④x =2; ⑤3×(4-5);⑥x -1≤0; ⑦10x +5y =15 ; ⑧.ac b+ A .3个 B .4个 C .5个 D .6个 4.化简:(1)9=_______ ; (2)2(4)-=_______; (3)()27______-=; (4)()281______=.5. 实数a 在数轴上的位置如图所示,化简22(1)a a -+-的结果是_________.6.利用a =2()a (a ≥0),把下列非负数分别写成一个非负数的平方的形式:(1) 9;(2)5;(3)2.5;(4)0.25;(5)12;(6)0 . 能力提升7.(1)已知a 为实数,求代数式2242a a a +---+的值. (2)已知a 为实数,求代数式249a a a +--+-的值.第十六章 二次根式16.2 二次根式的乘除第1课时 二次根式的乘法学习目标:1.理解二次根式的乘法法则;当堂检测温馨提示:配套课件及全册导学案WORD 版见光盘或网站下载:vvvv(无须登录,直接下载)教学备注 配套PPT 讲授 6.当堂检测 (见幻灯片26-29)教学备注学生在课前完成自主学习部分配套PPT 讲授1.情景引入 (见幻灯片3-5)2.探究点1新知讲授(见幻灯片6-15)2.会运用二次根式的乘法法则和积的算术平方根的性质进行简单运算.重点:理解二次根式的乘法法则:()0,0≥≥=⋅b a ab b a .难点:会运用二次根式的乘法法则和积的算术平方根的性质解题.一、知识回顾1.二次根式的概念是什么?我们上节课学了它的哪些性质?2.使式子2有意义的条件是_________.三、要点探究探究点1:二次根式的乘法算一算 计算下列各式,并观察三组式子的结果:_____;94____;_______94)1(=⨯=⨯=⨯ _____;2516____;_______2516)2(=⨯=⨯=⨯._____3625____;_______3625)3(=⨯=⨯=⨯思考 你发现了什么规律?你能用字母表示你所发现的规律吗? 猜测_____0,0a b a b ,你能证明这个猜测吗?要点归纳:一般地,二次根式相乘,_________不变,________相乘.语言表述:算术平方根的积等于各个被开方数积的算术平方根.例1(教材P6例1变式题)计算:0,k a b k a b ⋅⋅=⋅⋅⋅⋅≥≥(例2 计算:37;1(2)427-3.2⎛⎫⨯ ⎪⎝⎭a n b例3 比较大小(一题多解):(2)--方法总结:比较两个二次根式大小的方法:可转化为比较两个被开方数的大小,即将根号外的正数平方后移到根号内,计算出被开方数后,再比较被开方数的大小被开方数大的,其算术平方根也大.也可以采用平方法.1.( )B.4 D.22.下面计算结果正确的是( )A.=B. =C. =D.=3.=_________.探究点2:积的算术平方根的性质一般的()0,0≥≥=⋅baabba______0,0_a b要点归纳:算术平方根的积等于各个被开方数积的算术平方根.例4 (教材P7例2变式题)化简:(12()00x y,≥≥.方法总结:当二次根式内的因数或因式可以化成含平方差或完全平方的积的形式,此时运用乘法公式可以简化运算.针对训练 1. 计算:()()31(1)144169(2)284a a ; . -⨯-⋅2.下面是意大利艺术家列奥纳多·达·芬奇所创作世界名画,若长为24,宽为8,求出它的面积.二、课堂小结 二次根式的乘法 内容二次根式的乘法法则算术平方根的积等于各个被开方数积的算术平方根.即()0,0≥≥=⋅b a ab b a积的算术平方根的性质 积的算术平方根,等于积中各因式的算术平方根的积.即0,0ab a b a b二次根式的乘法法则拓展①多个二次根式相乘时此法则也适用,即()0,0,00a bc n abc n a b c n ⋅⋅⋅=⋅⋅⋅≥≥≥⋅⋅⋅⋅⋅⋅≥②()()0,0m a n b mn ab a b =≥≥1.若()66x x x x -=⋅-,则( )A .x ≥6B .x ≥0C .0≤x ≤6D .x 为一切实数 2.下列运算正确的是 ( )A.21835680= 22225353532-=-= (4)(16)416(2)(4)8-⨯---=-⨯-= 222253535315⨯==⨯= 3.计算:当堂检测教学备注 配套PPT 讲授5.当堂检测 (见幻灯片23-28)(1) ⨯______;(2) ⨯_______;(3)_____. =8a ,12b ,求250a ,332b ,求4___________;_____;91616___________;_____;252536___________;_____.49你发现了什么规律?你能用字母表示你所发现的规律吗?_____0,0a a b .:(1)算术平方根的商等于被开方数商的算术平方根(2)当二次根式根号外的因数(式)0;x>1.x的取值范围是()A..x≠2B..x≥0C..x>2D..x≥22.化简:探究点3:最简二次根式思考这样的式子分母的根号吗?要点归纳:(1)把分母中的根号化去,使分母变成有理数的这个过程就叫做分母有理化.(2)我们把满足以下两个条件的二次根式,叫做最简二次根式:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.例3 在下列各式中,哪些是最简二次根式?哪些不是?对不是最简二次根式的进行化简.探究点4:二次根式除法的应用例4 (教材P9例7变式题)高空抛物现象被称为“悬在城市上空的痛”.据报道:一个30g的鸡蛋从18楼抛下来就可以砸破行人的头骨,从25楼抛下可以使人当场死亡.据研究从高空抛物时间t和高度h近似的满足公式t=从100米高空抛物到落地所需时间t2是从50米高空抛物到落地所需时间t1的多少倍?二、课堂小结 二次根式的除法 内容二次根式的除法法则算术平方根的积等于各个被开方数积的算术平方根.即0,0a aa b bb . 商的算术平方根的性质商的算术平方根,等于积中各因式的算术平方根的商.即0,0a aa b b b. 最简二次根式最简二次根式满足两个条件:①被开方数不含分母; ②被开方数中不含能开得尽方的因数或因式.教学备注 配套PPT 讲授 4.探究点3新知讲授(见幻灯片15-19)5.探究点4新知讲授(见幻灯片20-21)6.课堂小结(见幻灯片27)16.3 二次根式的加减第1课时 二次根式的加减学习目标:1.了解二次根式的加、减运算法则;2.会用二次根式的加、减运算法则进行简单的运算.重点:了解二次根式的加、减运算法则.难点:会用二次根式的加、减运算法则进行简单的运算.一、知识回顾1.满足什么条件的二次根式是最简二次根式?2.化简下列两组二次根式,每组化简后有什么共同特点?(1)8180.5;,, (2)804520.,,五、要点探究探究点1:在二次根式的加减运算中可以合并的二次根式类比探究 在七年级我们就已经学过单项式加单项式的法则.观察下图并思考:(1)由左图,易得2a +3a = ;(2)当a =2时,分别代入左、右得_2__232=___+; (3)当a =3时,分别代入左、右得2333=_____+;...... (4)根据右图,你能否直接得出当a =2,b=8时,2a +3b 的值?结果能进行化简吗?.要点归纳:(1)判断几个二次根式是否可以合并(加减运算),一定都要化为最简二次根式再判断.(2)合并的方法与合并同类项类似,把根号外的因数(式)相加,根指数和被开方数(式)不变.如:()m a n a m n a +=+典例精析例1 若最简根式2132m n +-3mn 的值.课堂探究自主学习教学备注学生在课前完成自主学习部分配套PPT 讲授1.情景引入 (见幻灯片3-4)2.探究点1新知讲授(见幻灯片5-10)方法总结:确定可以合并的二次根式中字母取值的方法:利用被开方数相同,指数都为2列关于待定字母的方程求解即可.【变式题】如果最简二次根式38a -与172a -可以合并,那么要使式子42a x x a--有意义,求x 的取值范围.针对训练 1.下列各式中,与3是同类二次根式的是( )A.2B.5C.8D.122.8与最简二次根式1m +能合并,则m =_____.3.下列二次根式,不能与12合并的是________(填序号). 1348125118.32①;②-;③;④;⑤探究点2:二次根式的加减及其应用思考 现有一块长7.5dm 、宽5dm 的木板,能否采用如图的方式,在这块木板上截出两个分别是8dm2和18dm2的正方形木板? 问题1 怎样列式求两个正方形边长的和?问题2 所列算式能直接进行加减运算吗?如果不能,把式中各个二次根式化成最简二次根式后,再试一试(说出每步运算的依据).要点归纳:二次根式的加减法法则:一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.加减法的运算步骤:(1)化——将非最简二次根式的二次根式化简; (2)找——找出被开方数相同的二次根式; (3)并——把被开方数相同的二次根式合并. 典例精析例2 (教材P13例2变式题)计算:教学备注配套PPT 讲授3.探究点2新知讲授(见幻灯片11-19)教学备注配套PPT 讲授 3.探究点2新知讲授(见幻灯片11-19)4.课堂小结(见幻灯片27)1.二次根式:31218272、、、中,与3能进行合并的是( )A .3122与B .3182与C .1227与D .1827与 2.下列运算中错误的是 ( ) A.235+= B.236⨯= C. 822÷= D.233()-= 3.三角形的三边长分别为204045,,,则这个三角形的周长为________. 4.计算:=( 1 ) 52 18 ______+;_________(2)418-92= ; -(3)102(3872)_______ +=;-.(4)512(38227)_______ +=5.计算:1(1)58-22718(2)218-5045.3++ ; ()1144311112484340.583(3)(4).⎛⎫⎛⎫+--- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭-;6.下图是某土楼的平面剖面图,它是由两个相同圆心的圆构成.已知大圆和小圆的面积分别为763.02m 2和150.72m 2,求圆环的宽度d (π取3.14).能力提升7.已知a ,b 都是有理数,现定义新运算:a *b=3a b +,求(2*3)-(27*32)的值.第十六章 二次根式16.3 二次根式的加减第2课时 二次根式的混合运算 学习目标:1.掌握二次根式的混合运算的运算法则;2.会运用二次根式的混合运算法则进行有关的运算. 重点:二次根式的混合运算的运算法则. 难点:运用二次根式的混合运算法则进行有关的运算.一、知识回顾自主学习温馨提示:配套课件及全册导学案WORD 版见光盘或网站下载:vvvv(无须登录,直接下载) 教学备注学生在课前完成自主学习部分配套PPT 讲授1.情景引入 (见幻灯片3-4)2.探究点1新知讲授(见幻灯片5-10)1.二次根式的乘、除法则是什么?2.怎样进行二次根式的加减运算?3.填空:m (a +b +c )= ;(m +n )(a +b )= ;(ma +mb +mc )÷m = .六、要点探究探究点1:二次根式的混合运算及应用算一算:若把字母a ,b ,c ,m 都用二次根式代替(每个同学任选一组),然后对比归纳,你们发现了什么?要点归纳:二次根式的加、减、乘、除混合运算与整式运算一样,体现在:运算律、运算顺序、乘法法则仍然适用. 典例精析例1(教材P14例3变式题)计算:(1)32327+63();---6(2)20163+312.2()---方法总结:有绝对值符号的,同括号一样,先去绝对值,注意去掉绝对值后,得到的数应该为正数.例2 甲、乙两个城市间计划修建一条城际铁路, 其中有一段路基的横断面设计为上底宽42m ,下底宽 62m ,高6m 的梯形,这段路基长 500 m ,那么这段路基的土石方 (即路基的体积,其中路基的体积=路基横断面面积×路基的长度)为多少立方米呢?针对训练 计算:()()3 1 6 2 2 2 + 2 1 28⎛⎫⎪ ⎪⎝⎭⨯() ; () .--课堂探究教学备注配套PPT 讲授3.探究点2新知讲授(见幻灯片11-15)n b的式子,构成1.下列计算中正确的是()3=1=-2=2.计算2.=3.设,310,3101-=+=ba则a b(填“>”“< ”或“=”).4.计算:第十七章 勾股定理17.1 勾股定理第1课时 勾股定理学习目标:1.经历勾股定理的探究过程,了解关于勾股定理的一些文化历史背景,会用面积法来证明勾股定理,体会数形结合的思想; 2.会用勾股定理进行简单的计算.重点:用面积法来证明勾股定理,体会数形结合的思想. 难点:会用勾股定理进行简单的计算.一、知识回顾1.网格中每个小正方形的面积为单位1,你能数出图中的正方形A 、B 的面积吗?你又能想到什么方法算出正方形C 的面积呢?AB CC BA自主学习教学备注学生在课前完成自主学习部分配套PPT 讲授1.情景引入 (见幻灯片3-5)方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形):左图:S c =__________________________; 右图:S c =__________________________.方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):左图:S c =__________________________; 右图:S c =__________________________.ABC CB A 七、要点探究探究点1:勾股定理的认识及验证想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A ,B 和C 面积之间的关系,你能想到是什么关系吗?2.右图中正方形A 、B 、C 所围成的等腰直角三角形三边之间有什么特殊关系?3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A 、B 、C 是否也有类似的面积关系?(每个小正方形的面积为单位1) 4.正方形A 、B 、C 所围成的直角三角形三条边之间有怎样的特殊关系?思考 你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?猜测:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么________.活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想. 证法 利用我国汉代数学家赵爽的“赵爽弦图”要点归纳: 勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.公式变形: 222222--.a c b b c a c a b +, ,探究点2:利用勾股定理进行计算 典例精析例1如图,在Rt △ABC 中, ∠C =90°. (1)若a =b =5,求c ; (2)若a =1,c =2,求b .课堂探究证明:∵S 大正方形=________,S 小正方形=________,S 大正方形=___·S 三角形+S 小正方形,∴________=________+__________.教学备注 配套PPT 讲授2.探究点1新知讲授(见幻灯片6-19)3.探究点2新知讲授(见幻灯片20-24)变式题1 在Rt△ABC中,∠C=90°.(1)若a:b=1:2 ,c=5,求a;(2)若b=15,∠A=30°,求a,c.方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.变式题2在Rt△ABC中,AB=4,AC=3,求BC的长.方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.例2已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.针对训练求下列图中未知数x、y的值:二、课堂小结教学备注配套PPT讲授4.课堂小结(见幻灯片30)5.当堂检测(见幻灯片25-29)教学备注3.探究点2新知讲授(见幻灯片20-24)内 容勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.注 意1.在直角三角形中2.看清哪个角是直角3.已知两边没有指明是直角边还是斜边时一定要分类讨论1.下列说法中,正确的是 ( ) A.已知a ,b ,c 是三角形的三边,则a 2+b 2=c 2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt △ABC 中,∠C =90°,所以a 2+b 2=c 2D.在Rt △ABC 中,∠B =90°,所以a 2+b 2=c 2 2. 右图中阴影部分是一个正方形,则此正方形的面积为_____________.3.在△ABC 中,∠C =90°.(1)若a =15,b =8,则c =_______. (2)若c =13,b =12,则a =_______.4.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.5.求斜边长17cm 、一条直角边长15cm 的直角三角形的面积.6.如图,在△ABC 中,AD ⊥BC ,∠B =45°,∠C =30°,AD =1,求△ABC 的周长.能力提升:7.如图,以Rt △ABC 的三边长为斜边分别向外作等腰直角三角形.若斜边AB =3,求△ABE 及阴影部分的面积.第十七章 勾股定理 17.1 勾股定理第2课时 勾股定理在实际生活中的应用当堂检测温馨提示:配套课件及全册导学案WORD 版见光盘或网站下载:vvvv(无须登录,直接下载)教学备注学生在课前完成自主学习部分配套PPT 讲授1.情景引入 (见幻灯片3)2.探究点1新知讲授(见幻灯片4-11)学习目标:1.会运用勾股定理求线段长及解决简单的实际问题;2.能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长.重点:运用勾股定理求线段长及解决简单的实际问题.难点:能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长.一、知识回顾1. 你能补全以下勾股定理的内容吗?如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么____________. 2. 勾股定理公式的变形:a =_________,b =_________,c =_________. 3. 在Rt △ABC 中,∠C =90°.(1)若a =3,b =4,则c =_________;(2)若a =5,c =13,则b =_________.八、要点探究探究点1:勾股定理的简单实际应用 典例精析例1在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?方法总结:利用勾股定理解决实际问题的一般步骤:(1)读懂题意,分析已知、未知间的关系;(2)构造直角三角形;(3)利用勾股定理等列方程;(4)解决实际问题. 针对训练1. 湖的两端有A 、B 两点,从与BA 方向成直角的BC 方向上的点 C 测得CA =130米,CB =120米,则 AB 为 ( ) A.50米 B.120米 C.100米 D.130米2.如图,学校教学楼前有一块长方形长为4米,宽为3米的草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“径路”,却踩伤了花草. (1)求这条“径路”的长;(2)他们仅仅少走了几步(假设2步为1米)?课堂探究自主学习教学备注 配套PPT 讲授3.探究点2新知讲授(见幻灯片12-14)4.探究点3新知讲授(见幻灯片15-24)探究点2:利用勾股定理求两点距离及验证“HL ” 思考:在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?证明:如图,在Rt △ABC 和Rt △A ’ B ’ C ’中,∠C =∠C ’=90°, AB =A ’ B ’,AC =A ’ C ’.求证:△ABC ≌△A ’ B ’ C ’ .证明:在Rt △ABC 和Rt △A ’ B ’ C ’中,∠C=∠C ’=90°, 根据勾股定理得BC =_______________,B ’ C ’=_________________.∵AB=A ’ B ’,AC=A ’ C ’,∴_______=________. ∴____________≌____________ (________). 典例精析例2 如图,在平面直角坐标系中有两点A (-3,5),B (1,2)求A ,B 两点间的距离.方法总结:两点之间的距离公式:一般地,设平面上任意两点()()()()2211222121,,,,.A x yB x y AB x x y y =-+-则探究点3:利用勾股定理求最短距离 想一想:1.在一个圆柱石凳上,若小明在吃东西时留下一点食物在B 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A 处爬向B 处,蚂蚁怎么走最近(在以下四条路线中选择一条)?2.若已知圆柱体高为12 c m ,底面半径为3 c m ,π取3,请求出最短路线的长度.要点归纳:立体图形中求两点间的最短距离,一般把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线. 典例精析例3 有一个圆柱形油罐,要以A 点环绕油罐建梯子,正好建在A 点的正上方点B 处,问梯子最短需多少米(已知油罐的底面半径是2 m ,高AB 是5 m ,π取3)?教学备注4.探究点3新知讲授(见幻灯片15-24)5.课堂小结 (见幻灯片31)变式题 小明拿出牛奶盒,把小蚂蚁放在了点A 处,并在点B 处放上了点儿火腿肠粒,你能帮小蚂蚁找到完成任务的最短路程么?例4 如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?方法总结:求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径. 针对训练 1.如图,是一个边长为1的正方体硬纸盒,现在A 处有一只蚂蚁,想沿着正方体的外表面到达B 处吃食物,求蚂蚁爬行的最短距离是多少二、课堂小结1.从电杆上离地面5m 的C 处向地面拉一条长为7m 的钢缆,则地面钢缆A 到电线杆底部B 的距离是( )A .24mB .12mC .74m D. 26c m当堂检测勾股定理的应用用勾股定理解决实际问题解决“HL ”判定方法证全等的正确性问题 用勾股定理解决点的距离及路径最短问题第1题图 第2题图2.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm ,内壁高12cm ,则这只铅笔的长度可能是( )A.9cmB.12cmC.15cmD.18cm3.已知点(2,5),(-4,-3),则这两点的距离为_______.4.如图,有两棵树,一棵高8米,另一棵2米,两棵对相距8米.一只鸟从一棵树的树梢飞到另一棵的树梢,问小鸟至少飞行多少?5. 如图,是一个三级台阶,它的每一级的长、宽和高分别等于55cm ,10cm和6cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B点去吃可口的食物.这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少?能力提升6.为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图.已知圆筒的高为108cm ,其横截面周长为36cm ,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?第十七章 勾股定理17.1 勾股定理第3课时 利用勾股定理作图或计算学习目标:1.会运用勾股定理确定数轴上表示实数的点及解决网格问题;2.灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.重点:会运用勾股定理确定数轴上表示实数的点及解决网格问题.难点:灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.温馨提示:配套课件及全册导学案WORD 版见光盘或网站下载:vvvv(无须登录,直接下载) 教学备注配套PPT 讲授6.当堂检测 (见幻灯片25-30)教学备注学生在课前完成自主学习部分 配套PPT 讲授 1.情景引入 (见幻灯片3-4) 2.探究点1新知讲授 (见幻灯片5-12)。
课堂练习1.课本第13页练习1.2.3课堂小结通过本节课的学习,你有什么收获和体会?还有什么疑惑?(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.课后练习1、计算①24546+-②(12+20)+(3-5)2、计算①213402510--②322x8x22xy(y0)-+<3、要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?(提示此框架是由AB、BC、BD、AC组成,所以要求钢架的钢材,•只需知道这四段的长度.)学科数学课题16.3.2二次根式的加减班级授课者时间审核者课型新授课课堂小结通过本节课的学习,你有什么收获和体会?还有什么疑惑?课后练习(1)(2)(3)2(252)-(4)(248327)6-÷(5)()(3)a b a b+-学科数学课题17.1.1勾股定理班级授课者时间审核者课型1.通过本节课的学习,你有什么收获和体会?还有什么疑惑?2.说出勾股定理的逆定理。
课堂小结基础题:习题17.2复习巩固第1题提高题:如图,以三角形三边为直径向外作三个半圆,若较小的两个半圆面积之和等于较大的半圆面积,则这个三角形是()。
A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形课后练习学科数学课题18.1平行四边形的性质(1)班级授课者时间审核者课型旧知链接回忆小学学到的平行四边形的知识.展示一:平行四边形的定义解读(“对边”“邻边”解读(结合图形)及平行四边形的记法与读法)展示二:平行四边形性质的由来及证明(通过观察、猜想、度量、证明得出平行四边形的性质)展示二:例题导析(分析例题解题思路,归纳解决四边形问题的突破口)课堂练习1.课本第43页1、2题2.如图,在平行四边形ABCD中,AE=CF。
求证:AF=CE.课堂小结通过本节课的学习,你有什么收获和体会?还有什么疑惑?课后练习1.如图,AD∥BC,AE∥CD,BD平分∠ABC。
求证AB=CE.学科数学课题18.1平行四边形的性质2班级授课者时间审核者课型旧知链接平行四边形的性质:从边:角看:学习目标 1.掌握平行四边形对角线的性质重点掌握平行四边形对角线的性质。
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
16.1.1 从分数到分式学教目标:1、了解分式的概念以及分式与整式概念的区别与联系。
2、掌握分式有意义的条件,进一步理解用字母表示数的意义,发展符号感。
3、以描述实际问题中的数量关系为背景,体会分式是刻画现实生活中数量关系的一类代数式。
学教重点: 分式的概念和分式有意义的条件。
学教难点: 分式的特点和分式有意义的条件。
学教过程:一、温故知新:1、 什么是整式? ,整式中如有分母,分母中 (含、不含)字母2、 下列各式中,哪些是整式?哪些不是整式?两者有什么区别?a 21;2x+y ;2y x - ;a 1 ;xy x 2- ;3a ;5 . 3、 阅读“引言”, “引言”中出现的式子是整式吗?4、 自主探究:完成p 2的“思考”,通过探究发现,a s 、s V 、v +20100、v-2060与分数一样,都是 的形式,分数的分子A 与分母B 都是 ,并且B 中都含有 。
5、 归纳:分式的意义: 。
代数式a 1 、x y x 2-、a s 、s V 、v +20100、v-2060都是 。
分数有意义的条件是 。
那么分式有意义的条件是 。
二、学教互动:例1、在下列各式中,哪些是整式?哪些是分式?(1)5x-7 (2)3x 2-1 (3)123+-a b (4)7)(p n m +(5)—5 (6)1222-+-x y xy x (7)72 (8)cb +54 例2、p 3的“例1”填空:(1)当x 时,分式x32有意义 (2)当x 时,分式1-x x 有意义 (3)当b 时,分式b 351-有意义 (4)当x 、y 满足关系 时,分式yx y x -+有意义 例3、x 为何值时,下列分式有意义? (1)1-x x (2)15622++-x x x (3)242+-a a三、拓展延伸:例4、x 为何值时,下列分式的值为0?(1)11+-x x (2)392+-x x (3)11--x x四、课堂小结P 6的“练习”和P 11的1、2、3五、反馈检测:1、下列各式中,(1)y x y x -+(2)132+x (3)x x 13-(4)π22y xy x ++(5)5b a -(6)0.(7)43(x+y ) 整式是 ,分式是 。
第十六章 二次根式16.1 《 二次根式(1)》学案课型: 新授课 上课时间: 课时: 1学习内容:二次根式的概念及其运用 学习目标:1(a ≥0)的意义解答具体题目. 2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习 (一)、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________) (二)学生学习课本知识 (三)、探索新知1、知识:子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二次根式,“”称为 .例如:形如 、 、 是二次根式。
形如 、 、 不是二次根式。
2、应用举例例11xx>01x y+x ≥0,y•≥0). 解:二次根式有: ;不是二次根式的有: 。
例2.当x 解:由 得: 当 时,(3)注意:1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。
二、学生小组交流解疑,教师点拨、拓展例3.当x 11x +在实数范围内有意义?例4(1)已知,求xy的值.(答案:2)(2),求a 2004+b 2004的值.(答案:25)三、巩固练习教材练习.四、课堂检测(1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式?1x(2)、填空题1.形如________的式子叫做二次根式.2.面积为5的正方形的边长为________.(3)、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.3.x有()个.A.0 B.1 C.2 D.无数4.已知a、b=b+4,求a、b的值.16.1 《 二次根式(2)》学案课型: 新授课 上课时间: 课时: 2 学习内容:1a ≥0)是一个非负数; 22=a (a ≥0). 学习目标:1(a ≥02=a (a ≥0),并利用它进行计算和化简.2(a ≥0)是一个非负数,用具体数据结合算2=a (a ≥0);最后运用结论严谨解题. 教学过程 一、自主学习 (一)复习引入1.什么叫二次根式?2.当a ≥0叫什么?当a<0 (二)学生学习课本知识 (三)、探究新知1a ≥0)是一个 数。
课题:16.二次根式复习2
一、学习目标
1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算.
二、学习重点、难点
重点:含二次根式的式子的混合运算.
难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.
三、学习过程
(一)自学导航(课前预习)
1.二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.
(1)(2)(3)
2.二次根式的乘法及除法的法则是什么?用式子表示出来.
乘法法则: . 除法法则:
反过来: .
3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:
4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:
(二)合作交流(小组互助)
课本P5 5、6、7 课本P11 6、10
(三)展示提升(质疑点拨)
课本P15 6、8
(四)达标检测
1.(2=________.
2+.
3 ). A .0 B .23 C .423
4
) A .-3 B . C .-3 D .
5.以下二次根式:①;③;④( ). A .①和② B .②和③ C .①和④ D .③和④
6.若,则x 2+2x+1=________.
7.已知a 2b-ab 2。
新人教版八年级数学下导学案(全册)+数学教学反思汇总第十六章二次根式导学案二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:Va >0(a>0)和(斯)2=。
(。
20)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质> 0(a > 0)和(痴沪=a(a > 0)。
三、学习过程(-)复习回顾:(1)已知x2= a ,那么a是x的;1是。
的,记为,a—定是数。
(2)4的算术平方根为2,用式子表示为再=;正数。
的算术平方根为, 0的算术平方根为;式子Va > 0(a > 0)的意义是o(二)自主学习(1)V16的平方根是;(2)—个物体从高处自由落下,落到地面的时间是M单位:秒)与开始下落时的高度加单位:米)满足关系式h = 5t\如果用含h的式子表示t,则t=;(3)圆的面积为S,则圆的半径是;(4)正方形的面积为b-3,则边长为o思考:应,的,妤3等式子的实际意义.说一说他们的共同特征.定义:一般地我们把形如V^(«>0)叫做二次根式,。
叫做1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?也,-依,V4, 知20), V7T12、当。
为正数时西指。
的而0的算术平方根是负数—,只有非负数a才有算术平方根。
所以,在二次根式西中,字母。
必须满足—,膈才有意义。
3、根据算术平方根意义计算:(1)(V4)2⑵(妁2 (3) (V05)2(4)(昏根据计算结果,你能得出结论:(扃)七 ,其中心0,4、由公式(插)S0),我们可以得到公式a =(插V ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
如(V5)2=5;也可以把一个非负数写成一个数的平方形式,如5=(打练习:(1)把下列非负数写成一个数的平方的形式:6 0.35(2)在实数范围内因式分解尸一7 4a2-11(三)合作探究例:当x是怎样的实数时,在实数范围内有意义?解:由x-2>0,得x>2当x> 2时,/刁在实数范围内有意义。
课题:16.1二次根式1
一、学习目标
1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a
二、学习重点、难点
重点:二次根式有意义的条件;二次根式的性质. 难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。
三、学习过程
(一)自学导航(课前预习)
(1)已知a x =2,那么a 是x 的______;x 是a 的______, 记为_____,a 一定是____数。
(2)4的算术平方根为2,用式子表示为
=__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。
(二)合作交流(小组互助)
(1)16的平方根是 ;
(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。
如果用含h 的式子表示t ,则t = ;
(3)圆的面积为S ,则圆的半径是 ;
(4)正方形的面积为3-b ,则边长为 。
思考:16,5
h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征. 定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________ 1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?
3,16-,34)0(3
≥a a ,12+x 2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。
所以,在二次根式a 中,字母a 必须满足 , a 才有意义。
3、根据算术平方根意义计算 :
(1) 2)4( (2) (3)2)5.0( (4)2)3
1( 根据计算结果,你能得出结论: ,其中0≥a ,
4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。
________)(2=a 4
2
)3(
如(5)2=5;也可以把一个非负数写成一个数的平方形式,如5=(5)2
.
练习:(1)把下列非负数写成一个数的平方的形式:
6 0.35
(2)在实数范围内因式分解 72-x 4a 2-11
(三)展示提升(质疑点拨)
例:当x 是怎样的实数时,
2-x 在实数范围内有意义? 解:由02≥-x ,得
2≥x
当2≥x 时,2-x 在实数范围内有意义。
练习:1、x 取何值时,下列各二次根式有意义? ①43-x
③
2、(1
有意义,则a 的值为___________.
(2)若 在实数范围内有意义,则x 为( )。
A.正数
B.负数
C.非负数
D.非正数
3、(1)在式子
x x +-121中,x 的取值范围是____________. (2)已知42-x +y x +2=0,则=-y x _____________.
(3)已知233--+
-=x x y ,则x y = _____________。
(四)达标检测
(一)填空题:
1、=⎪⎪⎭
⎫ ⎝⎛253
2、若0112=-+-y x ,那么x = ,y = 。
3、当x = 时,代数式有最小值,其最小值是 。
4、在实数范围内因式分解:
(1)-=-229x x ( )2=(x + )(y - )(2)-=-2
23x x ( )2=(x + )(y - ) (二)选择题:
1、一个数的算术平方根是a ,比这个数大3的数为( )
A 、3+a
B 、3-a
C 、3+a
D 、32
+a x
--21
2、二次根式1-a 中,字母a 的取值范围是( )
A 、 a <l
B 、a ≤1
C 、a ≥1
D 、a >1
2、已知03=+x 则x 的值为
A 、 x >-3
B 、x <-3
C 、x =-3
D 、 x 的值不能确定
3、下列计算中,不正确的是 ( )。
A 、3= 2)3(
B 、 0.5=2)5.0(
C 、6.06.02=
D 、35)75(2=。