当前位置:文档之家› 选修1高中物理《机械振动》测试题(含答案)

选修1高中物理《机械振动》测试题(含答案)

选修1高中物理《机械振动》测试题(含答案)
选修1高中物理《机械振动》测试题(含答案)

选修1高中物理《机械振动》测试题(含答案)

一、机械振动 选择题

1.某弹簧振子在水平方向上做简谐运动,其位移x =A sin ωt ,振动图象如图所示,则( )

A .弹簧在第1 s 末与第5 s 末的长度相同

B .简谐运动的频率为

18

Hz C .第3 s 末,弹簧振子的位移大小为

22

A D .第3 s 末与第5 s 末弹簧振子的速度方向相同 E.第5 s 末,振子的加速度与速度方向相同

2.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A 、B 、C 、D ,用刻度尺测出A 、B 间的距离为x 1;C 、D 间的距离为x 2。已知单摆的摆长为L ,重力加速度为g ,则此次实验中测得的物体的加速度为( )

A .

212()x x g

L

π-

B .

212()2x x g

L

π-

C .

212()4x x g

L

π-

D .

212()8x x g

L

π-

3.如图所示是扬声器纸盆中心做简谐运动的振动图象,下列判断正确的是

A .t =2×10-3s 时刻纸盆中心的速度最大

B .t =3×10-3s 时刻纸盆中心的加速度最大

C .在0?l×10-3s 之间纸盆中心的速度方向与加速度方向相同

D .纸盆中心做简谐运动的方程为x =1.5×10-4cos50πt (m )

4.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A ,由静止释放。以钢球的平衡位置为坐标原点,竖直向上为正方向建立x 轴,当钢球在振动过程中某一次经过平衡位置时开始计时,钢球运动的位移—时间图像如图2所示。已知钢球振动过程中弹簧始终处于拉伸状态,则( )

A .1t 时刻钢球处于超重状态

B .2t 时刻钢球的速度方向向上

C .12~t t 时间内钢球的动能逐渐增大

D .12~t t 时间内钢球的机械能逐渐减小

5.如图所示,固定的光滑圆弧形轨道半径R =0.2m ,B 是轨道的最低点,在轨道上的A 点(弧AB 所对的圆心角小于10°)和轨道的圆心O 处各有一可视为质点的静止小球,若将它们同时由静止开始释放,则( )

A .两小球同时到达

B 点 B .A 点释放的小球先到达B 点

C .O 点释放的小球先到达B 点

D .不能确定

6.如图所示,PQ 为—竖直弹簧振子振动路径上的两点,振子经过P 点时的加速度大小为6m/s 2,方向指向Q 点;当振子经过Q 点时,加速度的大小为8m/s 2,方向指向P 点,若PQ 之间的距离为14cm ,已知振子的质量为lkg ,则以下说法正确的是( )

A .振子经过P 点时所受的合力比经过Q 点时所受的合力大

B .该弹簧振子的平衡位置在P 点正下方7cm 处

C .振子经过P 点时的速度比经过Q 点时的速度大

D .该弹簧振子的振幅一定为8cm

7

.沿某一电场方向建立x 轴,电场仅分布在-d ≤x ≤d 的区间内,其电场场强与坐标x 的关系如图所示。规定沿+x 轴方向为电场强度的正方向,x =0处电势为零。一质量为m 、电荷量为

+q 的带点粒子只在电场力作用下,沿x 轴做周期性运动。以下说法正确的是( )

A .粒子沿x 轴做简谐运动

B .粒子在x =-d 处的电势能为1

2

-

qE 0d C .动能与电势能之和的最大值是qE 0d

D .一个周期内,在x >0区域的运动时间t ≤2

md

qE 8.如图所示为某物体系统做受迫振动的振幅A 随驱动力频率f 的变化关系图,则下列说法正确的是

A .物体系统的固有频率为f 0

B .当驱动力频率为f 0时,物体系统会发生共振现象

C .物体系统振动的频率由驱动力频率和物体系统的固有频率共同决定

D .驱动力频率越大,物体系统的振幅越大

9.如图所示为甲、乙两等质量的质点做简谐运动的图像,以下说法正确的是()

A .甲、乙的振幅各为 2 m 和 1 m

B .若甲、乙为两个弹簧振子,则所受回复力最大值之比为F 甲∶F 乙=2∶1

C .乙振动的表达式为x= sin

4

π

t (cm ) D .t =2s 时,甲的速度为零,乙的加速度达到最大值

10.装有一定量液体的玻璃管竖直漂浮在水中,水面足够大,如图甲所示。把玻璃管向下缓慢按压4cm 后放手,忽略运动阻力,玻璃管的运动可以视为竖直方向的简谐运动,测得振动周期为0.5s 。竖直向上为正方向,某时刻开始计时,其振动图象如图乙所示,其中A 为振幅。对于玻璃管,下列说法正确的是( )

A.回复力等于重力和浮力的合力

B.振动过程中动能和重力势能相互转化,玻璃管的机械能守恒

C.位移满足函数式

5

4sin(4)

6

x t

π

π

=- cm

D.振动频率与按压的深度有关

E.在t1~t2时间内,位移减小,加速度减小,速度增大

11.如图所示,轻质弹簧的下端固定在水平地面上,一个质量为m的小球(可视为质点),从距弹簧上端h处自由下落并压缩弹簧.若以小球下落点为x轴正方向起点,设小球从开始下落到压缩弹簧至最短之间的距离为H,不计任何阻力,弹簧均处于弹性限度内;关于小球下落过程中加速度a、速度v、弹簧的弹力F、弹性势能p E变化的图像正确的是()

A.B.

C.D.

12.如图所示为某弹簧振子在0~5s内的振动图象,由图可知,下列说法中正确的是( )

A.振动周期为5 s

B.振幅为8 cm

C.第2 s末振子的速度为零,加速度为正向的最大值

D.第3 s末振子的速度为正向的最大值

E.从第1 s末到第2 s末振子在做加速运动

13.如图所示,一个弹簧振子在A、B两点之间做简谐运动,其中O为平衡位置,某时刻物体正经过C点向上运动,速度大小为v c,已知OC=a,物体的质量为M,振动周期为T,则从此时刻开始的半个周期内

A.重力做功2mga

B.重力冲量为mgT 2

C.回复力做功为零

D.回复力的冲量为0

14.如图所示为一个单摆在地面上做受迫振动的共振曲线(振幅A与驱动力频率f的关系),则( )

A.此单摆的固有周期约为2s

B.此单摆的摆长约为1m

C.若摆长增大,单摆的固有频率增大

D.若摆长增大,共振曲线的峰将右移

15.一水平弹簧振子做简谐运动,周期为T ,则( )

A .若t T =,则t 时刻和()t t +时刻振子运动的加速度一定大小相等

B .若2

T

t =

,则t 时刻和()t t +时刻弹簧的形变量一定相等 C .若t 时刻和()t t +时刻振子运动位移的大小相等,方向相反,则t 一定等于2T

的奇数倍

D .若t 时刻和()t t +时刻振子运动速度的大小相等,方向相同,则t 一定等于2

T

的整数倍

16.如图甲为竖直弹簧振子,物体在A 、B 之间做简谐运动,O 点为平衡位置,A 点为弹簧的原长位置,从振子经过A 点时开始计时,振动图象如图乙所示,下列说法正确的是

A .t=1s 时,振子加速度最大

B .t=2s 时,弹簧弹性势能最大

C .t=1s 和t=2s 两个时刻,弹簧弹性势能相等

D .t=3s 时,振子经过O 点向上运动 E.t=4s 时,振子加速度大小为g

17.铺设铁轨时,每两根钢轨接缝处都必须留有一定的间隙,匀速运行列车经过轨端接缝处时,车轮就会受到一次冲击.由于每一根钢轨长度相等,所以这个冲击力是周期性的,列车受到周期性的冲击做受迫振动.普通钢轨长为12.6m ,列车固有振动周期为0.315s .下列说法正确的是( ) A .列车的危险速率为40/m s

B .列车过桥需要减速,是为了防止列车发生共振现象

C .列车运行的振动频率和列车的固有频率总是相等的

D .增加钢轨的长度有利于列车高速运行

18.如图所示,两根完全相同的轻质弹簧和一根绷紧的轻质细线将甲、乙两物块束缚在光滑水平面上.已知物块甲的质量是物块乙质量的4倍,弹簧振子做简谐运动的周期

2m

T k

π

=m 为振子的质量,k 为弹簧的劲度系数.当细线突然断开后,两物块都开始做简谐运动,在运动过程中,下列说法正确的是________.

A.物块甲的振幅是物块乙振幅的4倍B.物块甲的振幅等于物块乙的振幅

C.物块甲的最大速度是物块乙最大速度的1 2

D.物块甲的振动周期是物块乙振动周期的2倍

E.物块甲的振动频率是物块乙振动频率的2倍

19.如图,轻弹簧上端固定,下端连接一小物块,物块沿竖直方向做简谐运动.以竖直向上为正方向,物块简谐运动的表达式为y=0.1sin(2.5πt)m.t=0时刻,一小球从距物块h高处自由落下;t=0.6s时,小球恰好与物块处于同一高度.取重力加速度的大小为g=10m/s2.以下判断正确的是______(双选,填正确答案标号)

A.h=1.7m

B.简谐运动的周期是0.8s

C.0.6s内物块运动的路程是0.2m

D.t=0.4s时,物块与小球运动方向相反

20.甲、乙两弹簧振子,振动图象如图所示,则可知()

A.甲的速度为零时,乙的速度最大

B.甲的加速度最小时,乙的速度最小

C.任一时刻两个振子受到的回复力都不相同

D.两个振子的振动频率之比f甲:f乙=1:2

E.两个振子的振幅之比为A甲:A乙=2:1

二、机械振动实验题

21.在“利用单摆测重力加速度”的实验中,

(1)从下列器材中选用最合适的器材(填写器材代号)__

A.小铁球 B.小塑料球 C.20cm长的细线 D.100cm 长的细线 E.手表 F.时钟 G.秒表(2) 有关“用单摆测定重力加速度”的实验,下述说法中正确的是___

A.为了方便测量摆长,可以将单摆放在水平桌面上用力拉紧后再测量

B.测量摆长时可以先测出摆线的长度,再加上摆球的半径

C.偏角不要超过5°,将摆球拉到最大位移处释放同时快速按下秒表开始计时

D.为了精确测量单摆的周期,起码要测量小球作100次全振动所用的时间

(3)某同学实验时改变摆长,测出多组摆长L和对应的周期T的数据,作出L—T2图线,得到一条过原点的直线,如果直线的斜率为k,则求得重力加速度 g= ________________.但实际操作时,该同学漏加了小球半径,如果他仍作出L--T2图线,通过直线斜率来计算重力加速度,则测量结果将______ (填“偏大”、“偏小”或“不变”).

22.在“用单摆测定重力加速度”的实验中,某实验小组在测量单摆的周期时,测得摆球经过n次全振动的总时间为t?;在测量单摆的摆长时,先用毫米刻度尺测得摆线长为l,再用游标卡尺测量摆球的直径为D,某次测量游标卡尺的示数如图甲所示.

回答下列问题:

(1)从甲图可知,摆球的直径为D=_____ mm;

(2)该单摆的周期为_______________.

(3)为了提高实验的准确度,在实验中可改变几次摆长L并测出相应的周期T,从而得出几组对应的L和T的数值,以L为横坐标、T2为纵坐标作出2T L

-图线,但同学们不小心每次都把小球直径当作半径来计算摆长,由此得到的2T L

-图像是图乙中的______(选填①、②、③),由图像可得当地重力加速度g=____;由此得到的g值会______(选填“偏小”“不变”“偏大”)

23.某小组在做“用单摆测重力加速度”实验后,为进一步研究,将单摆的轻质细线改为刚

性重杆.通过查资料得知,这样做成的“复摆”做简谐运动的周期

2 2c

I mr T

mgr

+

=

c

I为由该摆决定的常量,m为摆的质量,g为重力加速度,r为转轴到重心C的距离.如图(a),实验时在杆上不同位置打上多个小孔,将其中一个小孔穿在光滑水平轴O上,使杆做简谐运动,测量并记录r和相应的运动周期T;然后将不同位置的孔穿在轴上重复实验,并测得摆的质量m.

(1)由实验数据得出图(b)所示的拟合直线,图中纵轴表示______(用题中所给的字母表示);

(2)

I的国际单位为_______;

c

(3)若摆的质量测量值偏大,重力加速度g的测量值____(选填:“偏大”、“偏小”或“不变”)

24.用单摆测定重力加速度的实验装置如图所示.

(1)组装单摆时,应在下列器材中选用(选填选项前的字母)

A.长度为1m左右的细线B.长度为30cm左右的细线

C.直径为1.8cm的塑料球 D.直径为1.8cm的铁球

(2)测出悬点O到小球球心的距离(摆长)L及单摆完成n次全振动所用的时间t,则重力加速度g=________ (用L、n、t表示)

(3)下表是某同学记录的3组实验数据,并做了部分计算处理.

请计算出第3组实验中的T=________ s,g= ________ 2

m s

/

(4)用多组实验数据做出2T L-图像,也可以求出重力加速度g,已知三位同学做出的2

-图线的示意图如图中的a、b、c所示,其中a和b平行,b和c都过原点,图线b对T L

应的g值最接近当地重力加速度的值.则相对于图线b,下列分析正确的是(选填选项前的字母).

A.出现图线a的原因可能是误将悬点到小球下端的距离记为摆长L

B.出现图线c的原因可能是误将49次全振动记为50次

C.图线c对应的g值小于图线b对应的g值

(5)某同学在家里测重力加速度.他找到细线和铁锁,制成一个单摆,如图所示,由于家里只有一根量程为30cm的刻度尺,于是他在细线上的A点做了一个标记,使得悬点O到A点间的细线长度小于刻度尺量程.保持该标记以下的细线长度不变,通过改变O、A间细线长度以改变摆长.实验中,当O、A间细线的长度分别为1l和2l时,测得相应单摆的周期为1T、2T,由此可得重力加速度g=________ (用1l、2l、1T、2T表示).

25.甲乙两个学习小组分别利用单摆测量重力加速度.

甲组同学采用图甲所示的实验装置.该组同学先测量出悬点到小球球心的距离L,然后用秒表测出单摆完成n次全振动所用的时间t.请写出重力加速度的表达式g=____________(用所测物理量表示).在测量摆长后,测量周期时,摆球振动过程中悬点O处摆线的固定出现松动,摆长略微变长,这将会导致所测重力加速度的数值_________.(选填“偏大”、“偏小”或“不变”)乙组同学在图甲所示装置的基础上再增加一个速度传感器,如图乙所示.将摆球拉开一小角度使其做简谐运动,速度传感器记录了摆球振动过程中速度随时间变化的关系,如图丙所示的v-t图线.由图丙可知,该单摆的周期T=___________s.在多次改变摆线长度测量后,根据实验数据,利用计算机作出2

-(周期平方-摆长)图

T L

线,并根据图线拟合得到方程2 4.040.0035T L =+.由此可以得出当地的重力加速度g=___________2/m s .(取29.86π=,结果保留3位有效数字)

26.(1)在“用单摆测定重力加速度”的实验中,某同学用游标卡尺测得摆球的直径如图(甲)所示,则小球直径为_________cm ;并用秒表测出单摆的多个周期,秒表的读数如图(乙)所示,该读数为_________s ;

(2)为了提高测量的准确性,下列说法中正确的是________ A .选择密度稍大一些的小球 B .实验时摆角不要太大

C .测量周期时,当小球运动到最低点时开始计时

D .摆线应选用弹性好的细线

E.测量摆线长度时,应先将摆线放置在水平桌面上,拉直后再用刻度尺测量

(3)某同事将他的实验数据代入单摆周期公式,计算得到的g 值都比其它同学大,其原因可能是______

A .摆线上端没有固定,振动中出现松动,使摆线边长了

B .单摆没在同一竖直面内摆动,而成了圆推摆

C .测量周期时,误将摆球n 次全振动记成了n +1次

D .将摆线的长度与小球直径之和作为摆长

【参考答案】***试卷处理标记,请不要删除

一、机械振动 选择题 1.BCD

【解析】 【详解】

A .在水平方向上做简谐运动的弹簧振子,其位移x 的正、负表示弹簧被拉伸或压缩,所以弹簧在第1 s 末与第5 s 末时,虽然位移大小相同,但方向不同,弹簧长度不同,选项A 错误;

B .由图象可知,T =8 s ,故频率为f =1

8

Hz ,选项B 正确;

C .ω=

2T π=4πrad/s ,则将t =3 s 代入x =A sin 4πt ,可得弹簧振子的位移大小x =

2

A ,选项C 正确;

D .第3 s 末至第5 s 末弹簧振子沿同一方向经过关于平衡位置对称的两点,故速度方向相同,选项D 正确;

E .第5 s 末加速度与速度反向,E 错误. 故选BCD. 2.B 【解析】 【分析】 【详解】

由题意可知,AB 段,BC 段,CD 段的时间相等且都等于单摆的半周期,由匀变速直线运动规律得

2212()2

T

x x a -=

其中T 为单摆周期,则2T =,联立解得 212()2πx x g

a L

-=

故ACD 错误,B 正确。 故选B 。 3.C 【解析】 【详解】

A .t =2×10-3s 时刻在波谷位置,则纸盆中心的速度为零,选项A 错误;

B .t =3×10-3s 时刻纸盆中心在平衡位置,此时的加速度为零,选项B 错误;

C .在0?l×10-3s 之间纸盆中心的速度方向与加速度方向均向下,方向相同,选项C 正确;

D .因为

322=

rad/s=500rad/s 410

T ππωπ-=? 则纸盆中心做简谐运动的方程为x =1.5×10-4cos500πt (m ),选项D 错误; 故选C.

4.D 【解析】 【分析】 【详解】

A .从图中可知1t 时刻钢球正向下向平衡位置运动,即向下做加速运动,加速度向下,所以处于失重状态,A 错误;

B .从图中可知2t 时刻正远离平衡位置,所以速度向下,B 错误;

C .21~t t 时间内小球先向平衡位置运动,然后再远离平衡位置,故速度先增大后减小,即动能先增大后减小,C 错误;

D .21~t t 时间内小球一直向下运动,拉力恒向上,做负功,所以小球的机械能减小,D 正

确。 故选D 。 5.C 【解析】 【详解】

ABCD.处于A 点的小球释放后做等效摆长为R 的简谐运动,由A 到B 所用的时间为周期的四分之一。设这个时间为t A ,根据单摆的周期公式有

4A T t =

==由O 点释放的小球做自由落体运动,设运动到B 点所用的时间为t B ,则有

B t ≈ 因t A >t B ,即原来处于O 点的小球先到达B 点,故

C 正确AB

D 错误。 故选C 。 6.C 【解析】 【分析】 【详解】

A .对振子受力分析,有向下的重力和向上的弹簧的弹力。由牛顿第二定律可得

F ma =合

由题意可得

216m/s a =,228m/s a =

12a a <

所以

12F F <合合

即振子经过P 点时所受的合力比经过Q 点时所受的合力小,所以A 错误;

B .当振子加速度为0时,即合力为0时,振子处于平衡位置,即

010N F G mg ===

其中,g 取10m/s 2。在P 点,由牛顿第二定律可得

11G F ma -= 14N F =

此时弹簧弹力向上,即弹簧处于压缩状态。在Q 点,由牛顿第二定律可得

22F G ma -= 218N F =

此时弹簧弹力也向上,即弹簧同样处于压缩状态。由胡克定律

F kx =-

可得

1214cm x x +=

解得

1N/cm k =

14cm x =,218cm x =,010cm x =

所以该弹簧振子的平衡位置在P 点正下方6cm 处,所以B 错误;

C .由B 选项分析可知,P 点离平衡位置比Q 点离平衡位置近,由于越靠近平衡位置,振子的速度越大,所以振子经过P 点时的速度比经过Q 点时的速度大,所以C 正确;

D .由于振子的初速度未知,所以无法判断振子速度为0的位置,即无法判断振子的振幅是多大,所以只能说该弹簧振子的振幅可能为8cm ,而不是一定,所以D 错误。 故选C 。 7.D 【解析】 【分析】 【详解】

A.x >0区域粒子受到恒定大小水平向左的电场力,不满足简谐运动回复力特点,故A 错误;

B.粒子从x =0到x =-d 电压变化

00=

22

E E d

U d --?= 粒子从x =0到x =-d 的电场力做功

01

2

W Uq E dq ==-

根据功能关系得粒子在x =-d 处的电势能为1

2

Edq ,故B 错误; C.设动能与电势能之和的最大值为P

2

12

P mv q ?=

+ 最右位置有

01P q qE x ?==

最左位置有

2

022E P q x d

?==

粒子的运动区间为

0P

x E q

≤≤ 电场仅分布在d x d -≤≤的区间内,解得01

02

P E qd <≤,故C 错误; D.在x >0区域的运动由对称的2段组成

20012qE P t m E q

?=

解得0t E q

=

,总时间为

02t =

≤故D 正确。 故选D 。 8.AB 【解析】 【详解】

A .由振动图像可知,当驱动力的频率为f 0时振幅最大,则由共振的条件可知,物体系统的固有频率为f 0,选项A 正确;

B .当驱动力频率为f 0时,物体系统会发生共振现象,选项B 正确;

C .物体系统振动的频率由驱动力频率决定,选项C 错误;

D .驱动力频率越接近于系统的固有频率时,物体系统的振幅越大,选项D 错误。 9.C 【解析】 【详解】

A .由图可知,甲的振幅A 甲=2cm ,乙的振幅A 乙=1cm ,故A 错误;

B .根据F=?kx 得知,若k 相同,则回复力最大值之比等于振幅之比,为2:1;由于k 的关系未知,所以所受回复力最大值之比不一定为2:1,故B 错误;

C .乙的周期T 乙=8s ,则乙振动的表达式为x=A 乙sin

2T π乙t = sin π

4

t (cm),故C 正确; D .t =2 s 时,甲通过平衡位置,速度达到最大值.乙的位移最大,加速度达到最大值,故

D 错误. 故选C 10.AC

E 【解析】 【分析】 【详解】

A .装有一定量液体的玻璃管只受到重力和液体的浮力,所以装有一定量液体的玻璃管做简谐振动的回复力等于重力和浮力的合力。故A 正确;

B .玻璃管在做简谐振动的过程中,液体的浮力对玻璃管做功,所以振动的过程中玻璃管的机械能不守恒。故B 错误;

C .振动的周期为0.5s ,则圆频率

22rad/s 4rad/s 0.5

T ππ

ωπ=

== 由图可知振动的振幅为A ,由题可知,A =4cm ;t =0时刻

0sin 2

A

A ?-= 结合t =0时刻玻璃管振动的方向向下,可知076?π=(11 6

π舍去),则玻璃管的振动方程为

754sin(4+

)cm=4sin(4)cm 66

x t t ππ

ππ=- 故C 正确;

D .由于玻璃管做简谐振动,与弹簧振子的振动相似,结合简谐振动的特点可知,该振动的周期与振幅无关。故D 错误;

E .由图可知,在t 1~t 2时间内,位移减小,加速度f kx

a m m

=-=减小;玻璃管向着平衡位置做加速运动,所以速度增大。故E 正确。 故选ACE 。 11.AD 【解析】 【分析】 【详解】

AB .在接触弹簧之前,小球做自由落体运动,加速度就是重力加速度g ,恒定不变;接触弹簧后,小球做简谐振动,加速度随时间先减小到零然后再反向增加,图象是有一个初相位(初相位在0~90o 之间)的余弦函数图象的一部分,由于接触弹簧时加速度为重力加速度g ,且有一定的速度,根据对称性,到达最低点时,加速度趋近于某个大于g 的值,方向向上,因此A 正确,B 错误;

C .在开始下落h 时,弹簧的弹力为零,再向下运动时,弹力与位移之间的关系为

()F k x h =-

可知表达式为一次函数,图象是一条倾斜直线,C 错误;

D .在开始下降h 过程时,没有弹性势能,再向下运动的过程中,弹性势能与位移的关系为

21

()2

P E k x h =

- 表达式为二次函数,图象是一条抛物线,因此D 正确。 故选AD 。 12.BCD 【解析】

根据图象,周期T =4 s ,振幅A =8 cm ,A 错误,B 正确.第2 s 末振子到达负的最大位移处,速度为零,加速度为正向的最大值,C 正确.第3 s 末振子经过平衡位置,速度达到最大值,且向正方向运动,D 正确.从第1 s 末到第2 s 末振子经过平衡位置向下运动,速度逐渐减小,做减速运动,E 错误.故选BCD .

【点睛】本题关键根据简谐运动的位移时间图象得到弹簧振子的周期和振幅,然后结合实际情况进行分析. 13.ABC 【解析】

A 、经过半个周期后,到达平衡位置下方a 处,物体的位移向下,为2a ,故重力做功为2mga ,故A 正确;

B 、时间为1 2

T ,故重力的冲量为·

22

T mgT

I mg ==,故B 正确; C 、合力充当回复力,根据动能定理,合力做功等于动能的增加量,为零,故回复力做功为零,故C 正确;

D 、根据动量定理,合力冲量等于动量的变化,由于动量的变化为2c mv ,故合力的冲量为

2c mv ,合力充当回复力,故D 错误;

故选ABC .

【点睛】简谐运动具有对称性,经过半个周期后,到达平衡位置下方a 处,然后根据功的定义、动量定理列式求解. 14.AB 【解析】 【详解】

单摆做受迫振动,振动频率与驱动力频率相等;当驱动力频率等于固有频率时,发生共振,则固有频率为0.5Hz ,周期为2s .故A 正确;由图可知,共振时单摆的振动频率与固

有频率相等,则周期为2s .由公式T=2πL≈1m ,故B 正确;若摆长增大,单摆的固有周期增大,则固有频率减小.故C 错误;若摆长增大,则固有频率减小,所以共振曲线的峰将向左移动.故D 错误;故选AB . 【点睛】

本题关键明确:受迫振动的频率等于驱动力的频率;当受迫振动中的固有频率等于驱动力频率时,出现共振现象. 15.AB 【解析】

A 、若t T =,由简谐振动的周期性可知,t 时刻和()t t +时刻振子运动的各物理量都相同,所以加速度一定大小相等,故A 正确;

B 、若2

T

t =

,在t 时刻和()t t +时刻振子的位置一定关于平衡位置是对称点,弹簧沿水平方向做简谐振动,所以受到的弹簧的弹力的大小相等,所以两个时刻弹簧的形变量一定相等,故B 正确;

C 、若t 时刻和()t t +时刻振子运动位移的大小相等,方向相反,振子可能以相等的速度经过两点,也可能以方向相反的速度经过两点,所以则t 不一定等于2

T

的奇数倍,故C 错误;

D 、若t 时刻和()t t +时刻振子运动速度的大小相等、方向相同,可能振子经过同一点,也可能经过关于平衡位置对称的两位置,t 不一定等于

2

T

的整数倍,故D 错误. 点睛:本题考查对简谐运动物理量及其变化的理解程度,可通过过程分析理解掌握,简谐运动中速度与加速度的大小变化情况是相反,也可以作出振动图象进行分析. 16.BDE 【解析】 【详解】

A. t =1s 时,振子在平衡位置,加速度为零,选项A 错误;

B. t =2s 时,振子到达最低点,此时弹簧弹性势能最大,选项B 正确;

C. t =2s 时刻弹簧的压缩量比t =1s 时刻大,t =2s 时刻弹簧的弹性势能比t =1s 时刻大,选项C 错误;

D. 由振动图像可知,t =3s 时,振子经过O 点向上运动,选项D 正确.

E. t =4s 时,振子回到A 点,此时振子的加速度大小为g ,选项E 正确. 17.AD 【解析】 【详解】

当列车受到冲击的频率和列车故有频率相同时,会发生共振,比较危险,由l

T v

=可得危险车速为12.6/40/0.315

l v m s m s T =

==,A 正确;列车过桥需要减速,是为了防止桥与火车发生共振现象,B 错误;列车的速度不同,则振动频率不同,C 错误;由题意可知,根据

l

T v

=

可知增加长度可以使危险车速增大,故可以使列车高速运行,故D 正确.

18.BCD 【解析】 【分析】

根据图示,线未断开前,两根弹簧伸长的长度相同,根据离开平衡位置的最大距离即可判断振幅的大小;根据细绳断开的瞬间弹簧的弹性势能相同,通过能量转化,可判断绳子断开后物体的动能的关系,比较质量关系,即可分析最大速度关系;根据题目所给周期公式,比较质量关系,即可判断周期大小,进而判断频率关系。 【详解】

A 、

B .线未断开前,两根弹簧伸长的长度相同,离开平衡位置的最大距离相同,即振幅一定相同,A 错误,B 正确;

C .当线断开的瞬间,弹簧的弹性势能相同,到达平衡后,甲乙的最大动能相同,由于甲的质量大于乙的质量,由212k E mv =知道,甲的最大速度一定是乙的最大速度的1

2

,C 正确;

D 、

E .根据2T =可知,甲的振动周期是乙的振动周期的2倍;根据1f T =可知,

甲的振动频率是乙的振动频率的1

2

,D 正确,E 错误; 故选BCD 。 19.AB 【解析】 【分析】 【详解】

t=0.6s 时,物块的位移为y=0.1sin(2.5π×0.6)m= -0.1m ;则对小球2

12

h y gt +=,解得h=1.7m ,选项A 正确;简谐运动的周期是220.82.5T s s π

π

ω

π

=

=

=,选项B 正确;0.6s 内物块运动的路程是3A=0.3m ,选项C 错误;t=0.4s=2

T

,此时物块在平衡位置向下振动,则此时物块与小球运动方向相同,选项D 错误. 20.ADE 【解析】 【分析】

甲在波峰或波谷速度为零时,乙在平衡位置,速度最大;甲在平衡位置加速度最小时,乙也在平衡位置,速度最大;甲、乙同时处于平衡位置时,加速度为零,回复力都为零;由图可知两振子的周期,根据1

f T

=,可得频率之比;由图可知振幅之比. 【详解】

A .由图可知甲在波峰或波谷速度为零时,乙在平衡位置,速度最大,故A 正确;

B .由图可知甲在平衡位置加速度最小时,乙也在平衡位置,速度最大,故B 错误;

C .甲、乙同时处于平衡位置时,加速度为零,回复力都为零,故C 错误;

D .由图可知,甲的周期T 甲=2.0s ,乙的周期T 乙=1.0s ,根据:

1f T

=

得甲的频率f 甲=0.5Hz ;乙的频率f 乙=1.0Hz ;两个振子的振动频率之比f 甲:f 乙=1:2,故D 正确;

E .由图可知,甲的振幅A 甲=10cm ,乙的振幅A 乙=5cm ,两个振子的振幅之比为A 甲:A 乙=2:1,故E 正确。

二、机械振动 实验题

21.ADG BD 24k π 不变 【解析】 【分析】 【详解】

(1)[1].实验中需要的器材有:A.小铁球;D.100cm 长的细线;G.秒表;故选ADG; (2)[2]. 实验中单摆摆长等于摆球半径与摆线长度之和,应先用游标卡尺测出摆球直径;然后把单摆悬挂好,再用米尺测出单摆自然下垂时摆线长度,摆球半径与摆线长度之和是单摆摆长,故A 错误,B 正确;偏角不要超过5°,以保证单摆做简谐振动;将摆球拉到最大位移处释放,等摆球到达最低点时快速按下秒表开始计时,选项C 错误;为了精确测量单摆的周期,起码要测量小球作100次全振动所用的时间t ,然后由100

t

T =求解周期,选项D 正确;

(3)[3].根据2T π

=可得 22

4g L T π=

则由题意可知

2

=4g k π

解得

2=4g k π

[4].在测量数据时漏加了小球半径,将摆线的长度当做了摆长,所测摆长偏小,摆长的变化对图象斜率k 没有影响,因此实验测量的重力加速度与真实值相等;

22.4 t n ? ① 24a

b

π 不变

【解析】 【详解】

(完整)高中物理选修31期末测试题及答案(2),推荐文档

高二物理第一学期选修 3-1 期末考试试卷 1.有一电场的电场线如图1 所示,场中A、B 两点电场强度的大小和电势分别用E A、E B和U A、U B表示,则[] A.E a>E b U a>U b B.E a>E b U a<U b C.E a<E b U a>U b D.E a<E w b U a<U b 2.图2 的电路中C 是平行板电容器,在S 先触1 后又扳到2,这时将平行板的板间距拉大一点,下列说法正确的是[ ] A.平行板电容器两板的电势差不变B.平行扳电容器两板的电势差变小C.平行板电容器两板的电势差增大D.平行板电容器两板间的的电场强度不变 3.如图3,真空中三个点电荷A、B、C,可以自由移动,依次排列在同一直线上,都处于平衡状态,若三个电荷的带电量、电性及相互距离都未知,但AB>BC,则根据平衡条件可断定[] A.A、B、C 分别带什么性质的电荷B.A、B、C 中哪几个带同种电荷,哪几个带异种电荷C.A、B、C 中哪个电量最大D.A、B、C 中哪个电量最小 4.一束带电粒子沿水平方向飞过小磁针上方,并与磁针指向平行,能使磁针的S 极转向纸内,如图 4 所示,那么这束带电粒子可能是[ ] A.向右飞行的正离子束B.向左飞行的正离子束 C.向右飞行的负离子束D.问左飞行的负离子束 5.在匀强电场中,将一个带电量为q,质量为m 的小球由静止释放,带电小球的轨迹为一直线,该直线与竖直方向夹角为θ,如图5 所示,那么匀强电场的场强大小为[ ] A.最大值是mgtgθ/q B.最小值是mgsinθ/q C.唯一值是mgtgθ/q D.同一方向上,可有不同的值.

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

人教版高中物理选修31知识点归纳总结.doc

物理选修3-1 知识总结 第一章 第1节 电荷及其守恒定律 一、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 二、电荷量 1、电荷量:电荷的多少。 2、元电荷:电子所带电荷的绝对值1.6×10-19 C 3、比荷:粒子的电荷量与粒子质量的比值。 第一章 第2节 库仑定律 一、电荷间的相互作用 1、点电荷:带电体的大小比带电体之间的距离小得多。 2、影响电荷间相互作用的因素 二、库仑定律:在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方 成反比,作用力的方向在它们的连线上。 2 2 1r Q Q k F 注意(1)适用条件为真空中静止点电荷 (2)计算时各量带入绝对值,力的方向利用电性来判断 第一章 第3节 电场 电场强度 一、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、电场强度 1、检验电荷与场源电荷 2、电场强度 检验电荷在电场中某点所受的电场力F 与检验电荷的电荷q 的比值。 q F E = 国际单位:N /C 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、点电荷的场强公式 2r Q k q F E == 四、电场的叠加 五、电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小,

曲线上某点的切线方向表示场强的方向。 2、几种典型电场的电场线 3、电场线的特点 (1)假想的 (2)起----正电荷;无穷远处 止----负电荷;无穷远处 (3)不闭合 (4)不相交 (5)疏密----强弱 切线方向---场强方向 第一章 第4节 电势能 电势 一、电势能 1、电势能:电荷处于电场中时所具有的,由其在电场中的位置决定的能量称为电势能. 注意:系统性、相对性 2、电势能的变化与电场力做功的关系 3、电势能大小的确定 电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功 二、电势 1.电势:置于电场中某点的检验电荷具有的电势能与其电量的比叫做该点的电势 q E 电= ? 单位:伏特(V ) 标量 2.电势的相对性 3.顺着电场线的方向,电势越来越低。 三、等势面 1、等势面:电场中电势相等的各点构成的面。 2、等势面的特点 a:在同一等势面的两点间移动电荷,电场力不做功。 b:电场线总是由电势高的等势面指向电势低的等势面。 c:电场线总是与等势面垂直。 第一章 第5节 电势差 电场力的功 一、电势差:电势差等于电场中两点电势的差值 B A AB U ??-= 电电电电电电)=--=-(-=E E E E E W A B B A AB ?)(电势能为零的点点电=A A W E

高中物理选修3-1《电场》全套同步练习,答案在后面

高中物理选修3-1《电场》全套同步练习 第01节 电荷及其守恒定律 [知能准备] 1.自然界中存在两种电荷,即 电荷和 电荷. 2.物体的带电方式有三种: (1)摩擦起电:两个不同的物体相互摩擦,失去电子的带 电,获得电子的带 电. (2)感应起电:导体接近(不接触)带电体,使导体靠近带电体一端带上与带电体相 的电荷,而另 一端带上与带电体相 的电荷. (3)接触起电:不带电物体接触另一个带电物体,使带电体上的 转移到不带电的物体上.完全 相同的两只带电金属小球接触时,电荷量分配规律:两球带异种电荷的先中和后平均分配;原来两球带同 种电荷的总电荷量平均分配在两球上. 3.电荷守恒定律:电荷既不能 ,也不能 ,只能从一个物体转移到另一个物体;或从物体的一部 分转移到另一部分,在转移的过程中,电荷的总量 . 4.元电荷(基本电荷):电子和质子所带等量的异种电荷,电荷量e =1.60×10-19C.实验指出,所有带电体 的电荷量或者等于电荷量e ,或者是电荷量e 的整数倍.因此,电荷量e 称为元电荷.电荷量e 的数值最早 由美国科学家 用实验测得的. 5.比荷:带电粒子的电荷量和质量的比值 m q .电子的比荷为kg C m e e /1076.111?=. [同步导学] 1.物体带电的过程叫做起电,任何起电方式都是电荷的转移,而不是创造电荷. 2.在同一隔离系统中正、负电荷量的代数和总量不变. 例1 关于物体的带电荷量,以下说法中正确的是( ) A .物体所带的电荷量可以为任意实数 B .物体所带的电荷量只能是某些特定值 C .物体带电+1.60×10-9C ,这是因为该物体失去了1.0×1010个电子 D .物体带电荷量的最小值为1.6×10-19C 解析:物体带电的原因是电子的得、失而引起的,物体带电荷量一定为e 的整数倍,故A 错,B 、C 、D 正 确. 如图1—1—1所示,将带电棒移近两个不带电的导体球, 两个导体球开始时互相接触且对地绝缘,下述几种方法中能使两球 都带电的是 ( ) A .先把两球分开,再移走棒 B .先移走棒,再把两球分开 C .先将棒接触一下其中的一个球,再把两球分开 D .棒的带电荷量不变,两导体球不能带电 解析:带电棒移近导体球但不与导体球接触,从而使导体球上的电荷重新分布,甲球左侧感应出正电荷, 乙球右侧感应出负电荷,此时分开甲、乙球,则甲、乙球上分别带上等量的异种电荷,故A 正确;如果先 移走带电棒,则甲、乙两球上的电荷又恢复原状,则两球分开后不显电性,故B 错;如果先将棒接触一下 其中的一球,则甲、乙两球会同时带上和棒同性的电荷,故C 正确.可以采用感应起电的方法使两导体球 图1—1—1

最新人教版高中物理选修3-1综合测试题全套及答案

最新人教版高中物理选修3-1综合测试题全套及答案 综合评估检测卷(一)静电场 一、选择题(本大题共12小题,每小题5分,共60分.每小题至少一个答案正确) 1. 图中,实线和虚线分别表示等量异种点电荷的电场线和等势线,则下列有关P、Q两点的相关说法中正确的是() A.两点的场强等大、反向 B.P点电场更强 C.两点电势一样高 D.Q点的电势较低 答案: C 2.如图所示,让平行板电容器带电后,静电计的指针偏转一定角度,若不改变A、B两极板带的电荷量而减小两极板间的距离,同时在两极板间插入电介质,那么静电计指针的偏转角度() A.一定增大B.一定减小 C.一定不变D.可能不变 解析:极板带的电荷量Q不变,当减小两极板间距离,同时插入电介质,则电容C一定增大.由U=Q C可 知两极板间电压U一定减小,静电计指针的偏转角也一定减小,选项B正确. 答案: B 3. 如图所示中带箭头的直线是某一电场中的一条电场线,在该直线上有a、b两点,用E a、E b分别表示a、b 两点的场强大小,则() A.a、b两点场强方向相同 B.电场线从a指向b,所以E a>E b C.电场线是直线,所以E a=E b D.不知a、b附近的电场线分布,E a、E b大小不能确定

解析:由于电场线上每一点的切线方向跟该点的场强方向一致,而该电场线是直线,故A正确.电场线的疏密表示电场的强弱,只有一条电场线时,则应讨论如下:若此电场线为正点电荷电场中的,则有E a>E b;若此电场线为负点电荷电场中的,则有E a<E b;若此电场线是匀强电场中的,则有E a=E b;若此电场线是等量异种点电荷电场中那一条直的电场线,则E a和E b的关系不能确定.故正确选项为A、D. 答案:AD 4. 如图所示,三个等势面上有a、b、c、d四点,若将一正电荷由c经a移到d,电场力做正功W1,若由c经b移到d,电场力做正功W2,则() A.W1>W2φ1>φ2 B.W1φ2 解析:由W=Uq可知W1=W2. 由W cd=U cd·q,W cd>0,q>0,可知U cd>0. 故φ1>φ2>φ3,D正确. 答案: D 5. 右图为一匀强电场,某带电粒子从A点运动到B点,在这一运动过程中克服重力做的功为2.0 J,静电力做的功为1.5 J.下列说法正确的是() A.粒子带负电 B.粒子在A点的电势能比在B点少1.5 J C.粒子在A点的动能比在B点少0.5 J D.粒子在A点的机械能比在B点少1.5 J 解析:本题考查电荷在电场中的运动,从粒子运动的轨迹判断粒子带正电,A项错误;因为静电力做正功,电势能减小,所以B项错误;根据动能定理得W+W G=ΔE k=-0.5 J,B点的动能小于A点的动能,C项错误;静电力做正功,机械能增加,所以A点的机械能比B点的机械能要小1.5 J,D项正确.答案: D 6.

高中物理选修3-1第一章c卷 测试题及答案 2

一、选择题(本题共有10小题,每小题4分,共40分。在每小题给出的4个选项中,至少有一项是正确的。全部选对的给4分,选对但不全的得2分,有选错的或不选的得0分) 1.两个用相同材料制成的半径相等的带电金属小球,其中一个球的带电量的绝对值是另一个的5倍,它们间的库仑力大小是F ,现将两球接触后再放回原处,它们间库仑力的大小可能是( ) A.5 F /9 B.4F /5 C.5F /4 D.9F /5 2.点电荷A 和B ,分别带正电和负电,电量分别为4Q 和Q ,在AB 连线上,如图1-69所示,电场强度为零的地方在 ( ) A .A 和 B 之间 B .A 右侧 C .B 左侧 D .A 的右侧及B 的左侧 3.如图1-70所示,平行板电容器的两极板A 、B 接于电池两极,一带正电的小球悬挂在电容器内部,闭合S ,电容器充电,这时悬线偏离竖直方向的夹角为θ,则下列说法正确的是( ) A .保持S 闭合,将A 板向 B 板靠近,则θ增大 B .保持S 闭合,将A 板向B 板靠近,则θ不变 C .断开S ,将A 板向B 板靠近,则θ增大 D .断开S ,将A 板向B 板靠近,则θ不变 4.如图1-71所示,一带电小球用丝线悬挂在水平方向的匀强电场中,当小球静止后把悬线烧断,则小球在电场中将作( ) A .自由落体运动 B .曲线运动 C .沿着悬线的延长线作匀加速运动 D .变加速直线运动 5.如图是表示在一个电场中的a 、b 、c 、d 四点分别引入检验电荷时,测得的检验电荷的电量跟它所受电场力的函数关系图象,那么下列叙述正确的是( ) A .这个电场是匀强电场 B .a 、b 、c 、d 四点的场强大小关系是E d >E a >E b >E c C .a 、b 、c 、d 四点的场强大小关系是E a >E b >E c >E d D .无法确定这四个点的场强大小关系 6.以下说法正确的是( ) A .由q F E =可知此场中某点的电场强度E 与F 成正比 B .由公式q E P = φ可知电场中某点的电势φ与q 成反比 图1-69 B A Q 4Q 图1-70 图1-71

高中物理选修3-3知识点归纳

选修3-3知识点归纳 2017-11-15 一、分子动理论 1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由 分子组成的。 ①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ 2、油膜法估测分子的大小: ①S V d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。 ②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。 3、分子热运动: ①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。 ②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。 ③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。颗粒越小、 温度越高,现象越明显。从阳光中看到教室中尘埃的运动不是布朗运动。 4、分子力: ①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。 ②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r

高中物理选修3-1:第1章第1节时同步训练及解析

高中物理选修3-1 同步训练 1.下列说法正确的是() A.静电感应不是创造了电荷,而是电荷从物体的一部分转移到另一部分引起的 B.一个带电物体接触另一个不带电物体,两个物体有可能带上异种电荷 C.摩擦起电是因为通过克服摩擦做功而使物体产生了电荷 D.摩擦起电是质子从一物体转移到另一物体 解析:选A.三种起电方式都是电子发生了转移,接触起电时,两物体带同性电荷,故B、C、D错误,A正确. 2.对于一个已经带电的物体,下列说法中正确的是() A.物体上一定有多余的电子 B.物体上一定缺少电子 C.物体的带电量一定是e=1.6×10-19C的整数倍 D.物体的带电量可以是任意的一个值 解析:选C.带电物体若带正电则物体上缺少电子,若带负电则物体上有多余的电子,A、B 项错误;物体的带电量一定等于元电荷或者等于元电荷的整数倍,C项正确,D项错误.3. 图1-1-4 (2012·江苏启东中学高二月考)如图1-1-4所示,有一带正电的验电器,当一金属球A靠近验电器的小球B(不接触)时,验电器的金箔张角减小,则() A.金属球可能不带电 B.金属球可能带负电 C.金属球可能带正电 D.金属球一定带负电 解析:选AB.验电器的金箔之所以张开,是因为它们都带有正电荷,而同种电荷相互排斥,张开角度的大小决定于两金箔带电荷量的多少.如果A球带负电,靠近验电器的B球时,异种电荷相互吸引,使金箔上的正电荷逐渐“上移”,从而使两金箔张角减小,选项B正确,同时否定选项C.如果A球不带电,在靠近B球时,发生静电感应现象使A球靠近B球的端面出现负的感应电荷,而背向B球的端面出现正的感应电荷.A球上负的感应电荷与验电器上的正电荷发生相互作用,由于负电荷离验电器较近而表现为吸引作用,从而使金箔张角减小,选项A正确,同时否定选项D. 4.

高中物理选修3-2测试题及答案

高中物理选修3-2测试题 第I 卷(选择题12小题 共 36分) 一选择题(本题包括12小题,每小题3分,共36分。每小题给出的四个选项中,有的只有一 个选项正确,有的有多个选项正确,全部选对的得3分,选对但不全对的得2分,有选错的或不答的得0分) 1.关于电磁场理论,下列说法正确的是:( ) A.变化的电场周围产生的磁场一定是变化的 B. 变化的磁场周围产生的电场不一定是变化的 C. 均匀变化的磁场周围产生的电场也是均匀变化的 D. 振荡电场周围产生的磁场也是振荡的 2.质子和一价钠离子分别垂直进入同一匀强磁场中做匀速圆周运动,如果它们的圆周半径恰好相等,这说明它们在刚进入磁场时:( ) A.速率相等 B.带电量相等 C.动量大小相等 D.质量相等 3.矩形线圈ABCD 位于通电直导线附近,如图所示,线圈和导线在同一平面内,且线圈的两个边与导线平行,下列说法正确的是:( ) A.当线圈远离导线移动时,线圈中有感应电流 B.当导线中的电流I 逐渐增大或减小时,线圈中无感应电流 C.当线圈以导线为轴转动时,线圈中有感应电流 D.当线圈以CD 为轴转动时,线圈中有感应电流 4.若在磁场是由地球表面带电产生的,则地球表面带电情况是: ( ) A.正电 B.负电 C.不带电 D.无法确定 5.关于日光灯的工作原理下列说法正确的是: ( ) A. 启动器触片接通时,产生瞬时高压 B. 日光灯正常工作时,镇流器起降压限流以保证日光灯正常工作 C.日光灯正常工作时, 日光灯管的电压稳定在220V D.镇流器作用是将交流电变为直流电 6.矩形线圈在匀强磁场中,绕垂直磁场方向的轴匀速转动时,线圈跟中性面重合的瞬间,下列说法中正确的是: ( ) A.线圈中的磁通量为零 B. 线圈中的感应电动势最大 C. 线圈的每一边都不切割磁感线 D.线所受到的磁场力不为零 B C D A I

高中物理选修3-1知识点归纳(完美版)

物理选修3-1 一、电场 1. 两种电荷、电荷守恒定律、 元电荷(e = 1.60 x 10-19C );带电体电荷量等于元电荷的 整数倍 2. 库仑定律:F =?2伞(真空中的点电荷){ F:点电荷间的作用力(N ); r k:静电力常量k = 9.0 x 109N?m/C 2; Q 、Q:两点电荷的电量(C ) ; r:两点电荷间的距离(m ); 作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸引 } 3. 电场强度:E 二匸(定义式、计算式){ E:电场强度(N/C ),是矢量(电场的叠加原理);q :检验 q 电荷的电量(C ) } 4. 真空点(源)电荷形成的电场 E =竽 {r :源电荷到该位置的距离(m ), Q :源电荷的电量} r 5. 匀强电场的场强 E =U AB { 3B :AB 两点间的电压(V ) , d:AB 两点在场强方向的距离 (m )} d 6. 电场力:F = qE {F:电场力(N ) , q:受到电场力的电荷的电量 (C ) , E:电场强度(N/C ) } A E P 减 7. 电势与电势差: L A B = $ A - $ B , U A B = W AB /q = △ q 8. 电场力做功:W A B = qL AB = qEd = △ E P 减{ W A B :带电体由A 到B 时电场力所做的功(J ) , q:带电量(C ) , L A B : 电 场中A 、B 两点间的电势差(V )(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m ); △曰减:带电体由A 到B 时势能的减少量} 9. 电势能:0A = q $ A {庄A :带电体在 A 点的电势能(J ) , q:电量(C ) , $ A :A 点的电势(V ) } 10. 电势能的变化 △曰减=E^A -E PB {带电体在电场中从 A 位置到B 位置时电势能的减少量} 11. 电场力做功与电势能变化 W A B = △ E P 减=qUk (电场力所做的功等于电势能的减少量 ) 12. 电容C = Q/U (定义式,计算式){ C:电容(F ) , Q:电量(C ) , U:电压(两极板电势差)(V ) } 13. 平行板电容器的电容 C =上匚(S:两极板正对面积,d:两极板间的垂直距离, 3 :介电常数) 4水d 常见电容器 类平抛运动(在带等量异种电荷的平行极板中: E = U d 垂直电场方向:匀速直线运动 L = V o t 注:(1)两个完全相同的带电金属小球接触时 ,电量分配规律:原带异种电荷的先中和后平分 的总量平分; 14.带电粒子在电场中的加速 (Vo = 0): W = △ E <增或 qU = mVt 2 15.带电粒子沿垂直电场方向以速度 V o 进入匀强电场时的偏转 (不考虑重力作用) 平行电场方向:初速度为零的匀加速直线运动 d at2 , F a=— =qE = qU 2 m m m ,原带同种电荷

高中物理选修3-1:第2章第1节时同步训练及解析

高中物理选修3-1 同步训练 1.下列叙述中正确的是( ) A .导体中电荷运动就形成电流 B .国际单位制中电流的单位是安 C .电流强度是一个标量,其方向是没有意义的 D .对于导体,只要其两端电势差不为零,电流必定不为零 解析:选BD.电流产生的条件包括两个方面:一是有自由电荷;二是有电势差.导体中有大量的自由电子,因此只需其两端具有电势差即可产生电流,在国际单位制中电流的单位为安. 2.关于电流,下列叙述正确的是( ) A .只要将导体置于电场中,导体内就有持续的电流 B .电源的作用是可以使电路中有持续的电流 C .导体内没有电流,说明导体内部的电荷没有移动 D .恒定电流是由恒定电场产生的 解析:选BD.电流在形成时有瞬时电流和恒定电流,瞬时电流是电荷的瞬时定向移动形成的,而恒定电流是导体两端有稳定的电压形成的,电源的作用就是在导体两端加上稳定的电压,从而在导体内部形成恒定电场而产生恒定电流.故选项B 、D 正确. 3.电路中,每分钟有60亿万个自由电子通过横截面积为0.64×10- 6 m 2的导线,那么电路中的电流是( ) A .0.016 mA B .1.6 mA C .0.16 μA D .16 μA 解析:选C.I =q t =en t =1.6×10-19 ×60×101260 A =0.16×10- 6 A =0.16 μA. 4.(2012·山东任城第一中学高二月考)铜的原子量为m ,密度为ρ,每摩尔铜原子有n 个自由电子,今有一根横截面积为S 的铜导线,当通过的电流为I 时,电子平均定向移动的速率为( ) A .光速c B.I neS C.ρI neSm D.Im neSρ 解析:选D.自由电子体密度N =n m /ρ=ρn m ,代入I =nqS v ,得v =Im neSρ ,D 正确. 5.某品牌手机在待机工作状态时,通过的电流是4微安,则该手机一天时间内通过的电荷量是多少?通过的自由电子个数是多少? 解析:通过的电荷量为: q =It =4×10- 6×24×3600 C ≈0.35 C. 通过的电子个数为: N =q e =0.35 C 1.6×10-19 C =2.16×1018个. 答案:0.35 C 2.16×1018个 一、选择题 1.关于电流,下列叙述正确的是( ) A .导线内自由电子定向移动的速率等于电流的传导速率 B .导体内自由电子的运动速率越大,电流越大 C .电流是矢量,其方向为正电荷定向移动的方向 D .在国际单位制中,电流的单位是安,属于基本单位 解析:选D.此题要特别注意B 选项,导体内自由电子定向移动的速率越大,电流才越大.

最新高中物理选修31测试题及答案

高中物理选修3-1试题 一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确 .全部选对的得4分,选不全的得2分,有选错或不答的得0分.) 1.某静电场的电场线分布如图,图中P 、Q 两点的电场强度的大小分别为P E 和Q E ,电势分别为P ?和Q ?,则( ) A.P Q E E >,P Q ??< B.P Q E E <,P Q ??> C.P Q E E <,P Q ??< D.P Q E E >,P Q ??> 2.关于电势与电势能的说法正确的是( ) A.电荷在电场中电势高的地方电势能大 B.在电场中的某点,电量大的电荷具有的电势能比电量小的电荷具有的电势能大 C.正电荷形成的电场中,正电荷具有的电势能比负电荷具有的电势能大 D.负电荷形成的电场中,正电荷具有的电势能比负电荷具有的电势能小 3.图中水平虚线为匀强电场中与场强方向垂直的等间距平行直线.两带电小球M 、N 质量相等,所带电荷量的绝对值也相等.现将M 、N 从虚线上的O 点以相同速率射出,两粒子在电场中运动的轨迹分别如图中两条实线所示.点a 、b 、c 为实线与虚线的交点,已知O 点电势高于c 点.则( ) A.M 带负电荷,N 带正电荷 B.M 在从O 点运动至b 点的过程中,动能不变 C.N 在从O 点运动至a 点的过程中克服电场力做功 D.N 在a 点的速度与M 在c 点的速度大小相等 4.下列说法正确的是( ) A.带电粒子仅在电场力作用下做“类平抛”运动,则电势能一定减小. B.带电粒子只受电场力作用,由静止开始运动,其运动轨迹一定与电场线重合. C.带电粒子在电场中运动,如只受电场力作用,其加速度方向一定与电场线方向相同. D.一带电小球在匀强电场中在电场力和重力的作用下运动,则任意相等时间内动量的变化量相同. 5.一平行板电容器充电后与电源断开,负极板接地,在两极板间有一正电荷(电量很小)固定在P 点,如图所示.以E 表示两极板间的场强,U 表示电容器的电压,ε表示正电荷在P 点的电势能,若保持负极板不动,将正极板移到图中虚线所示的位置,则( ) A.U 变小,E 不变 B.E 变大,ε变大 第1题图 Q P q +q +

高中物理选修3-1知识点汇总

第一章 电场 1. 电荷 自然界只存在正、负两种电荷;单位是库伦,符号C ;元电荷电量e=1.6?10 19 -C ;电荷产生方 法有摩擦起电、接触起电、感应起电。 2. 电荷守恒定律 电荷既不能创造,也不能消失,它只能从一个物体转移到另一个物体,或从物体的这一部分转移到另一部分,转移过程中总电荷数不变。 3. 点电荷 当带电体的尺寸和形状对所研究的问题影响不大时,可将此带电体看成点电荷;对于电荷分布均匀的球体,可认为是电荷集中在球心的点电荷;检验电荷一般也可看成点电荷;点电荷实际上是一种理想化模型,并不存在。 4. 库伦定律 在真空中两个点电荷的相互作用力跟它们电荷量的乘积成正比,跟它们间距离的平方成反比, 作用力的方向在它们的连线上;F=k 2 21r Q Q , k=9?109N ·m 2/C 2 .。 5. 电场 带电体周围存在的一种特殊物质,对放入其中的电荷有力的作用;客观存在的;具有力的特性和能的特性。 6. 电场强度 放入电场中某一点的电荷受到的电场力跟它的电荷量的比值;E= q F ;方向是正电荷在该点的 受力方向;矢量,遵循矢量运算原理;点电荷场强F=k 2 r Q 。 7. 电势 描述电场能的性质;?= q E p ,E p 为电荷的 电势能;标量,正负表示大小;数值与零电势的选取有关,一般选择无穷远处为电势零点。 8. 电势差 描述电场做功的本领;U AB = q W AB ;标量, 正负表示电势的高低;也被称作电压。 9. 电势能 描述电荷在电场中的能量,电荷做功的本领;E p =?q ;标量。 10.电场线 从正电荷出发,到负电荷终止的曲线,曲线上每一点的切线方向都跟该点的场强方向一致;虚构的;永不相交;疏密表示电场强度的强弱;沿电场方向电势减小。 11.等势面 电场中电势相等的点构成的面;空间中没有电荷的地方等势面不相交;在平面中构成的是等势线;等差等势面的疏密程度反映电场的强弱。 12.匀强电场 电场强度大小处处相等;E=d U 。 13.电场力做功情况 只与始末位置有关,与路径无关;W=Uq ;匀强电场中W=Fs ·cos θ=Eqs ·cos θ;电场力做的正功等于电势能的减少,W=-?E 。 14.电容器 两个互相靠近又彼此绝缘的导体组成电容器;电容器能充电和放电。 15.电容 电容器所带电荷量与两极板间的电压的比值;单位是法,符号F ;C=U Q 。 16.平行板电容器 高中阶段主要接触的电容器;平行板电容器的电容C= kd S πε4;平行板电容器两极板间的电场可 认为是匀强电场。 17.带电粒子在匀强电场中的运动 加速或者偏转;a=m Eq =md Uq 。 第二章 磁场 1. 磁场 存在与磁体、电流或运动电荷周围的一种物质;对放入其中的磁极或电流有磁场力的作用;规

高中物理选修3-1全套同步习题

高中物理选修3-1同步练习题 第一节 电荷及其守恒定律 [同步检测] 1、一切静电现象都是由于物体上的 引起的,人在地毯上行走时会带上电,梳头 时会带上电,脱外衣时也会带上电等等,这些几乎都是由 引起的. 2.用丝绸摩擦过的玻璃棒和用毛皮摩擦过的硬橡胶棒,都能吸引轻小物体,这是因为 ( ) A.被摩擦过的玻璃棒和硬橡胶棒一定带上了电荷 B.被摩擦过的玻璃棒和硬橡胶棒一定带有同种电荷 C.被吸引的轻小物体一定是带电体 D.被吸引的轻小物体可能不是带电体 3.如图1—1—2所示,在带电+Q 的带电体附近有两个相互接触的金属导体A 和B ,均放 在绝缘支座上.若先将+Q 移走,再把A 、B 分开,则A 电,B 电;若先将A 、 B 分开,再移走+Q ,则A 电,B 电. 4.同种电荷相互排斥,在斥力作用下,同种电荷有尽量 的趋势,异种电荷相互吸 引,而且在引力作用下有尽量 的趋势. 5.一个带正电的验电器如图1—1—3所示, 当一个金属球A 靠近验电器上的金属球B 时,验电 器中金属箔片的张角减小,则( ) A .金属球A 可能不带电 B .金属球A 一定带正电 C .金属球A 可能带负电 D .金属球A 一定带负电 6.用毛皮摩擦过的橡胶棒靠近已带电的验电器时,发现它的金属箔片的张角减小,由此可 判断( ) A .验电器所带电荷量部分被中和 B .验电器所带电荷量部分跑掉了 C .验电器一定带正电 D .验电器一定带负电 7.以下关于摩擦起电和感应起电的说法中正确的是 A.摩擦起电是因为电荷的转移,感应起电是因为产生电荷 B.摩擦起电是因为产生电荷,感应起电是因为电荷的转移 C.摩擦起电的两摩擦物体必定是绝缘体,而感应起电的物体必定是导体 D.不论是摩擦起电还是感应起电,都是电荷的转移 8.现有一个带负电的电荷A ,和一个能拆分的导体B ,没有其他的导体可供利用,你如何 能使导体B 带上正电? 9.带电微粒所带的电荷量不可能是下列值中的 A. 2.4×10-19C B.-6.4×10-19C C.-1.6×10-18C D.4.0×10-17C 10.有三个相同的绝缘金属小球A 、B 、C ,其中小球A 带有2.0×10-5C 的正电荷,小球B 、 C 不带电.现在让小球C 先与球A 接触后取走,再让小球B 与球A 接触后分开,最后让小 球B 与小球C 接触后分开,最终三球的带电荷量分别为qA= , qB= ,qC= . 图1—1—2 图1—1—3

高中物理选修3-3知识点与题型复习

热学知识点复习→制作人:湄江高级中学:吕天鸿 一、固、液、气共有性质 1、组成物质的分子永不停息、无规则运动。温度T越高,运动越激烈,分子平均动能。 注意:对于理想气体,温度T还决定其内能的变化。 扩散现象:相互渗透的反应 2、分子运动的表现 布朗运动:看不见的固体小颗粒被分子不平衡碰撞,颗粒越大,运动越 3、分子间同时存在引力与斥力,且都随着分子间距r的增加而。 (1)分子力的合力F表现:是为F引还是F斥?看间距与分界点r0关系,看下图 当r=r0时,F引=F斥,分子力为0; 当r>r0时,F引>F斥,分子力表现为 当r

非晶体:无确定的熔点。 → 物理性质:各向同性。原子排列:无规则 2,、同一种物质可能以晶体与非晶体两种不同形态出现。如碳形成的金刚石与石墨 3、有些晶体与非晶体可以相互转化。 4、常考晶体有:金刚石与石墨、石英、云母、食盐。常考非晶体有:玻璃、蜂蜡、松香。 三、热力学定律→研究高考对象为→主要还是理想气体 1、热力学第一定律:ΔU =W+Q 表达式中正、负号法则:如下图 2、气体实验定律与热力学第一定律的结合量是气体的体积和温度,当温度变化时,气体的内能变化,当体积变化时,气体将伴随着做功,解题时要掌握气体变化过程的特点: (1)等温过程:内能不变,即ΔU=0。温度T ↑,则内能增加,ΔU >0 (2)等容过程:W=0。若体积V ↑,则气体对外界做功,W 取“—”负号计算。反之亦然 (3)绝热过程:Q=0。 3、再次强调:温度T 决定分子平均动能的变化。也决定理想气体的内能变化 四、气体实验定律→ 理想气体→P 、V 、T=t 0c+273 三个物理量关系 1、三条特殊线 (等温线:P 1V 1=p 2V 2 ) 2、液体柱模型 (1)明确点:P 液=egh 一般不用。当液体为汞时,大气压以 为单位时,高为h cm 时,P 液=h .计算气

人教版高中物理选修3-1知识点归纳总结

物理选修3- 1 知识总结 第一章第1节电荷及其守恒定律 、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分 ,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 、电荷量 1、 电荷量:电荷的多少。 2、 元电荷:电子所带电荷的绝对值 1.6 X 10 19C 3、 比荷:粒子的电荷量与粒子质量的比值。 第一章第2节库仑定律 一、 电荷间的相互作用 1、 点电荷:带电体的大小比带电体之间的距离小得多。 2、 影响电荷间 相互作用的因素 二、 库仑定律: 适用条件为真空中静止点电荷 计算时各量带入绝对值,力的方向利用电性来判断 第一章第3节电场电场强度 、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、 电场强度 1、 检验电荷与场源电荷 2、 电场强度 检验电荷在电场中某点所受的电场力 F 与检验电荷的电荷 q 的比值。 E F 国际单位:NC q 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、 点电荷的场强公式 F . Q E — k —2 q r 四、 电场的叠加 五、 电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线, 曲线的疏密程度表示场强的大小, 曲线上某点的切线方向表示场强的方向。 在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比, 成反比,作用力的方向在它们的连线上。 跟它们距离的平方 注意(1) (2)

高中物理选修3-1经典测试题及答案

高中物理选修3-1期末测试题(三) 班级: 姓名: 一,选择题(本题共10小题,共40分,每题有一个或多个选项符合题意,全部选对得4分,不全的得2分,有错项的得0分) 1.关于电场强度和磁感应强度,下列说法正确的是( ) A .电场强度的定义式q F E =适用于任何电场 B .由真空中点电荷的电场强度公式2r Q k E ?=可知,当r →0时,E →无穷大 C .由公式IL F B =可知,一小段通电导线在某处若不受磁场力,则说明此处一定无磁场 D .磁感应强度的方向就是置于该处的通电导线所受的安培力方向 2.甲、乙两个点电荷在真空中的相互作用力是F ,如果把它们的电荷量都减小为原来的2 1,距离增加到原来的 2倍,则相互作用力变为( ) A .F 8 B .F 21 C .F 41 D .F 16 1 3.如图所示,在真空中有两个等量的正电荷q 1和q 2,分别固定在A 、B 两点,DCE 为AB 连线的中垂线,现将一个正电荷q 由c 点沿CD 移到无穷远,则在此过程中( ) A .电势能逐渐减小 B .电势能逐渐增大 C .q 受到的电场力逐渐减小 D .q 受到的电场力先逐渐增大后逐渐减小 4.如图所示,A 、B 、C 、D 、E 、F 为匀强电场中一个边长为1m 的正六边形的六个顶点,A 、B 、C 三点电势分别为10V 、20V 、30V ,则下列说法正确的是( ) A . B 、E 一定处在同一等势面上 B .匀强电场的场强大小为10V/m C .正点电荷从E 点移到F 点,则电场力做负功 D .电子从F 点移到D 点,电荷的电势能减少20eV 5.一个阻值为R 的电阻两端加上电压U 后,通过电阻横截面的电荷量q 随时间变化的图象如图所示,此图象的斜率可表示为( ) A .U B .R C .R U D .R 1

(完整版)高中物理选修3-2知识点总结

高中物理选修3-2知识点总结 第一章 电磁感应 1.两个人物:a.法拉第:磁生电 b.奥期特:电生磁 2.产生条件:a.闭合电路 b.磁通量发生变化 注意:①产生感应电动势的条件是只具备 b ②产生感应电动势的那部分导体 相当于电源。 ③电源内部的电流从负极流向正 极。 3.感应电流方向的叛定: (1).方法一:右手定则 (2).方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4. 感应电动势大小的计算: (1).法拉第电磁感应定律: a.内容: b.表达式:t n E ??? =φ (2).计算感应电动势的公式 ①求平均值:t n E ??? =φ_ ②求瞬时值:E=BLV (导线切割类) ③法拉第电机:ω2 2 1BL E = ④闭合电路殴姆定律:)r (R I E +=感 5.感应电流的计算: 平均电流:t r R r R E I ?+?=+= )(_ φ 瞬时电流:r R BLV r R E I +=+= 6.安培力计算: (1)平均值: t BLq t r )(R BL L I B F ?=?+?= =φ_ _ (2). 瞬时值:r R V L B BIL F +==22 7.通过的电荷量:r R q t I +?= - = ??φ 注意:求电荷量只能用平均值,而不 能用瞬时值。 8.互感: 由于线圈A 中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B 中 激发了感应电动势。这种现象叫互感。 9.自感现象: (1)定义:是指由于导体本身的电流发 生变化而产生的电磁感应现象。 (2)决定因素: 线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。另外, 有铁心的线圈的自感系数比没有铁心时要大得多。 (3)类型: 通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH ),微 亨(μH )。 10.涡流及其应用 (1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。一般来说,只要空间有变化的磁通量,其中的导体就会产生感应电流,我们把这种感应电流叫做涡流 (2)应用: a.新型炉灶——电磁炉。 b.金属探测器:飞机场、火车站安全检查、扫雷、探矿。 第二章 交变电流 一.正弦交变电流 1.两个特殊的位置 a.中性面位置: 磁通量ф最大,磁通量的变化率为零,即感应电动势零。

相关主题
文本预览
相关文档 最新文档