4种太阳能水泵的工作原理
- 格式:wps
- 大小:24.00 KB
- 文档页数:2
一、系统运行原理图: 热泵温度探头循环水泵电脑控制系统泄空阀电磁阀增压泵温度探头排污阀水位传感器温度探头贮热水箱温度探头溢流二、系统运行原理1、正常情况下,太阳能定温加热在光照条件下,当太阳集热器内水温达到设定水温时(可在0~100℃之间任意设定,一般设定在45~55℃之间),电脑控制器使供冷水电磁阀自动打开,自来水进入太阳集热器底部,同时将太阳集热器顶部达到设定温度的热水顶入储热水箱;当太阳集热器顶部水温低于设定温度时(一般定在40~45℃之间),电脑控制器使供冷水电磁阀自动关闭。
如此运行,不断将达到设定温度的热水顶入储热水箱储存。
2、储热水箱满水位时,太阳能温差循环加热当储热水箱水满时,为了防止水满溢流,电脑控制器使太阳能系统自动转入温差循环。
当太阳集热器水温高于储热水箱水温时,循环水泵自动启动,将储热水箱内较低温度的水泵入太阳集热器继续加热,同时将太阳集热器内较高温度的热水顶入储热水箱。
如此,通过使储热水箱水温升高的方法储存太阳集热器吸收的太阳能。
当用户使用热水,使储热水箱水位下降后,电脑控制器使太阳能系统自动转入定温加热。
3、太阳能不足时,自动启动热泵辅助加热电脑控制器将随时监测储热水箱水温,当水箱水温达不到使用要求时,自动启动热泵辅助加热,以保证用热水。
4、储热水箱水位控制PLC控制器将随时监测储热水箱水位。
在天气正常的情况下,储热水箱的水位在一天中不同的时间将达到不同的水位。
如果在某一时间内,储热水箱的水位没有达到正常的水位,说明太阳能产热水不足或用户用热水过度,此时,PLC控制器使热泵自动启动,当达到正常水位时,PLC使热泵自动停止。
5、储热水箱水温控制当由于循环散热等原因,使储热水箱的水温低于设定值时(一般应设定在45~55℃之间),PLC控制器会自动根据情况选择加热方式。
当太阳能正常时,自动启动太阳能循环水泵,通过太阳能加热储热水箱内的水;当太阳能不足时,自动启动热泵,加热到设定温度,热泵自动停止。
太阳能热水器循环泵控制原理
太阳能热水器循环泵的控制原理主要包括以下几个方面:
1. 温度控制:通过测量太阳能集热器的出口水温和热水储存箱的水温,当太阳能集热器的出口水温大于热水储存箱的水温时,循环泵启动;当太阳能集热器的出口水温小于热水储存箱的水温时,循环泵停止。
这样可以确保热水始终保持在一个合适的温度范围内。
2. 时间控制:此外,循环泵的工作时间也可以进行控制。
比如可以设定一个特定的工作时间段(比如上午8点到下午6点),只在这个时间段内启动循环泵,而在其他时间段内停止循环泵。
这样可以避免在不需要热水的时候浪费能源。
3. 光照控制:太阳能热水器的循环泵也可以根据太阳光的强弱进行控制。
比如可以设置一个光敏传感器,当太阳光强度较大时,循环泵启动,利用太阳能进行热水加热;当太阳光强度较弱或太阳下山时,循环泵停止。
综合上述控制原理,可以通过温度传感器、时钟控制和光敏传感器等组件来实现太阳能热水器循环泵的自动控制,实现节能环保的热水供应。
太阳能热泵分类太阳能热泵是一种利用太阳能和热泵技术相结合的新型能源设备。
它可以将太阳能转化为热能,提供给建筑物或者工业设备使用。
根据不同的工作原理和应用领域,太阳能热泵可以分为以下几类。
一、空气源太阳能热泵空气源太阳能热泵利用空气中的热能来供暖或者制冷。
通过热泵系统,太阳能热泵可以将空气中的热能提取出来,然后通过蒸发器和冷凝器的工作循环,将热能转移到建筑物内部或者外部的热源中。
这种热泵具有安装方便、成本低廉的特点,因此在家庭和小型商业建筑中广泛应用。
二、水源太阳能热泵水源太阳能热泵是利用水体中的热能来供暖或者制冷。
与空气源太阳能热泵相比,水源太阳能热泵的工作效率更高,因为水的热容量比空气大很多。
水源太阳能热泵通常通过水泵将水送入蒸发器中,然后利用热泵系统将水中的热能转移到建筑物内部或者外部的热源中。
这种热泵适用于需要大量热能供应的大型建筑物和工业设备。
三、地源太阳能热泵地源太阳能热泵是利用地下土壤中的热能来供暖或者制冷。
地源太阳能热泵通过埋设在地下的地源换热器,将土壤中的热能转移到热泵系统中。
由于地下土壤的温度相对稳定,地源太阳能热泵具有较高的工作效率和稳定性。
这种热泵适用于各种规模的建筑物,尤其适用于需要长时间稳定供暖的地区。
四、海水源太阳能热泵海水源太阳能热泵是利用海水中的热能来供暖或者制冷。
海水源太阳能热泵通常通过水泵将海水送入蒸发器中,然后利用热泵系统将海水中的热能转移到建筑物内部或者外部的热源中。
由于海水的热容量较大,海水源太阳能热泵具有较高的工作效率和稳定性。
这种热泵适用于海滨地区和需要大量热能供应的大型建筑物。
太阳能热泵是一种环保、高效的能源设备,可以利用太阳能为建筑物或者工业设备提供热能。
根据不同的工作原理和应用领域,太阳能热泵可以分为空气源、水源、地源和海水源太阳能热泵。
这些热泵在不同的环境中具有各自的优势和适用性,为人们提供了多种选择。
未来,随着技术的不断进步和应用范围的扩大,太阳能热泵有望在能源领域发挥更大的作用。
太阳能上水原理
太阳能上水是利用太阳能将水抽取到高处的一种方法。
其工作原理如下:
1. 太阳能收集:太阳能上水系统首先需要安装太阳能集热器,通常是一些太阳能光伏板。
太阳能光伏板将太阳光转化为电能,然后将电能转化为动力能,用于驱动水泵。
2. 水泵工作:电能通过电线传送到水泵,启动水泵工作。
水泵将抽取地下水或水源地的水,然后通过管道输送至目标位置。
3. 上水过程:通过管道输送的水会被输送至高处的储水池或水箱。
当水箱中的水位达到一定高度时,水泵会停止工作,确保水箱不会溢出。
需要注意的是,太阳能上水系统需要依赖于太阳能的光照程度。
在太阳光照强度不足或天气不好的情况下,系统的工作效率可能会降低。
因此,在选择使用太阳能上水系统时,需要考虑当地的太阳能资源和气候条件。
总而言之,太阳能上水系统利用太阳能收集器将太阳能转化为电能,驱动水泵将水抽取到高处储存,实现了可再生能源的利用和高效的水资源管理。
循环式太阳能热水器的强制循环式和自然循环式1、强制循环式太阳能热水器这是在集热器和贮热器之间设有一个循环水泵相连接,以循环水泵为动力,将贮热器的水强制通过集热器来获取热量,再回到贮热器,不断循环,提高水温。
这种热水器的优点是:贮热器的安装位置不受集热器安装位置的影响。
贮热器中可安装辅助热源,以实现常年供应热水。
不设辅助热源的热水器,循环泵的开、停受集热器水温控制;设辅助热源的,冷水补充和循环泵开、停亦由统一的控制电路控制。
但这类热水器的结构较复杂、造价较高,目前国内家庭用的尚无商品化生产,主要生产一些大容量供集体用的强制循环太阳能热水器。
2.自然循环式太阳能热水器这是由1个乎板集热器和1个贮热器连接成的热水器,依靠集热器水温变化产生的液位差,通过敷设在贮热器内高、低不同的管道,不断循环贮热器的水来提高水温。
这类热水器适合于一般城市家庭使用,但它的200升以上的贮热器必须安装在乎板集热器的顶部,工作状态时的全率。
为增大集热面积,平板集热器采用扁盒式结构为主,表面涂以吸收系数和发射系数相等的非选择性黑色涂料,除接近太阳辐射的表面外,衬垫保温材料保温,在离集热板接受辐射表面15毫米处覆盖透射率大于o.75的钢化玻璃。
3.贮热器一个容积为200毫升的简体,内敷高、低不等的溢、进水循环管,高、低温热水取水管,浮球式水位控制器;外面用聚苯乙烯或聚氨酯整体发泡为保温材料,为了保证循环正常,贮热器要放在集热器的顶部,但它给热水器带来安装稳定性较差的缺点。
3。
外壳。
它有2个有一定强度的金属框架,用来安放贮热水器和集热器。
装配时把它用8个螺栓连成一个整体,这样便于运输和安装。
外壳底部留有自然排水口,以保证热水器在雨天不积水。
4.搁架。
自然循环太阳能热水器与闷晒式双筒热水器不一样,它的工作重量在300千克以上,顶部要文承一个200千克以上的贮热器,故而必须有强度较好的金属搁架,一般用角钢焊接而成,外面涂以防锈漆,以防止锈蚀。
系统组成及工作原理1.1 光伏水泵系统的结构图由图1可知,系统利用太阳电池阵列将太阳能直接转变成电能。
经过DC/DC升压,和具有TMPPT功能的变频器后输出三相交流电压驱动交流异步电机和水泵负载,完成向水塔储水功能。
其中主要包括4部分:太阳电池阵列;具有TMPPT功能的变频器;水泵负载;储水装置。
1.2 变频器主电路及硬件构成本系统所采用的主电路及硬件控制框图如图2所示。
主电路DC/DC部分采用性能优越的推挽正激式电路进行升压;DC/AC部分采用三相桥式逆变电路。
主功率器件采用ASIPM(一体化智能功率模块)PS12036,系统控制核心由16位数字信号控制器dsPIC30F2010构成。
外围控制电路包括阵列母线电压检测和水位打干检测电路。
系统首先通过初始设置的工作方式和PI参数工作,然后由MPPT子程序实时搜索出的电压值作为内环CVT的给定,通过PI 调节得到工作频率值,计算出PWM信号的占空比,实现光伏阵列的真正最大功率跟踪(TMPPT),并保持异步电机的V/f比为恒值。
系统将MPPT和逆变器相结合,利用ASIPM模块自带的故障检测功能进行检测和保护,结构简单,控制方便。
1.2.1 DC/DC升压电路简述1.2.1.1主电路选择对于中小功率的光伏水泵来说,光伏阵列电压大都是低压(24v、36v、48V),对于升压主电路的选择,人们一般选择推挽电路,因为推挽电路变压器原边工作电压就是直流侧输入电压,同时驱动不需隔离,因此比较适合输入电压较低的场合。
但是偏磁问题是制约其应用的一大不利因素,功率管的参数差异和变压器的绕制工艺都有可能使推挽电路工作在一种不稳定状态。
基于诸多因素的考虑,本系统采用了结构新颖的推挽正激电路,此电路拓扑不仅克服了偏磁问题,而且闭环控制也比较容易(二阶系统)。
1.2.l.2推挽正激电路简单分析推挽正激电路如图2所示,由功率管S1及S2,电容C8和变压器T组成,变压器T原边绕组N1及N2具有相同的匝数,同名端如图2所示。
光伏水泵方案1. 引言随着全球对可再生能源的重视和需求增加,光伏水泵作为一种使用光伏技术驱动的水泵系统逐渐受到关注。
光伏水泵方案能够利用太阳能光伏电池板将太阳能转换为电能,从而实现无需外部电源就能驱动水泵的功能。
本文将介绍光伏水泵方案的原理、组成部分以及应用领域。
2. 光伏水泵方案的原理光伏水泵方案的核心原理是利用光伏电池板将太阳能转换为电能,然后通过控制器将电能传输给水泵驱动器,最终驱动水泵工作。
光伏电池板通常由多个光伏电池组成,当太阳光照射到光伏电池板上时,光能被光伏电池吸收并转换为直流电能。
这些直流电能经过控制器处理后,将满足水泵正常运行所需的电能传输给水泵驱动器,从而带动水泵工作。
3. 光伏水泵方案的组成部分光伏水泵方案主要由以下几个组成部分组成:3.1 光伏电池板光伏电池板是光伏水泵方案的核心组件,它由多个光伏电池组成。
光伏电池通过吸收太阳光的能量将其转换为电能。
光伏电池板一般使用硅材料制作,其中夹层结构中的P型和N型硅层之间形成PN结,当太阳光照射到PN结上时,会产生电子与空穴对。
该电荷对会产生电流,从而形成直流电能。
3.2 控制器控制器是光伏水泵方案中起控制作用的关键设备。
它负责监测光伏电池板输出的电能并将其传输给水泵驱动器。
控制器通常具有多种功能,例如保护电池过充、过放、过流等,同时也能实现对水泵的控制与监测。
3.3 水泵驱动器水泵驱动器是将控制器传输过来的电能转换为机械能,驱动水泵工作的设备。
水泵驱动器可以根据水泵的不同需求,实现不同的运行方式和功能。
例如,它可以控制水泵的起停、调整水泵的流量和压力等。
3.4 水泵水泵是光伏水泵方案中的核心设备,它通过水泵驱动器的驱动来实现将水从低处抽取到高处的目的。
水泵的种类和参数根据具体的应用需求而定,可以是离心泵、深井泵等。
4. 光伏水泵方案的应用领域光伏水泵方案由于其可再生、环保的特点,在各个领域都得到了广泛应用。
以下是几个典型的应用领域:4.1 农业灌溉光伏水泵方案可以解决农业灌溉中的用水问题。
太阳能热水器循环泵工作原理1. 导言:太阳能热水器,生活中的“小太阳”大家好,今天咱们聊聊家里那个隐秘的“太阳”,没错,就是咱们的太阳能热水器。
它可能不像太阳那样高高在上,但它可真是咱们日常生活中的好帮手。
你有没有想过,它是怎么把太阳的热量变成热水的呢?关键的角色之一就是循环泵。
别小看了它,这个小家伙可是热水器工作中的大功臣!1.1 太阳能热水器的基本工作原理首先,我们得了解一下太阳能热水器的基本工作原理。
太阳能热水器主要分为集热器和储水箱。
集热器就像是一个大大的太阳能吸热器,专门把阳光变成热量。
这个过程呢,就像是大自然中的“炒锅”,把太阳的热量炒得滚烫。
然后,这些热量通过循环系统传输到储水箱里,咱们的水箱就是存储热水的地方。
1.2 循环泵的“幕后功臣”好了,说了这么多,大家可能会问,热水是怎么从集热器到储水箱的呢?这就要说到循环泵了。
循环泵就是这个过程中的“幕后功臣”。
它的工作就是把加热后的水从集热器里抽出来,然后推送到储水箱里。
简单来说,循环泵就是水的“快递员”,把水从一个地方送到另一个地方,保证热水能迅速到达咱们的浴室。
2. 循环泵的工作机制:让我们深入探讨2.1 工作原理的“细节”现在我们来“拆解”一下循环泵的工作机制。
循环泵的核心部分是一个小电动机,它通过转动一个叫做叶轮的部件来工作。
想象一下,叶轮就像是一个小小的风扇,通过旋转把水推送出去。
水经过叶轮的“助推”,变得更加有力地流动到储水箱中。
这样,咱们就能有源源不断的热水使用啦。
2.2 温控系统的“精细调控”不过,光有一个循环泵可还不够,还得有一个温控系统来“把关”。
温控系统的作用就是实时监测水温,并且根据需要来控制循环泵的工作。
如果水温还不够热,温控系统就会让循环泵持续工作;如果水温已经达到预期,系统就会自动停止循环泵的工作。
这样,咱们就不会浪费能源,也能保持热水的稳定性。
3. 循环泵的维护与保养:简单又实用3.1 如何进行“日常护理”说到这里,大家可能会担心循环泵的维护问题。
太阳能水泵工作原理
太阳能水泵的工作原理是太阳能电池在光照下将光能转换成电能,并通过控制器把电能转变成机械能,驱动水泵工作。
太阳能电池板在太阳光下被照射后,在光电效应的作用下产生电子流,使太阳能电池的两端产生电压,通过控制器对电压进行变换,使之达到所需的直流电压。
同时将直流电能转换成与之相适应的交流电能。
这种现象叫做光电效应。
光电效应只发生在光照物体上,当光照强度降低时,半导体材料的电阻率随之降低,当光照消失时,电阻率随之恢复正常。
所以光能也可以用来发电。
在光伏发电中,把太阳能电池板做成一个半导体器件,当太阳光照射到太阳能电池板上时,一部分光能被吸收转化为电能;当有电流通过时,就会产生电压和电流。
直流电通过控制器送到动力蓄电池中储存起来;当需要用电时,控制器控制动力蓄电池将储存的直流电变成交流电输出。
在蓄电池中储存的电能就是太阳能电池板转化出来的电能。
它经过逆变装置转换成高频交流电输出,通过控制电路送入交流电机中带动水泵工作。
—— 1 —1 —。
水泵工作原理水泵是一种常见的机械设备,用于将水或其他流体从一处转移至另一处。
它是许多领域中的重要工具,包括农业、工业、建筑和家庭用途。
本文将介绍水泵的工作原理和主要构造,以及常见类型和应用领域。
一、工作原理水泵的工作原理基于流体力学中的压力和流体的连续性原理。
当水泵启动时,电动机或其他动力源将能量转化为动能,驱动泵的转子旋转。
这个旋转运动通过叶轮或螺旋形叶片,产生了一个低压区域,从而将液体吸入泵内。
随着转子的旋转,液体被离心力推向泵出口,增加压力并推动液体流动。
二、主要构造1. 泵体:水泵的外部结构,通常由金属或塑料制成,用于保护内部部件。
泵体内有吸入口和排出口,用于引导液体的进出。
2. 叶轮:位于泵体内部的旋转部件,通常由几片对称的叶片组成。
当叶轮旋转时,它将液体推向泵体出口。
3. 导向壳:位于叶轮后面的部件,用于引导流体并改变其流动方向,以提高泵的效率。
4. 密封装置:用于防止液体泄漏到泵体外部。
常见的密封装置包括填料密封、机械密封和磁力密封等。
5. 轴承:用于支撑转子并减少摩擦。
常见的轴承类型包括滚动轴承和滑动轴承。
三、常见类型根据不同的工作原理和应用需求,水泵可以分为多种类型。
1. 离心泵:是最常见的水泵类型,通过叶轮的旋转产生离心力,将液体推向泵出口。
离心泵适用于大流量、低压力的应用,如农业灌溉和家庭供水。
2. 轴流泵:通过叶轮的旋转,将液体沿泵轴方向推送。
轴流泵适用于大流量、中等压力的应用,如排水系统和冷却循环。
3. 混流泵:结合了离心泵和轴流泵的特点,既具有离心泵的高压力能力,又具有轴流泵的大流量特性。
混流泵适用于中等流量、中高压力的应用,如供水系统和消防系统。
4. 螺杆泵:采用螺杆和泵体之间的螺旋槽结构,通过螺旋运动将液体推送。
螺杆泵适用于高黏度液体和固体颗粒含量较高的液体,如污水处理和石油行业。
四、应用领域水泵在各个领域中都有广泛的应用。
1. 农业:用于农田灌溉、温室水源和农作物施肥。
太阳能热水器循环泵工作原理你对太阳能热水器的循环泵工作原理感兴趣?那可真是个好话题!太阳能热水器就像咱们的太阳能小帮手,能把阳光转化为热水,简直太神奇了。
今天就来聊聊这其中的奥秘,咱们从头说起。
1. 太阳能热水器的基本工作原理1.1 太阳能热水器的核心是一个大大的太阳能集热器。
它的任务就是像“太阳的海绵”一样,吸收阳光,把阳光变成热量。
想象一下,它就像个“太阳的饭桶”,把阳光一口口地“吃”下去,然后慢慢消化,最终产生热水。
1.2 热水器里有个循环泵,就是在这个“吃饭”过程中扮演了关键角色。
它像是厨房里的大厨,把热量传递到你家那个水龙头上。
说白了,这个小家伙就像是太阳能热水器的“搬运工”,在热水和冷水之间不停地“搬运”着热量。
2. 循环泵的工作原理2.1 说到循环泵,咱们得先搞清楚它的工作原理。
简单来说,循环泵就是利用电动机推动水流动。
它的“工作方式”有点像是咱们平时用的“水龙头”,只不过它是通过一个小小的电动机来实现的。
电动机一启动,泵里的叶轮开始转动,就像咱们用力转动水龙头一样,水在管道里被推动着流动。
2.2 那么,为什么水要在系统里循环呢?这就要说到咱们的热水器了。
热水器里的水温可是随时在变化的,太阳一露脸,水温就涨;太阳一躲起来,水温就降。
这时候,循环泵就要发挥它的“神奇魔力”了。
它的工作就是让热水在系统里不断循环,确保热水器里的水温保持在一个适合的范围,让你随时都能享受到温暖的热水。
3. 循环泵的实际应用3.1 在实际使用中,循环泵可是大显身手的好帮手。
比方说,夏天太阳高挂,热水器里的水温蹭蹭上涨,这时候循环泵就开始忙碌了。
它把热水从集热器里送到储水箱,冷水又被带到集热器里去吸收更多的太阳热量。
这就像是一个精密的“冷热交换机”,确保你家的热水始终舒适可控。
3.2 不过,有时候循环泵也会遇到点小麻烦。
比如说,它可能因为长时间不使用或者系统维护不到位而出现问题。
别急,这时候可以试试检查电动机是否正常,或者看看管道是否有堵塞。
太阳能热泵工作原理太阳能热泵是一种利用太阳能作为能源的环保供暖技术。
它可以将太阳能转化为热能,用于供暖、热水等方面。
太阳能热泵的工作原理非常简单,下面将详细介绍。
一、理论原理太阳能热泵的工作原理基于热力学的基本原理,利用热力学循环原理实现能源转换。
太阳能热泵工作主要分为蒸发、压缩、冷凝和膨胀四个过程。
首先,太阳能热泵中的低温工质(一般是制冷剂)通过蒸发器吸收太阳能散发的热量,从而蒸发变为气体。
这个过程需要从外部环境中吸收热量,达到吸热效果。
接下来,该气体通过压缩机进行压缩,温度和压力随之升高。
这将使气体的焓值提高,以便能够输送到需要供暖的场所。
随后,高温高压的气体进入冷凝器,在冷凝器中通过换热的方式将热量传递给热水,使气体冷却并变为液体。
这个过程释放出的热量可以被利用于供暖、热水等方面。
最后,液体通过膨胀阀进入蒸发器,降低其压力和温度,从而重新开始一个新的循环。
二、组成部分太阳能热泵一般由蒸发器、压缩机、冷凝器、膨胀阀和循环水系统等组成。
蒸发器是太阳能热泵中的核心组件,用于吸收太阳能的热量。
它通过与外部环境发生热交换,将低温工质蒸发成气体,从而吸收外部热量。
压缩机是太阳能热泵中的另一个重要组件,负责将低温低压的气体压缩成高温高压的气体。
冷凝器是太阳能热泵中的换热器,在这里,高温高压的气体通过与热水进行换热而冷却并凝结成液体。
膨胀阀用于控制工质流动的压力和流量,使其能够再次进入蒸发器继续循环。
循环水系统是太阳能热泵中的另一个重要组成部分,主要用于将热量传送到需要供暖的区域,以实现供暖和热水等需求。
三、工作流程太阳能热泵的工作流程可以简单概括为以下几个步骤:1. 太阳能电池板将太阳能转化为电能,供给太阳能热泵系统使用。
2. 太阳能热泵系统通过循环水系统吸收外界热量,使制冷剂蒸发并吸收热量。
3. 蒸发的制冷剂通过压缩机进行压缩,温度和压力升高。
气体进一步释放热量。
4. 高温高压气体进入冷凝器,通过与循环水系统的热交换,将热量传递给循环水。
太阳能热水系统控制及原理一、智能型太阳能、热泵互补热水系统原理说明:注:进水在集热器入口,集热循环水泵出口,集热水箱底部出水供用户使用。
太阳能供水系统原理说明新能源太阳能中央热水器由以下四大部分组成:太阳能集热器:吸收太阳能,将光能转化为热能,使冷水在集热器内被加热;保温水箱:储存热水,可保温3天,内胆为不锈钢,外包8厘米保温层,最外层是铝合金外壳;热泵辅助加热系统:用于阴雨天辅助加热:供热水管道:将经过增压泵加压后的热水引向各用水点,主管道有保温层,未端有回水管。
晴天,当太阳能把集热器内的冷水加热至55C时(该温度可调),冷水管上的电磁阀门自动打开,冷水被自来水压力压入集热器内,集热器内的热水被挤出,然后进入到保温水箱中储存待用,当冷水到达集热器出口处的温度探头时,探头温度底于55r,电磁阀门就立刻关闭,冷水停留在集热器内继续被太阳能加热,2-5分钟后,水温又达到55°C时,电磁阀门再次打开,集热器内的热水又被挤到保温水箱中,按此规律,一次又一次的产生热水进入水箱,水箱内热水逐渐增加,一直增加到水箱水满为止。
水箱水满后,就停止进水,如果还有太阳,为了充分利用太阳能,循环泵会自动启动,把水箱内55 C的热水抽出来,经过太阳能集热器循环加热,使水温进一步升高至60-70 C,当水温达到70C时,就停止循环加热,限制水温不要超过70 C,以免烫伤人,又可防止结水垢(产生水垢的温度条件是水温超过80C)。
热泵加热系统只有在太阳能光照不足时才启动,为最大限度地利用太阳能,减少电能的消耗,我们将设定3个时间段检测保温水箱的水位。
在上午10: 30〜11: 30,如果保温水箱内热水水位还不到40%勺位置,则自动启动热泵加热系统,往保温水箱补充50C的热水,如果水位达到设定值,则热泵系统停止工作。
同样,在中午12: 30〜1: 30,系统自动检测保温水箱70%勺水位,在下午3: 30〜6: 30,系统自动检测保温水箱100%勺水位。
太阳能热水器的工作原理图解与结构图解太阳能热水器具有安装使用方便、节能效果明显的优点,可以吸收太阳能辐射能,并且把能量转换成热能,从而产生热水的一种设备。
在家庭用热水、商业用热水、工业制造用热水等方面都有广泛的应用,下面小编就为大家介绍一下太阳能热水器的工作原理与结构图解。
太阳能热水器工作原理太阳能热水器工作原理图1、吸热过程真空管式太阳能热水器:太阳辐射透过真空管的外管,然后被集热镀膜吸收后沿内管壁传递到管内的水,此时水受热而温度逐渐升高,比重减小而上升,形成一个向上的动力,构成一个热虹吸系统。
随着热水的不断上移并储存在储水箱上部,同时温度较低的水沿管的另一侧不断补充如此循环往复,最终整箱水都升高至一定的温度。
平板式太阳能热水器:其中介质在集热板内因热虹吸自然循环,随后将太阳辐热量及时传送到水箱内,介质也可通过泵循环实现热量传递,因此就有源源不断的人能来保持水温的稳定。
2、循环管路直插式结构的真空管式太阳能热水器,热水是因为通过重力的作用而提供动力;然而平板式则通过自来水的压力提供动力。
不过这两种太阳能集中供热系统均采用泵循环。
由于太阳能热水器集热面积不大,考虑到热能损失,一般不采用管道循环。
太阳能热水器自然循环集热原理示意图3、系统工作1)温差控制集热循环集热器温测器和水温感应器置入在太阳能热水地暖系统中,能够很好地吸收太阳能辐射后,促使集热管温度上升,然后当集热器温度和水箱温度水温差到达△t设定值时,通过检测系统发出指令,循环泵将中央热水器中的冷水输入集热器中,然而水被加热后又再次回到水箱中,使水箱内的水达到设定的温度。
2)地暖管道循环系统这个系统是增加热水循环泵作为不同点,然后通过控制器更好得控制地暖管道循环为工作原理。
然后再通过当水温达到设定温度时,自动启动地暖循环泵,使高温水通过地暖盘管在室内循环,从而使室内温度不断提高。
如果水箱水温开始低于某一设定值时,应当将地暖管道循环泵进行自动停止为最好的方式。
太阳能带动潜水泵工作原理
太阳能带动潜水泵的工作原理是利用太阳能光伏电池板将太阳能转化为电能,然后通过电线连接到潜水泵的电动机,将电能转化为机械能驱动潜水泵运转。
具体工作原理如下:
1. 太阳能光伏电池板:太阳能光伏电池板是由多个太阳能电池组成的,将太阳光线辐射转化为直流电能。
2. 光伏电池板输出电能:光伏电池板通过连接电线将产生的直流电能传输到控制器或直接连接到潜水泵电动机。
3. 控制器(可选):控制器用于监测太阳能电池板的输出电压和电流,以及电池的充电状态,并通过控制开关来保护电池和潜水泵。
4. 接线盒:接线盒用于将电线从光伏电池板引出,并将其连接到控制器或潜水泵电动机上。
5. 潜水泵电动机:潜水泵电动机将太阳能电能转化为机械能,通过旋转轴驱动水泵的叶轮旋转,从而产生排水或供水的效果。
6. 水泵:水泵通常位于水源下方,通过吸水管将水吸入泵体,然后通过出水口将水排出或供水。
7. 水管:水管用于连接出水口,将水输送到需要排水或供水的地方。
8. 控制器(可选):控制器可根据需要控制潜水泵的启停、工作时间等参数。
太阳能水泵原理
太阳能水泵原理是利用太阳能光能将其转换为电能,然后通过电能驱动水泵工作。
具体原理如下:
1.光伏发电:太阳能电池板(也称光伏板)将太阳能光线转化
为直流电能。
光伏板由多个太阳能电池单元组成,每个太阳能电池单元都由两层硅材料构成,其中一层注入掺杂物质形成P
型半导体,另一层注入掺杂物质形成N型半导体,形成PN结。
当太阳能光线照射在PN结上时,光子能量会激发电子,从而
产生电流。
2.电能储存:光伏发电产生的直流电能一般需要经过储存装置
进行储存,最常见的是通过充电控制器将电能储存于电池中。
这样可以保证夜间或阴天时仍有足够的电能供水泵使用。
3.电能控制:太阳能水泵系统需要通过电能控制设备进行控制
和调节。
控制器起到调节光伏电池板和水泵之间的直流电能供应的作用,确保水泵能够正常工作。
控制器还会根据太阳能电池板输出的电量,自动调整水泵的工作状态,以提高系统效率。
4.水泵工作:当光伏发电产生的电能被调整为适合水泵工作的
电压后,电能被传输到水泵。
水泵一般采用直流电机,可以将电能转化为机械能,从而驱动水泵运转。
水泵将地下或水源中的水吸入,并通过水管将水提升到所需高度或输送到需要的地方。
总体来说,太阳能水泵利用光伏发电将太阳能转化为电能,并
经过电能储存和控制,最终驱动水泵工作,实现水的提升和输送。
这种系统具有低碳环保、节能高效等优势,可以广泛应用于水利灌溉、农田灌溉、饮用水供应等领域。
太阳能热水器的工作原理
太阳能热水器是一种利用太阳能将水加热的设备,它能够有效地利用太阳能资源,实现热水的供应。
其工作原理主要包括太阳能的采集、传导、储存和供热四个过程。
1. 太阳能的采集
太阳能热水器通过集热器将太阳辐射能转化为热能。
集热器通常由一系列黑色
吸热板组成,这些吸热板表面涂有特殊的吸热涂层,能够有效地吸收太阳辐射能,并将其转化为热能。
2. 热能的传导
吸收到的热能通过集热器中的管道传导到储水箱中。
储水箱通常位于集热器的
下方,其内部装有一根或者多根导热管,这些导热管连接着集热器和储水箱。
当太阳能热水器工作时,热能通过导热管传导到储水箱中的水体中。
3. 热能的储存
储水箱中的水体在接收到热能后会逐渐升温。
储水箱通常采用保温材料进行包裹,以减少热能的散失。
同时,储水箱还配备有温度传感器和控制器,能够监测水温并自动控制热水的供应。
4. 热水的供热
当用户需要热水时,储水箱中的热水会通过管道输送到热水龙头或者热水器中。
在使用过程中,热水会经过水泵的推动,保证热水的供应。
如果太阳能热水器中的热水不足,系统还可以自动切换到其他热水供应方式,如电加热或者燃气加热。
总结:
太阳能热水器的工作原理是通过集热器将太阳辐射能转化为热能,然后通过导热管将热能传导到储水箱中的水体中,使水体升温。
储水箱中的热水可以通过管道供应到用户的热水龙头或者热水器中。
太阳能热水器具有环保、节能的特点,可以有效地利用太阳能资源,为用户提供热水。
微型交流水泵:微型交流水泵即电源为交流电的小型水泵。
水泵是输送液体或使液体增压的机械。
它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。
交流水泵的换向是通过市电的50HZ的频率变化的,其转速很低,交流水泵里面没有电子元器件,可以耐高温,同样的扬程交流水泵的体积和功率是直流无刷水泵的5-10倍。
优点:价格便宜,生产厂家也比较多缺点:体积、噪音较大、重量高,携带不方便,对防护等级要求较高,使用不当有发生触电的可能。
有刷直流太阳能水泵:水泵工作时,线圈和换向器旋转,磁钢和碳刷不转,线圈电流方向的交替变化是随着电机转动的换向器和电刷来完成。
只要电机转动碳刷就会产生磨损,电脑水泵运行到一定的时候,碳刷磨损间隙变大,声音也会随之增大,连续运行几百小时之后碳刷就不能起到换向的作用了。
优点:价格低廉。
缺点:只要电机转动碳刷就会产生磨损,水泵运行到一定的时候,碳刷磨损间隙变大,声音也会随之增大,连续运行几百小时之后碳刷就不能起到换向的作用了。
无刷直流太阳能水泵(电机式):电机式无刷直流水泵是采用无刷直流电机加上叶轮之后组成的。
电机的轴与叶轮连在一起。
水泵的定子和转子之间是有间隙的,使用时间长了水会渗透进入电机里增加了电机烧坏的可能。
优点:无刷直流电机已标准化,有专门的厂家大批生产,成本比较低,效率高。
缺点:水泵的定子和转子之间是有间隙的,使用时间长了水会渗透进入电机里面电机很容易烧坏。
无刷直流磁力隔离式太阳能水泵:无刷直流水泵采用了电子组件换向,无需使用碳刷换向,采用高性能耐磨陶瓷轴及陶瓷轴套,轴套通过注塑与磁铁连成整体也就避免了磨损,因此无刷直流磁力式水泵的寿命大大增强了。
磁力隔离式水泵的定子部分和转子部分完全隔离,定子和电路板部分采用环氧树脂灌封,100%防水,转子部分采用永磁磁铁,水泵机身采用环保材料,噪音低,体积小,性能稳定。
可以通过定子的绕线调节各种所需的参数,可以宽电压运行。
优点:寿命长,噪音低可达35dB以下,可用于热水循环。
电机的定子和电路板部分采用环氧树脂灌封并与转子完全隔离,可以水下安装而且完全防水,水泵的轴心采用高性能陶瓷轴,精度高,抗震性好。
磁力驱动离心泵的优点还包括,完全无泄漏,内外转子间可有较大的间歇,采用非金属隔离套时,厚度不大于8mm,采用金属隔离套时厚度不大于5mm,隔离套的壁厚较大,隔离套被磨穿的可能性较小,隔离套与内外磁转子的间隙亦较大,磁力离心泵运行可靠,因轴封磨损造成的内磁转子与隔离套磨损的可能性小,隔离套装,拆卸方便,可在现场更换,维修方便,可应用于SIC轴承,耐磨性良好,使用寿命长,泵的转速不受电机限制。
可与电机转速不同,除此之外磁力离心泵还具有以下的优点:1 、磁力离心泵由于传动轴不需要穿入泵壳,而是利用磁场透过磁场和隔离套薄壁传动扭矩带动内磁转子,因此从根本上消除了轴封的泄露通道,实现完全密封。
2、磁力驱动泵传递动力时有过载保护作用。
3、磁力泵磁性材料与磁路设计有较高的要求外,其余部分技术要求不高。
4、磁力驱动泵的维护和检修工作量小。
缺点:1、磁力离心泵的效率比普通离心泵低,不能在流量低额定流量的30%下运行,更禁忌空转。
2、磁力离心泵由于隔离套材料的耐磨性一般较差,因此磁力泵一般用于输送不安固体颗粒的介质并严禁磁性颗粒材料进入泵内。
3、一般结构的磁力离心泵,允许输送含直径小于0.15mm,质量分数不超过5%的固体颗粒
的液体(超过时需要加辅助系统)。
4、泵与电机有联轴器链接,联轴器对中心线安装要求精度较高,对中不当时,会导致进口处轴承的损坏和防单面侧漏隔离套的磨损。
5、磁力离心泵的磁力驱动器,有同步传动和异步传动两种方式,同步传动的内,外磁转子都装有永磁体,故输送液体的温度必须低于永磁体允许的最高温度。
必须留有一定的富余量,钴、钐永磁体虽然可以达到350摄氏度,但是实际使用温度一般不超过260摄氏度,否侧高温可能造成永磁体失磁,特殊结构的磁力泵最高可到达450摄氏度、6、磁力离心泵对隔离套的材质及制造工艺要求较高,如果材料选择不当或者制造质量差时,隔离套经不起内外磁转子的磨损而产生磨损,一但破裂,输送的介质就会外溢,造成设备故障,影响装置正常运行。
7、磁力离心泵输送接介质温度超过规定时,需有外部提供冷却,如设置隔热腔,泵腔内注入压力高于密封压力的冷却液,冷却内磁转子和轴承,也可采用带夹层的隔离套,夹层内通入冷却液,或泵体设置冷却夹套和冷却盘管等,单结构复杂,成本较高。
与电机式直流无刷水泵,微型交流水泵,有刷直流水泵相比,磁力泵具有以下优点:1.泵轴由动密封变成封闭式静密封,彻底避免了介质泄漏。
可以水陆两用,并且完全防水。
2.无需独立润滑和冷却水,降低了能耗。
3.功耗小、效率高,且具有阻尼减振作用,减少了电动机振动对泵的影响和泵发生气蚀振动时对电动机的影响。
4.过载时转子会在陶瓷轴上打滑,对电机、泵有保护作用。