离心泵的工作原理
- 格式:doc
- 大小:38.04 KB
- 文档页数:4
离心泵的定义及工作原理离心泵是一种常见的机械泵,用于将液体从低压区域输送到高压区域。
它通过离心力将液体从中心向外推动,实现液体的输送。
离心泵通常由泵体、叶轮、轴、密封件等组成。
离心泵的工作原理如下:1. 泵体:离心泵的泵体通常由铸铁、不锈钢等材料制成,具有足够的强度和刚度,以承受液体的压力。
2. 叶轮:离心泵的叶轮是一个旋转的装置,通常由金属制成。
当泵的电动机启动时,叶轮开始旋转。
3. 轴:离心泵的轴连接电动机和叶轮,传递电动机的动力给叶轮,使其旋转。
4. 密封件:离心泵的密封件用于防止液体泄漏。
常见的密封方式包括填料密封和机械密封。
离心泵的工作过程如下:1. 启动电动机:当离心泵的电动机启动时,电能被转化为机械能,传递给叶轮。
2. 旋转叶轮:叶轮开始旋转,产生离心力。
离心力使液体从泵的吸入口进入泵体。
3. 增加压力:随着叶轮的旋转,液体被推向泵体的出口。
在叶轮的作用下,液体的速度增加,压力也随之增加。
4. 输送液体:当液体达到一定的压力后,它将被推送到管道或其他设备中,实现液体的输送。
离心泵具有以下特点:1. 高效率:离心泵的工作效率较高,能够将电能有效地转化为液体的压力能。
2. 广泛应用:离心泵适用于多种液体输送,包括清水、污水、化学液体等。
3. 简单结构:离心泵的结构相对简单,易于维护和操作。
4. 运行稳定:离心泵运行平稳,噪音较低。
5. 耐用性强:离心泵通常由耐腐蚀材料制成,能够适应多种恶劣环境。
总结:离心泵是一种常见的机械泵,利用离心力将液体从低压区域输送到高压区域。
它由泵体、叶轮、轴、密封件等组成。
离心泵的工作原理是通过电动机驱动叶轮旋转,产生离心力,将液体推送到出口。
离心泵具有高效率、广泛应用、简单结构、运行稳定和耐用性强等特点。
离心泵的工作原理离心泵是一种常见的流体机械设备,广泛应用于工业、农业、建筑等领域。
它的工作原理基于离心力的作用,通过旋转叶轮将液体吸入并通过管道输送。
离心泵主要由驱动装置、叶轮、泵壳和密封装置等组成。
下面将详细介绍离心泵的工作原理。
1. 工作原理概述离心泵的工作原理基于离心力的作用。
当泵的驱动装置启动时,驱动装置会使叶轮旋转。
叶轮的旋转会产生离心力,将液体从进口处吸入,并通过离心力的作用将液体推向出口。
离心泵的工作过程可以分为吸入过程和排出过程。
2. 吸入过程在离心泵的吸入过程中,叶轮的旋转会产生一个低压区域。
当液体进入泵壳后,叶轮的旋转会使液体产生离心力,从而使液体沿着叶轮的叶片被吸入。
离心泵通常配备有一个进口管道,通过这个管道将液体引入泵壳。
3. 排出过程在离心泵的排出过程中,叶轮的旋转会将液体推向出口。
当液体通过叶轮的叶片被吸入后,叶轮的旋转会将液体沿着叶轮的离心力方向推向出口。
离心泵通常配备有一个出口管道,通过这个管道将液体排出。
4. 泵壳和密封装置离心泵的泵壳是一个容纳叶轮和液体的外壳。
泵壳通常具有进口和出口,以及与叶轮配合的固定导向叶片。
泵壳的设计有助于提高泵的效率和性能。
离心泵通常还配备有密封装置,用于防止液体泄漏。
常见的密封装置包括填料密封和机械密封。
填料密封通常使用柔性填料填充密封腔,以防止液体泄漏。
机械密封则使用机械装置来实现密封,通常由一个旋转环和一个静态环组成。
5. 应用领域离心泵广泛应用于各个领域,包括工业、农业和建筑等。
在工业领域,离心泵常用于输送液体、循环冷却水和处理废水等。
在农业领域,离心泵常用于灌溉和排水系统。
在建筑领域,离心泵常用于供水和排水系统。
6. 总结离心泵是一种基于离心力作用的流体机械设备,通过旋转叶轮将液体吸入并通过管道输送。
它的工作原理包括吸入过程和排出过程,通过叶轮的旋转产生离心力来完成液体的吸入和排出。
离心泵在工业、农业和建筑领域都有广泛的应用,是现代社会不可或缺的重要设备之一。
离心泵的主要工作原理(1)叶轮被泵轴带动旋转,对位于叶片间的流体做功,流体受离心力的作用,由叶轮中心被抛向外围。
当流体到达叶轮外周时,流速非常高。
(2)泵壳汇集从各叶片间被抛出的液体,这些液体在壳内顺着蜗壳形通道逐渐扩大的方向流动,使流体的动能转化为静压能,减小能量损失。
所以泵壳的作用不仅在于汇集液体,它更是一个能量转换装置。
(3)液体吸上原理:依靠叶轮高速旋转,迫使叶轮中心的液体以很高的速度被抛开,从而在叶轮中心形成低压,低位槽中的液体因此被源源不断地吸上。
气缚现象气缚现象:如果离心泵在启动前壳内充满的是气体,则启动后叶轮中心气体被抛时不能在该处形成足够大的真空度,这样槽内液体便不能被吸上。
这一现象称为气缚。
为防止气缚现象的发生,离心泵启动前要用外来的液体将泵壳内空间灌满。
这一步操作称为灌泵。
为防止灌入泵壳内的液体因重力流入低位槽内,在泵吸入管路的入口处装有止逆阀(底阀);如果泵的位置低于槽内液面,则启动时无需灌泵。
(4)叶轮外周安装导轮,使泵内液体能量转换效率高。
导轮是位于叶轮外周的固定的带叶片的环。
这些叶片的弯曲方向与叶轮叶片的弯曲方向相反,其弯曲角度正好与液体从叶轮流出的方向相适应,引导液体在泵壳通道内平稳地改变方向,使能量损耗最小,动压能转换为静压能的效率高。
(5)后盖板上的平衡孔消除轴向推力。
离开叶轮周边的液体压力已经较高,有一部分会渗到叶轮后盖板后侧,而叶轮前侧液体入口处为低压,因而产生了将叶轮推向泵入口一侧的轴向推力。
这容易引起叶轮与泵壳接触处的磨损,严重时还会产生振动。
平衡孔使一部分高压液体泄露到低压区,减轻叶轮前后的压力差。
但由此也会引起泵效率的降低。
(6)轴封装置保证离心泵正常、高效运转。
离心泵在工作是泵轴旋转而壳不动,其间的环隙如果不加以密封或密封不好,则外界的空气会渗入叶轮中心的低压区,使泵的流量、效率下降。
严重时流量为零——气缚。
通常,可以采用机械密封或填料密封来实现轴与壳之间的密封。
1、离心泵的工作原理离心泵依靠旋转叶轮对液体的作用把原动机的机械能传递给液体。
由于作用液体从叶轮进口流向出口的过程中,其速度能和压力能都得到增加,被叶轮排出的液体经过压出室,大部分速度能转换成压力能,然后沿排出管路输送出去,这时,叶轮进口处因液体的排出而形成真空或低压,吸入口液体池中的液体在液面压力(大气压)的作用下,被压入叶轮的进口,于是,旋转着的叶轮就连续不断地吸入和排出液体。
2、容积泵的工作原理(回转式)动力通过轴传给齿轮,一对同步齿轮带动泵叶作同步反向旋转运动,使进口区产生真口,降介质吸入,随泵叶的转动,将介质送往出口,继续转动,出口腔容积变小,产生压力(出口高压区)将介质输出。
由于容积泵转数较低、自吸能力较强、流动性能较差的高粘介质,有充分时间和速度充满空穴,所以,该类型泵适用于高粘介质。
泵内部密封面。
内泻较小,所以泵的效率较高,可达70 %以上,同时可以达到高压输送介质,并且对粘度较小的介质也有良好的适应性。
3、离心泵的分类及各自的特点离心泵按其结构形式分为:立式泵和卧式泵,立式泵的特点为:占地面积少,建筑投入小,安装方便,缺点为:重心高,不适合无固定底脚场合运行。
卧式泵特点:适用场合广泛,重心低,稳定性好,缺点为:占地面积大,建筑投入大,体积大,重量重。
4、容积泵的分类及特点容积式泵分为往复式和回转式二大类,回转式容积泵与往复式容积泵相比,回转式泵没有吸、排液阀,不会向往复泵那样,因高粘度液体对阀门的正常工作有影响,泵效随粘度提高而快速降低。
而且在输送液体粘度提高时,泵转数的下降比往复泵小,因而,在输送高粘度液体或液体粘度变化较大时,采用回转式溶剂泵比采用往复式容积泵更为适宜。
回转式容积泵分:齿轮泵、旋转活塞泵、螺杆泵、和滑片泵等几类。
具有转数低、效率高、自吸能力强、运转平稳、部分泵可预热等特点,广泛用于高粘介质的输送。
缺点:占地面积大,建筑投入大,体积大,重量重。
5、泵的流量以及与重量的换算泵在单位时间内,实际输送液体的体积称为泵的流量,流量用Q 表示,计量单位:立方米/ 小时(m3/h),升/ 秒(l/s),L/s= 3.6 m3 /h= 0.06 m3 /min= 60L /min G=QρG 为重量ρ为液体比重例:某台泵流量80m3 /h ,介质的比重ρ为780 公斤/ 立方米。
离心泵的工作原理离心泵的工作原理是指通过离心力将液体从低压区域输送到高压区域的一种机械设备。
它是一种常见的流体输送设备,广泛应用于工业领域,如供水、石油化工、冶金、造纸等。
离心泵的工作原理可以简单概括为以下几个步骤:1. 吸入液体:离心泵通过进口处的吸入管道将液体从低压区域吸入泵内。
在此过程中,泵的叶轮通过旋转产生的离心力将液体拉入泵内。
2. 加速液体:液体进入泵内后,叶轮的旋转运动将液体加速。
叶轮的形状和叶片数量会影响液体的加速效果。
3. 离心力作用:加速后的液体在叶轮的作用下产生离心力。
离心力是指液体受到的向外的力,使液体沿着叶轮的径向方向挪移。
4. 压力增加:随着液体受到离心力的作用,压力逐渐增加。
液体被推向离心泵的出口处,准备进入高压区域。
5. 排出液体:当液体达到一定压力后,通过出口处的排出管道将液体排出泵外。
排出管道通常与管道系统相连,将液体输送到需要的地方。
需要注意的是,离心泵的工作原理是基于旋转运动和离心力的。
除了叶轮的形状和叶片数量,其他因素如泵的转速、液体的粘度、泵的尺寸等也会对离心泵的工作效果产生影响。
离心泵的工作原理的优点包括:1. 高效能:离心泵的工作原理使其能够快速、高效地输送液体,提高工作效率。
2. 适应性强:离心泵适合于不同种类的液体输送,如清水、污水、油类等。
3. 压力稳定:离心泵能够提供相对稳定的压力,确保液体在输送过程中不会波动。
4. 结构简单:离心泵的结构相对简单,易于安装和维护。
然而,离心泵也存在一些局限性:1. 不适合于高粘度液体:离心泵对高粘度液体的输送效果较差,可能会导致液体流动不畅。
2. 不能处理固体颗粒:离心泵在液体中存在固体颗粒时容易阻塞,需要额外的过滤装置。
3. 能耗较高:离心泵需要消耗较多的能量来产生旋转运动和离心力,可能会增加能源成本。
总结起来,离心泵的工作原理是通过叶轮的旋转运动产生离心力,将液体从低压区域输送到高压区域。
它具有高效能、适应性强、压力稳定和结构简单等优点,但也存在一些局限性。
离心泵的工作原理离心泵是一种常见的动力机械设备,广泛应用于工业、建筑、农业等领域。
它通过离心力将液体从低压区域输送到高压区域,实现液体的输送和增压。
下面将详细介绍离心泵的工作原理。
1. 离心泵的结构组成离心泵主要由泵体、叶轮、轴、轴承、密封装置等组成。
泵体是离心泵的主要部件,通常由铸铁、不锈钢等材料制成,用于容纳液体和支撑其他部件。
叶轮是离心泵的核心部件,它通过旋转产生离心力,将液体推向出口。
轴是连接电机和叶轮的部件,承受着叶轮的转动力和液体的压力。
轴承则起到支撑轴的作用,减少摩擦和振动。
密封装置用于防止泵体和轴之间的液体泄漏。
2. 离心泵的工作原理离心泵的工作原理基于离心力的作用。
当离心泵启动时,电机带动轴旋转,进而带动叶轮旋转。
叶轮的旋转产生离心力,使液体在叶轮的作用下产生离心力推向出口。
液体在进口处进入泵体,经过叶轮的旋转,被推向出口处,同时叶轮的旋转也会产生负压,使进口处形成真空,从而吸入更多的液体。
离心泵的出口处通常连接管道,将液体输送到需要的位置。
3. 离心泵的工作过程离心泵的工作过程可以分为进口过程、压力增加过程和出口过程三个阶段。
(1)进口过程:当离心泵启动后,液体从进口处进入泵体。
由于叶轮的旋转,液体被吸入叶轮中心,并随着叶轮的旋转逐渐向外推移。
(2)压力增加过程:当液体被推向叶轮的外缘时,离心力的作用使液体的动能转化为压力能。
液体的压力逐渐增加,达到泵的额定压力。
(3)出口过程:当液体达到一定压力后,通过出口管道排出离心泵。
液体的压力和流量取决于泵的工作状态和设计参数。
4. 离心泵的特点和应用领域离心泵具有结构简单、体积小、重量轻、效率高等特点,广泛应用于工业、建筑、农业等领域。
它可以输送各种液体,如水、油、酸碱溶液等,并可根据不同的工况要求选择不同类型的离心泵。
离心泵的应用领域包括供水、排水、循环冷却水、化工输送、石油化工、农田灌溉等。
总结:离心泵通过离心力将液体从低压区域输送到高压区域,实现液体的输送和增压。
离心泵的工作原理离心泵是一种常见的流体输送设备,广泛应用于工业领域。
它通过旋转叶轮产生离心力,将液体从低压区域吸入,然后通过离心力将液体推向高压区域,实现液体的输送。
下面将详细介绍离心泵的工作原理。
1. 离心泵的结构离心泵主要由泵体、叶轮、轴、轴承和密封装置等组成。
泵体通常为圆柱形,内部设有吸入口和排出口。
叶轮位于泵体内部,通过轴与机电相连,当机电启动时,叶轮开始旋转。
2. 离心力的产生当叶轮旋转时,液体被吸入泵体的吸入口,并被叶轮的叶片推向离心方向。
由于叶轮的高速旋转,液体在叶轮上受到离心力的作用,产生向外的推力。
这个推力就是离心泵工作的关键。
3. 吸入过程在离心泵启动时,叶轮旋转产生的离心力使液体从吸入口进入泵体。
由于离心力的作用,液体在叶轮上产生高速旋转运动,并被推向泵体的排出口。
4. 排出过程液体在叶轮上旋转时,叶轮的形状和叶片的角度使液体获得更高的动能。
液体随后进入泵体的排出口,并通过管道输送到目标位置。
在输送过程中,液体的压力逐渐增加,达到所需的输送压力。
5. 密封装置为了防止液体泄漏,离心泵通常配备了密封装置。
密封装置可以是机械密封或者填料密封。
机械密封通过轴封和密封环来阻挠液体泄漏,填料密封则通过填充密封材料来实现。
6. 应用领域离心泵广泛应用于工业领域,用于输送各种液体,如水、石油、化学品等。
它在供水、排水、农业灌溉、石油化工、电力等领域都有重要的作用。
7. 总结离心泵通过旋转叶轮产生离心力,将液体从低压区域吸入,然后通过离心力将液体推向高压区域,实现液体的输送。
它的工作原理简单而有效,广泛应用于各个行业。
在选择离心泵时,需要根据具体的工作条件和要求来选择合适的型号和规格。
离心泵工作原理离心泵是一种常见的动力机械设备,广泛应用于工业生产、农业灌溉、城市供水、排水和空调系统等领域。
它通过离心力将液体从低压区域输送到高压区域,实现液体的输送和增压。
本文将详细介绍离心泵的工作原理。
一、离心泵的结构离心泵主要由泵体、叶轮、轴、轴承、密封装置和电机等组成。
泵体是离心泵的主要承载部件,通常由铸铁或不锈钢制成。
叶轮是离心泵的核心部件,它通过旋转产生离心力,将液体从进口吸入并排出到出口。
轴是连接电机和叶轮的重要部件,承受着转动力和液体的压力。
轴承支撑轴的转动,保证泵的正常运转。
密封装置用于防止泵体和轴之间的泄漏。
电机是驱动离心泵运转的动力源。
二、离心泵的工作原理离心泵的工作原理基于离心力的作用。
当电机启动后,通过轴传递力量给叶轮,使叶轮高速旋转。
液体从进口进入泵体,然后被叶轮的离心力推向叶轮的外缘。
在叶轮的旋转过程中,液体被迫改变流动方向,并逐渐增加流速和压力。
最终,液体被排出到出口,完成液体的输送和增压过程。
离心泵的工作原理可以通过以下几个步骤来解释:1. 吸入阶段:当叶轮旋转时,叶轮的叶片将液体从进口吸入泵体。
此时,由于叶轮的旋转,液体被迫旋转,并产生离心力。
2. 加速阶段:在叶轮的旋转过程中,液体被迫改变流动方向,并逐渐加速。
由于离心力的作用,液体的流速和压力逐渐增加。
3. 排出阶段:当液体达到一定的流速和压力时,它被推向叶轮的外缘,并排出到出口。
此时,液体的流速和压力达到最大值。
离心泵的工作原理可以用物理学中的离心力公式来描述。
离心力是由叶轮旋转产生的,它的大小与叶轮的转速、叶轮的半径和液体的质量有关。
离心力的大小可以用以下公式表示:F = m * ω^2 * r其中,F表示离心力,m表示液体的质量,ω表示叶轮的角速度,r表示叶轮的半径。
从公式可以看出,离心力与液体的质量和叶轮的半径成正比,与叶轮的角速度的平方成正比。
离心泵的工作原理还受到一些因素的影响,包括泵的设计、叶轮的形状和材料、液体的性质等。
离心泵的工作原理离心泵是一种常见的动力泵,它通过离心力将液体从低压区域输送到高压区域。
它是工业领域中常用的液体输送设备之一,广泛应用于供水、排水、农田灌溉、化工、石油、制药、食品加工等领域。
离心泵的工作原理基于离心力和动能转换原理。
下面将详细介绍离心泵的工作原理及其组成部分。
1. 离心泵的组成部分离心泵主要由以下几个部分组成:1.1 泵体:泵体是离心泵的主要部件,通常由铸铁、不锈钢等材料制成。
泵体内部有一个螺旋状的泵腔,液体通过泵腔流动。
1.2 叶轮:叶轮是离心泵的核心部件,通常由铸铁、不锈钢等材料制成。
叶轮上有多个叶片,当叶轮旋转时,叶片会产生离心力,将液体推向出口。
1.3 泵轴:泵轴连接着电机和叶轮,传递电机的动力给叶轮,使其旋转。
1.4 机械密封:机械密封用于防止泵体和泵轴之间的液体泄漏。
2. 离心泵的工作原理可以分为以下几个步骤:2.1 吸入过程:当离心泵开始工作时,泵轴通过电机的驱动开始旋转。
叶轮受到泵轴的转动带动,开始旋转。
在叶轮旋转的同时,泵腔内的压力降低,形成一个低压区域。
液体受到压力差的作用,从低压区域进入泵腔。
2.2 离心力产生:当液体进入泵腔后,叶轮的旋转会产生离心力。
离心力使得液体沿着叶片的方向运动,并逐渐增加其速度和压力。
叶轮的设计使得离心力能够将液体推向泵体的出口。
2.3 排出过程:当液体被推向泵体的出口时,泵腔内的压力增加。
液体在高压区域积聚,并通过出口管道排出。
3. 离心泵的性能参数离心泵的性能参数对于选择和使用离心泵非常重要。
以下是常见的离心泵性能参数:3.1 流量:流量是指单位时间内通过泵的液体体积。
通常以立方米/小时或立方英尺/分钟表示。
3.2 扬程:扬程是指液体从入口到出口所需的总能量增加。
通常以米或英尺表示。
3.3 功率:功率是指泵所需的能量转换率,通常以千瓦或马力表示。
3.4 效率:效率是指泵转换输入能量为输出能量的比例。
通常以百分比表示。
4. 离心泵的应用领域离心泵广泛应用于各个行业,以下是一些常见的应用领域:4.1 给水供水:离心泵用于将水从水源输送到供水网络,满足城市和农村的饮水需求。
1、离心泵的工作原理
离心泵依靠旋转叶轮对液体的作用把原动机的机械能传递给液体。
由于作用液体从叶轮进口流向出口的过程中,其速度能和压力能都得到增加,被叶轮排出的液体经过压出室,大部分速度能转换成压力能,然后沿排出管路输送出去,这时,叶轮进口处因液体的排出而形成真空或低压,吸入口液体池中的液体在液面压力(大气压)的作用下,被压入叶轮的进口,于是,旋转着的叶轮就连续不断地吸入和排出液体。
2、容积泵的工作原理(回转式)
动力通过轴传给齿轮,一对同步齿轮带动泵叶作同步反向旋转运动,使进口区产生真口,降介质吸入,随泵叶的转动,将介质送往出口,继续转动,出口腔容积变小,产生压力(出口高压区)将介质输出。
由于容积泵转数较低、自吸能力较强、流动性能较差的高粘介质,有充分时间和速度充满空穴,所以,该类型泵适用于高粘介质。
泵内部密封面。
内泻较小,所以泵的效率较高,可达 70 %以上,同时可以达到高压输送介质,并且对粘度较小的介质也有良好的适应性。
3、离心泵的分类及各自的特点
离心泵按其结构形式分为:立式泵和卧式泵,立式泵的特点为:占地面积少,建筑投入小,安装方便,缺点为:重心高,不适合无固定底脚场合运行。
卧式泵特点:适用场合广泛,重心低,稳定性好,缺点为:占地面积大,建筑投入大,体积大,重量重。
4、容积泵的分类及特点
容积式泵分为往复式和回转式二大类,回转式容积泵与往复式容积泵相比,回转式泵没有吸、排液阀,不会向往复泵那样,因高粘度液体对阀门的正常工作有影响,泵效随粘度提高而快速降低。
而且在输送液体粘度提高时,泵转数的下降比往复泵小,因而,在输送高粘度液体或液体粘度变化较大时,采用回转式溶剂泵比采用往复式容积泵更为适宜。
回转式容积泵分:齿轮泵、旋转活塞泵、螺杆泵、和滑片泵等几类。
具有转数低、效率高、自吸能力强、运转平稳、部分泵可预热等特点,广泛用于高粘介质的输送。
缺点:占地面积大,建筑投入大,体积大,重量重。
5、泵的流量以及与重量的换算
泵在单位时间内,实际输送液体的体积称为泵的流量,流量用 Q 表示,计量单位:立方米 / 小时(m3/h),升 / 秒(l/s), L/s= 3.6 m3 /h= 0.06 m3 /min= 60L /min G=Q ρG 为重量ρ为液体比重例:某台泵流量 80m3/h ,介质的比重ρ为 780 公斤 / 立方米。
输送介质时每小时重量 G:G=Qρ=80 × 780(m3/h · kg/ m3)= 62400kg
6、泵的压力、扬程、转速及表示形式以及其换算公式
压力的全称为泵的全压力,是指泵的排出压力和泵的吸入压力之差。
泵的压力用 P 表示,单位?? Mpa (兆帕)
扬程是指单位重量液体流经泵以后能量的增加值,即液体在泵出口和进口的水头之差通常用字母 H 表示。
单位为米(m), H=P/ ρ。
如 P 为 1kg /cm2,则 H= (lkg/cm2)/(1000kg/m3) H=(1kg/cm3)/(1000公斤/m3)=(10000公斤/m2)/1000 公斤 /m3= 10m 1Mpa= 10kg /cm2, H=(P2-P1)/ρ(P2= 出口压力 P1= 进口压力)
比例关系:Q1/Q2=r1/r2 H1/H2=(r1/r2)2
7、泵的效率及计算方法
泵的效率指泵的有效功率和轴功率之比。
η=Pe/P 泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用 P 表示。
有效功率又称为输出功率即:泵的扬程和质量流量及重力加速度的乘积。
Pe=ρgQH (W)或 Pe= γQH/1000 (KW)
ρ:泵输送液体的密度(kg/m3)
γ:泵输送液体的重度γ = ρg (N/m3)
g:重力加速度(m/s)
质量流量 Qm= ρQ(t/h 或 kg/s)
8、什么叫汽蚀余量?什么叫吸程?各自计量单位表示字母?
泵在工作时液体在叶轮的进口处因一定真空压力下会产生气体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽
化压力,汽蚀余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。
单位用米标注,用(NPSH) r 。
吸程Δh :一种就等同于自吸高度,另外一种是指水泵的允许安装高度即泵允许吸液体的真空度,单位用米。
吸程 = 标准大气压(10.33 米) - 汽蚀余量 - 安全量(0.5 米)
标准大气压能压管路真空高度 10.33 米。
例如:某泵必需汽蚀余量为 5.0 米,求吸程Δh?
解:Δh=10.33-5.0-0.5= 4.83 米
9、什么是泵的性能曲线?包括几方面?有何作用?
通常把表示主要性能参数之间关系的曲线称为泵的性能曲线或特性曲线,实质上,泵性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得。
特性曲线包括:流量 - 扬程曲线(Q - H ),流量 - 效率曲线( Q - η),流量 - 功率曲线( Q-N ),流量 - 汽蚀余量曲线( Q - ( NPSH )r ),性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程,功率,效率和汽蚀余量值,这一组参数称为工作状态,简称工况或工况点,离心泵最高效率点的工况称为最佳工况点,最佳工况点一般为设计工况点。
一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近。
在实践选效率区间运行,即节能,又能保证泵正常工作,因此了解泵的性能参数相当重要。
10。
什么是比转速?
比转速是一个说明流量Q、扬程H、转速n之间关系的一个从相似理论中引出来的综合性参数,相似泵在相似的工况下比转速用下面的公式确定: nq=n·Q1/2/H3/4 从上式及相似理论可知,nq对一系列几何相似的泵在相似的工况下相等。
因此,在泵的最佳工况点下,我们可能用这一参数作为相似泵的特征参数,或者说是判别数。
比转速的最初应用是在水轮机上应用,为使其也能在离心泵中应用,经单位换算后我们得到二者统一的表达式:
ns=3.65n·Q1/2/H3/4(其中流量Q单位:m3/s)显然,ns=3.65 nq,二者相差3.65倍,但是,作为比转速的参数意义上来说二者没有本质区别,所以,我们在离心泵中习惯上就用ns来表示其比转速。
同一台泵在不同工况条件下的比转速并不相等,通常只用最佳工况点下的ns来代表一系列几何相似的泵。
比转速的用处:
一、利用比转数对叶轮进行分类比转数的大小与叶轮形状和泵的性能曲线有密切关系。
比转数确定以后,叶轮形状和性能曲线的形状就大致地确定了。
比转数越小,叶轮流道相对地越细长,叶轮外径和进口直径的比值(D2/D0)越大,性能曲线比较平坦;随着比转数的逐渐增大,叶轮流道相对地越来越宽,(D2/D0)的值越来越小,性能曲线也就越陡;当比转数大到一定数值后叶轮出口边就倾斜,成了混流泵,性能曲线开始出现“S形曲线”,如果比转数继续增大,当D2=D0时就成了轴流泵,此时性能曲线更陡,“S形曲线”更严重。
由于泵比转数与叶轮形状有关,所以泵的各种损失和离心泵的总效率均与比转数有关。
二、比转数是编制离心泵系列的基础)在编制离心泵系列时,适当地选择流量、扬程和转速等的组合,就可以使比转数在型谱图上均匀地分布。
三、比转数是离心泵设计计算的基础
无论是相似设计法,还是速度系数设计法,都是以比转数为依据来选择模型或速度系数的。
11、泵轴功率和电机配备功率之间关系
泵轴功率是设计点上原动机传给泵的功率,在实际工作时,其工况点会变化,因此原动机传给泵的功率应有一定余量,另电机输出功率因功率因数关系,因此经验作法是电机
完整水泵轴功率计算公式应该为
P=流量*扬程*g*介质比重/泵效率
其中流量单位为m3/h,得到的功率单位为KW
如果介质是水的话,那么公式应该演变为
P=流量*扬程/(3.6*102*效率)=流量*扬程/(367*效率)
12、管道阻力以及经验计算
液体在管道和管道附件流动中,由于管壁的阻力而损失的扬程称为管道阻力。
下表
直管长度,假定流量为 8L /S 查上表,直管每 100m 损失 1.3m,则 10m 损失 0.13m,即100mm 底阀,流量为 8L /S 时,则损失扬程 0.13m。
13、为何容积泵启动时不能关闭出口阀门
因一般容积泵本身都具有自吸能力。
离心泵流量随压力改变很大,而容积泵流量随压力改变却很小,与离心泵的轴功率随扬程提高而减小的规律相反,容积泵的轴功率随压力的提高而增大。
这要求在容积泵上和泵装置中必须设置安全阀,以防排出管路意外堵塞,造成泵压力过大,从而功率过大,使原动机或泵因超负荷而损坏。
因此,容积泵启动时不能关闭出口阀门。
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。