(完整版)2019年全国普通高等学校运动训练、民族传统体育专业单招考试数学模拟试卷01
- 格式:doc
- 大小:230.51 KB
- 文档页数:2
全国普通高等学校运动训练、民族传统体育专业单独统一招生考试一、选择题:(本大题共10 小题,每小题6 分,共60 分)(1)若集合7A {x0x ,x N},则A的元素共有2()A、2 个B、3个C、4 个D、无穷多个(2)圆x2y22y 70的半径是()A9B8C22 D 6(3)下列函数中是减函数的是()A. y xB. yx3C. y 2x x sin xD.y e x e x2(4)函数f(x)2x x2的值域是()A(,1)B8(1,)C[0,2] D [0,1](5)函数y 3s in4x 3cos4x 1的最小正周期和最小值分别是()A 和13B 和123C 和13D 和12322(6)已知ABC钝角三角形,A 30,BC 4,AC 43,则B ()A 135B 120C 60D 302(7)设m,n为两条直线,,为两个平面,有下面四个命题:(1)若m ,n 则m∥n;(2)若m∥,n∥则m∥n(3)若m ,n 则∥;(2)若m∥,m∥,则∥其中正确的命题是()A(1)(3)B(2)(3)C(1)(4)D (2)(4)(8)从5名新队员中选出2人,6名老队员中选出1人,组成训练小组,则不同的组成方案共有()种。
A 165B 120C 75D 60x2y2(9)双曲线1的一条渐近线的斜率为3,则它的离心率是(916)23A A3C2 D 43(10)已知f(x)是奇函数,当x 0时,f(x)x2ln(x 1x2),则当x 0时,f(x) A x ln(x 1x) B x ln(x 1x)C x2ln(x 1x2)D x2ln(x 1x2)二、填空题(本大题共6 小题,每小题6 分,共36 分)(11)不等式12xx 30的解集为()3(12)若椭圆的焦点为(3,0)(3,0),离心率为,则该椭圆5的标准方程为()(13)若tan()2,则t an()(44)2(14)(若向量a,b满足,a 1,b 2,a b ,则c os a,b ()32222(15)(2x 1)4的展开式中x3的系数是())(16)若0a 1,且log (2a21)log(3a)0,则a的取值范围是(a a三、解答题(本大题共3小题,共54分)(17)某校组织跳远达标测验,已知甲同学每次达标的概率为 3/4.他测试时跳了4次。
2019年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数学模拟试卷(四)注意事项:1.本试题卷包括选择题、填空题和解答题三部分共19小题,共150分; 2.本卷考试时间:120分钟3.用钢笔或圆珠笔直接答在试题卷中,答卷前将密封线内的项目填写清楚.一、选择题:本大题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 如果集合{}1,2,3,4,5,6,7,8U =,{}1,35,8A =,,{}2,4,8B =,那么(A U)B 等( )A. {}1,23,4,5,8,B. {}24,C. {}8,2D. {}2,4,7 2. 已知(1,2),(1,)a b x =-=,若a b ⊥,则x 等于( ) A.21 B. 21- C. 2 D. -2 3. 把函数y=x 2-1的图像按向量a =(2,3)平移,得到y=f (x )的图像,则f (x ) = ( )A. (x -2)2-4B. (x +2)2-4C. (x -2)2+2D. (x +2)2+2 4. 已知函数)1(156≠∈-+=x R x x x y ,那么它的反函数为 ( ) A. ()1156≠∈-+=x R x x x y 且 B. ()665≠∈-+=x R x x x y 且 C. ⎪⎭⎫ ⎝⎛-≠∈+-=65561x R x x x y 且 D. ()556-≠∈+-=x R x x x y 且 5. 不等式024<--x x •的解集是 ( ) A. {x|0<x<1} B. {x|2<x<4} C. {x|x<2或x>4} D. {x|-∞<x<0} 6. 已知点(1,cos )θ到直线sin cos 1x y θθ+=(0)2πθ<≤的距离为14,则θ等于 ( )A.6πB.4πC.3πD.2π7. 设f (x )是定义在(,)-∞+∞内的奇函数,且是减函数。
单独考试招生文化考试数学卷(满分120分,考试时间120分钟)一、选择题:(本题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.圆221:40C xy x +-=与圆222:610160Cx y x y ++++=的公切线有( )(A )1条 (B )2条 (C )3条 (D )4条 2.已知圆22670xy x +--=与抛物线22(0)ypx p =>的准线相切,则p 为( )(A )1 (B )2 (C )3 (D )43.在空间四边形ABCD 各边上分别取E 、F 、G 、H 四点,如果EF 和GH 能相交于点P ,那么( )(A )点P 必在直线AC 上 (B )点P 必在直线BD 上 (C )点P 必在平面ABC 内 (D )点P 必在平面上ABC 外4.用1,3,5,7,9五个数字中的三个替换直线方程Ax+By+C =0中的A 、B 、C ,若A 、B 、C 的值互不相同,则不同的直线共有( )(A )25条 (B )60条 (C )80条 (D )181条 5、若集合}25|{<<-=x x A ,}33|{<<-=x x B ,则=B A ( ) A.}23|{<<-x x B.}25|{<<-x x C.}33|{<<-x xD.}35|{<<-x x6.已知0>>b a ,全集=I R ,集合}2|{ba xb x M +<<=,}|{a x ab x N <<=,=P {x b x <|≤ab},则P 与NM ,的关系为 ( )(A ))(N C M p I = (B )N M C p I )(= (C )N M P = (D )N M P = 7.函数x x f a log )(= 满足2)9(=f ,则)2log (91--f 的值是 ( )(A )2 (B )2(C )22 (D )2log 38. 函数的图象如图所示,则最大、最小值分别为 ( )A. B.C. D.9. 设,,,其中为自然对数的底数,则,,的大小关系是( )A. B. C. D.10. 设,,,都为正数,且不等于,函数,,,在同一坐标系中的图象如图所示,则,,,的大小顺序是( )A. B.C. D.二、填空题:(共30分.)1.函数y=3-2cos(x-)的最大值为__,此时x=_______.2.函数f(x)=3cos(2x+)的最小正周期为___.3.函数f(x)=sin2x的图像可以由g(x)=sin 2x-号)的图像向左平移___个单位得到.4. 在中,,,,则______.5. 若向量,的夹角为,则——————随机抽取 100名年龄在 ,,, 年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于 岁的人中按年龄段分层抽样的方法随机抽取 8人,则在 年龄段抽取的人数为_____.三、解答题:(本题共3小题,每小题10分,共30分.解答应写出文字说明、证明过程或演算步骤.)1.为加快新冠肺炎检测效率,某检测机构采取“k 合1检测法”,即将k 个人的拭子样本合并检测,若为阴性,则可确定所有样本都是阴性的,若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数; ②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X为总检测次数,求检测次数X 的分布列和数学期望()E X ;(2)若采用“5合1检测法”,检测次数Y 的期望为()E Y ,试比较()E X 和()E Y 的大小.(直接写出结果)2.求经过两点(10)A -,、(32)B ,,且圆心在y 轴上的圆的方程. 3设c b a ,,分别是ABC ∆的三个内角A 、B 、C 所对的边,S 是ABC ∆的面积,已知4,5,3a b S ===(1)求角C ; (2)求c 边的长度.参考答案:一、选择题答案: 参考答案1-5题:DBABA 参考答案6-10题:ACCDC 二、填空题答案: 1.答案:5;(k ∈Z)解析: 2.答案:π 解析: 3.答案: 解析:由的图像向左平移0.25个单位,可得函数 的图像。
2019全国普通高校运动训练民族传统体育专业单独统一招生考试语文一、语文知识:本大题共10小题,每题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下各组词语中加点的字,该音全都相同的一项是( )A.卷曲席卷开卷有数B.数秒历数数九寒冬C.度量弧度审时度势 D难堪责难难能可贵2.下列格组词语中,书写完全正确的一项是( )A.荣膺凝聚力再接再厉B.精湛充其量耐人询味C.俯瞰抱冷门空谷足音D.酬划抚恤金墨守成规3:依次填入下面一段文字横线处的词语,最恰当的一项是( )开展阳光体育运动,要广泛健康理念,建立评比制度,以唤起全社会对学生体质健康的关法,吸引家庭和社会力量共同支持阳光体育运动的开展。
A.传达表扬反而B.传播表彰反而C.传播表彩进而D.传达表场进而4.下列各句中加点熟语的使用,不正确的一项是( )A..彼一时,此一时,........现在训练条件好了,我们更应珍每一次训练,提高成绩。
B.如果训练出了问题,我一定要抓住机会,头痛医头,脚痛医脚.........,及时解决C.他高考成绩没有预期的好,这让他在填报志题时高不成,低不就,........左右为难。
D.摩托车赛手在比赛中摔倒,虽然有惊无险,但当时还是让观众为他捏一把汗....。
.5,下列各句中加点成语的使用,不正确的一项是( )A.如果在训练时不刻苦不认真,心猿意马....,那么在正式比赛中就很难取得好的成绩。
B.有关部门统等了各方面的调研实践,集思广益....,最终制定了这项运动的指导纲要。
C.现阶段,体育产业进入了高速发展时期,群众对体有产品的接受度可谓甚嚣尘上....。
D.竞技体育、学校体育与群众体育,三者应该相互协调、相辅相成。
不能有所偏颜。
6.下列句子中,有语病的一项是( )A.赛会申办能否成功,主要取決于申办城市基础设施的建设是不是完善。
B.作为温克族最具特色的传统体育项目,“抢枢”运动已有千年历史。
2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,12.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.23.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n - B.122n -C.112n-D.122n-8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为212.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷答案解析一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,1【分析】集合{}22|1A x x y =+=是x 的取值范围,{}2|B y y x ==是函数的值域,分别求出再求交集.【详解】解:2210,11y x x =-≥-≤≤,{}[)2|0,B y y x ===+∞A B = [][)[]1,10,+=0,1=-∞ 故选:A【点睛】考查求等式中变量的范围以及集合的交集运算;基础题.2.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.2【答案】C 【解析】【分析】化简复数,求出对应点,代入直线方程求解即可.【详解】因为()()236(23)ai i a a i ++=-++,所以对应的点为()6,23a a -+,代入直线y x =可得623a a -=+,解得1a =,故选:C【点睛】本题考查了复数的运算法则、几何意义,直线的方程,考查了推理能力与计算能力,属于基础题.3.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<【分析】先由221b b ->得,20b b ->,又由0b >,可得1b >,而log 0a b <,可得01a <<【详解】解:因为221b b ->,所以20b b ->,因为0b >,所以1b >,因为log 0a b <,1b >,所以01a <<,故选:B【点睛】此题考查的是指数不等式和对数不等式,属于基础题4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短【答案】D 【解析】【分析】由题意可知夏至到冬至的晷长构成等差数列,其中115a =寸,13135a =寸,公差为d 寸,可求出d ,利用等差数列知识即可判断各选项.【详解】由题意可知夏至到冬至的晷长构成等差数列{}n a ,其中115a =寸,13135a =寸,公差为d 寸,则1351512d =+,解得10d =(寸),同理可知由冬至到夏至的晷长构成等差数列{}n b ,首项1135b =,末项1315b =,公差10d =-(单位都为寸).故选项A 正确;春分的晷长为7b ,7161356075b b d ∴=+=-= 秋分的晷长为7a ,716156075a a d ∴=+=+=,所以B 正确;立冬的晷长为10a ,10191590105a a d ∴=+=+=,即立冬的晷长为一丈五寸,C 正确; 立春的晷长,立秋的晷长分别为4b ,4a ,413153045a a d ∴=+=+=,41313530105b b d =+=-=,44b a ∴>,故D 错误.故选:D【点睛】本题主要考查了等差数列的通项公式,等差数列在实际问题中的应用,数学文化,属于中档题.5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签【答案】C 【解析】【分析】若从贴有“柑子”或“苹果”标签的筐内拿出一个水果,无法判定剩余水果是一种还是两种,不能纠正所有标签,若从“混装”标签中取出一个,就能判断其余两个筐内水果.【详解】如果从贴着苹果标签的筐中拿出一个水果,如果拿的是柑子,就无法判断这筐装的全是柑子,还是有苹果和柑子;同理从贴着柑子的筐中取出也无法判断,因此应从贴着苹果和柑子的标签的筐中取出水果.分两种情况:(1)如果取出的是柑子,那说明这筐全是柑子,则贴有柑子的那筐就是苹果,贴有苹果的那筐就是苹果和柑子.(2)如果取出的是苹果,那说明这筐全是苹果,那贴有苹果的那筐就是柑子,贴有柑子的那筐就是苹果和柑子.故选:C【点睛】解决本题的关键在于,其中贴有混装的这筐肯定不是苹果和柑子混在一起,所以能判断不是苹果就是柑子,考查了逻辑推理能力,属于容易题.6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-【答案】D 【解析】【分析】设向量OP与x 轴的夹角为α,结合三角函数的定义和两角和与差的正弦、余弦函数公式,求得cos ,sin ,cos(),454si (5n )αααα++︒︒,得到点P '的坐标,进而求得'OP.【详解】由题意,向量OP =,则OP =设向量OP与x 轴的夹角为α,则cos αα==,所以4545sin sin 452210cos()cos cos ααα︒︒-︒=-+=223104545cos s sin()sin co in 452210s ααα︒︒+︒=++=,可得cos()(14510OP α+=-=︒-,45sin()310OP α︒+== 所以'(1,3)OP =-.故选:D.【点睛】本题主要考查了向量的坐标表示,以及三角函数的定义的应用和两角和与差的正弦、余弦函数的综合应用,着重考查推理与运算能力.7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n -B.122n -C.112n-D.122n-【答案】B 【解析】【分析】利用赋值法再结合条件,即可得答案;【详解】由所求式子可得(0)0f ≠,令0x y ==可得:(0)(0)(0)(0)22f f f f ⋅=⇒=,令1x y ==可得:(1)(1)1(2)22f f f ⋅==,令1,2x y ==可得:2(1)(2)1(3)22f f f ⋅==,令2x y ==可得:3(2)(2)1(4)22f f f ⋅==,∴11()2n f n -=,∴111011001(12)112222222()122n nni n n i i f i +---==-==++++==--∑∑ ,故选:B.【点睛】本题考查根据抽象函数的性质求函数的解析式,等比数列求和,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将抽象函数具体化.8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=【答案】D 【解析】【分析】分别在正四棱柱中找到α和β,将α和β放在同一个平面图形中找关系即可.【详解】作正四棱柱1111ABCD A B C D -如下图:∵在正四棱柱1111ABCD A B C D -中,1AA ⊥平面1111D C B A ,∴111AA B D ⊥∵底面1111D C B A 是正方形∴1111B D AC ⊥又∵1111AA AC A ⋂=∴11BD ⊥平面1111D C B A ∴1B AO ∠是直线1AB 与平面11ACC A 所成的角,即1=B AO α∠∵11CD A B∥∴11BA C ∠是直线1CD 与直线11A C 所成的角,即11=BA C β∠∵11A B B A =,11A O B O =,OA OB =∴11A BO B AO △≌△∴111=BA C AB O β∠∠=∵11B D ⊥平面1111D C B A ∴1B O OA⊥∴11+=+2B AO AB O παβ∠∠=故选:D【点睛】本题主要考查直线与平面和异面直线的夹角,属于中档题.二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高【答案】BC 【解析】【分析】根据数据进行整合,甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;结合选项可得结果.【详解】由题意可得甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;甲专业的录取率为259028.75%100300+=+,乙专业的录取率为1805046%400100+=+,所以乙专业比甲专业的录取率高.男生的录取率为2518041%100400+=+,女生的录取率为905035%300100+=+,所以男生比女生的录取率高.故选:BC.【点睛】本题主要考查频数分布表的理解,题目较为简单,明确录取率的计算方式是求解的关键,侧重考查数据分析的核心素养.10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点【答案】AC 【解析】【分析】根据题意求得2ω=,6π=ϕ,进而求得()cos 4g x x =,()sin(26f x x π=+,然后对选项逐一判断即可.【详解】解:将()y f x =的图像上所有点向左平移6π个单位后变为:sin 6x ωπωϕ⎛⎫++ ⎪⎝⎭,然后纵坐标不变,横坐标缩短为原来的12后变为:sin 26x ωπωϕ⎛⎫++ ⎪⎝⎭,所以()sin 26g x x ωπωϕ⎛⎫=++⎪⎝⎭.因为()g x 的最小正周期为2π,所以222ππω=,解得:2ω=.所以()sin 43g x x πϕ⎛⎫=++ ⎪⎝⎭,又因为()g x 为偶函数,所以,32ππφkπk Z +=+∈,所以6,k k Z πϕπ=+∈.因为0ϕπ<<,所以6π=ϕ.所以()sin 4cos 42g x x x π⎛⎫=+= ⎪⎝⎭,()sin(26f x x π=+.对于选项A ,因为()sin 2()sin 0012126f πππ⎡⎤-=-+==⎢⎥⎣⎦,所以()y f x =图像关于点(,0)12π-对称,故A 正确.对于选项B ,因为x ∈5(0,)12π时,2,66x πππ⎛⎫+∈ ⎪⎝⎭,设26t x π=+,则()sin ,,6f t t t ππ⎛⎫=∈ ⎪⎝⎭,因为()f t 在,6π⎛⎫π⎪⎝⎭不是单调递增,所以()f x 在5(0,)12π不单调递增,故B 错误.对于选项C ,()cos 22x g x =,()sin(2)6f x x π=+,画出(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像如图所示:从图中可以看出:(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像有三个交点,所以()()2x f x g =在5(0,)4π有且仅有3个解,故C 正确.对于选项D ,()cos 4g x x =在5()124ππ,的图像如图所示:从图中可以看出()g x 在5(124ππ,有且仅有2个极大值点,故D 选项错误.故选:AC .【点睛】本题主要考查正弦型函数、余弦型函数的周期、对称中心、奇偶性、单调性等,考查学生数形结合的能力,计算能力等,属于中档题.11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为2【答案】ABD 【解析】【分析】把点(1,2)B 代入抛物线22y px =即可得到本题答案;根据抛物线的定义,以及0FA FB FC ++=,可得122x x +=,从而可证得2FA FC FB += ;由A ,F ,C 三点共线,得121211y y x x =--,结合22112211,44x y x y ==,化简即可得到本题答案;设AC 的中点为00(,)M x y ,由AF CF AC +≥,结合1201122AF CF x x x +=+++=+,即可得到本题答案.【详解】把点(1,2)B 代入抛物线22y px =,得2p =,所以抛物线的准线方程为1x =-,故A 正确;因为1122(,),(1,2),(,),(1,0)A x y B C x y F ,所以11(1,)FA x y =-,(0,2)FB = ,22(1,)FC x y =- ,又由0FA FB FC ++=,得122x x +=,所以121142FA FC x x FB +=+++== ,即FA ,FB,FC 成等差数列,故B 正确;因为A ,F ,C 三点共线,所以直线斜率AF CF k k =,即121211y y x x =--,所以122212111144y y y y =--,化简得,124y y =-,故C 不正确;设AC 的中点为00(,)M x y ,因为AF CF AC +≥,1201122AF CF x x x +=+++=+,所以0226x +≥,得02x ≥,即AC 的中点到y 轴距离的最小值为2,故D 正确.故选:ABD【点睛】本题主要考查抛物线定义的应用以及抛物线与直线的相关问题,考查学生的分析问题能力和转化能力.12.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增【答案】ACD 【解析】【分析】根据题意可设()21ln 2f x x x bx =+,根据11f e e⎛⎫= ⎪⎝⎭求b ,再求()f x '判断单调性求极值即可.【详解】∵函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=即满足()()2'ln xf x f x x x x-=∵()()()2'f x xf x f x x x '-⎛⎫=⎪⎝⎭∴()ln f x x x x '⎛⎫=⎪⎝⎭∴可设()21ln 2f x x b x =+(b 为常数)∴()21ln 2f x x x bx=+∵211111ln 2b f e e e e e ⎛⎫=⋅+= ⎪⎝⎭,解得12b =∴()211ln 22f x x x x =+∴()112f =,满足()011f <<∴C 正确∵()()22111ln ln =ln 10222f x x x x '=+++≥,且仅有1'0f e ⎛⎫= ⎪⎝⎭∴B 错误,A、D 正确故选:ACD【点睛】本题主要考查函数的概念和性质,以及利用导数判断函数的单调性和极值点,属于中档题.三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.【答案】15-【解析】【分析】把5()x y -按照二项式定理展开,可得5(2)()x y x y +-的展开式中24x y 的系数.【详解】()5051423455555233245551(2)()(2)x y x y x y C x C x y C x y C x y C x y C y +-=+⋅⋅⋅+⋅-⋅+⋅-⋅-,故它的展开式中24x y 的系数为5543215C C -=-,故答案为:15-.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)【答案】若①③,则②或若②③,则①(填写一个即可);【解析】【分析】利用空间直线与平面的位置关系进行判断,//l α,αβ⊥时,l 与β可能平行或者相交.【详解】因为//l α,αβ⊥时,l 与β可能平行或者相交,所以①②作为条件,不能得出③;因为//l α,所以α内存在一条直线m 与l 平行,又l β⊥,所以m β⊥,所以可得αβ⊥,即①③作为条件,可以得出②;因为αβ⊥,l β⊥,所以//l α或者l α⊂,因为l 是平面α外的直线,所以//l α,即即②③作为条件,可以得出①;故答案为:若①③,则②或若②③,则①(填写一个即可);【点睛】本题主要考查空间位置关系的判断,稍微具有开放性,熟悉空间的相关定理及模型是求解的关键,侧重考查直观想象的核心素养.15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.【答案】32【解析】【分析】首先求,P Q 两点的坐标,代人圆心到直线的距离,由已知条件建立等式求得2b a =,最后再求双曲线的离心率.【详解】设(),0F c -,当x c =-,代人双曲线方程22221c ya b-=,解得:2b y a =±,设2,b Pc a ⎛⎫- ⎪⎝⎭,2,b Q c a ⎛⎫-- ⎪⎝⎭根据对称性,可设与两圆相切的渐近线是by x a =,则,P Q 两点到渐近线的距离22bc b bc b ---++=,c b > ,上式去掉绝对值为22bc b bc b c c +-+=,即52b a =,那么32c a ==.∴双曲线的离心率32e =.故答案为:32【点睛】本题考查双曲线的离心率,重点考查转化与化归的思想,计算能力,属于基础题型.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.【答案】(1).278sin cos θθ+(2).【解析】【分析】分别计算出OE 、OF ,相加可得EF 的长;设()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,利用导数求得()f θ的最小值,即可得解.【详解】如下图所示,过点O 分别作OA AE ⊥,OB BF ⊥,则OEA BOF θ∠=∠=,在Rt OAE △中,27OA =,则27sin sin OA OE θθ==,同理可得8cos OF θ=,所以,278sin cos EF OE OF θθ=+=+.令()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,则()3333222222278cos tan27cos8sin8sin27cos8 sin cos sin cos sin cosfθθθθθθθθθθθθθ⎛⎫-⎪-⎝⎭=-+='=,令()00fθ'=,得327tan8θ=,得03tan2θ=,由22003tan2sin cos1sin0θθθθ⎧=⎪⎪+=⎨⎪>⎪⎩,解得sin13cos13θθ⎧=⎪⎪⎨⎪=⎪⎩,当00θθ<<时,()0fθ'<;当02πθθ<<时,()0fθ'>.则()()min1313f fθθ===.故答案为:278sin cosθθ+;.【点睛】本题考查导数的实际应用,求得函数的解析式是解题的关键,考查计算能力,属于中等题.。
全国普通高校运动训练民族传统体育专业单招统一招生考试数学模拟试卷1一、单选题1.若集合{}2,1,0,1,2M =--,211,R 2N y y x x ⎧⎫==-+∈⎨⎬⎩⎭,则M N ⋂=()A .{}2,1,0,1--B .{}2,1,0--C .{}1,2D .{}22.函数()f x )A .1,3⎛⎫-+∞ ⎪⎝⎭B .1,13⎛⎫- ⎪⎝⎭C .1,13⎡⎫-⎪⎢⎣⎭D .1,3⎛⎫-∞- ⎪⎝⎭3.已知70.60.60.6,7,log 7a b c ===,则,,a b c 的大小关系为()A .a c b <<B .a b c<<C .c b a <<D .c<a<b4.“cos 2α=是“5,12k k Z παπ=+∈”的A .必要非充分条件B .充分非必要条件C .充要条件D .既非充分又非必要条件5.设计用232m 的材料制造某种长方体形状的无盖车厢,按交通部门的规定车厢宽度为2m ,则车厢的最大容积是()A .(38-m 3B .16m 3C .m 3D .14m 36.在ABC 中,若2AB =,3BC =,7cos 12B =,则AC =()A .6BC .D7.排球比赛的规则是5局3胜制(5局比赛中,优先取得3局胜利的一方,获得最终胜利,无平局),在某次排球比赛中,甲队在每局比赛中获胜的概率都为23,且各局之间互不影响,前两局中乙队以2:0领先,则最后乙队获胜的概率是()A .49B .1927C .1127D .40818.已知四棱锥P ABCD -的顶点都在球O 的球面上,PA ⊥底面ABCD ,1AB AD ==,2BC CD ==,若球O 的表面积为9π,则四棱锥P ABCD -的体积为()A .4B .43C .D .3二、填空题9.已知tan 3α=,tan()2αβ-=-,则tan β=___________.10.在ABC 中,1,2,||AB AC AB AC ==+= M 满足2BM MC =,则AM BC ⋅=______.11.设数列{}n a 的前n 项和为n S ,若13a =,且1112n n S a +=+,则{}n a 的通项公式n a =_______.12.在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b+=>>的上、下顶点分别为A ,B ,右顶点为D ,右焦点为F ,直线BF 与直线AD 交于点P ,若2AB OP =,则椭圆C 的离心率为________.三、解答题13.如图,在多面体ABCDE 中,AEB △为等边三角形,AD BC ∥,BC AB ⊥,CE =,22AB BC AD ===,F 为EB 的中点.(1)证明:AF ∥平面DEC ;(2)求多面体ABCDE 的体积.14.设抛物线2:2C y x =的焦点为F ,点(2,0),(2,0)A B -,直线l 过A 点且与抛物线C 交于,M N 两点.(1)当l x ⊥轴(M 在x BM 的方程;(2)设直线,BM BN 的斜率分别为12,k k ,证明:120k k +=.15.溺水、校园欺凌等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,甲、乙两个中学代表队狭路相逢,假设甲队每人回答问题正确的概率均为23,乙队每人回答问题正确的概率分别为12,23,34,且两队各人回答问题正确与否相互之间没有影响.(1)求甲队总得分为1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.参考答案:1.A【分析】求出二次函数2112y x =-+的值域即为集合N ,两集合取交集即可.【详解】{}2,1,0,1,2M =-- ,{}211,R 12N y y x x y y ⎧⎫==-+∈=≤⎨⎬⎩⎭,M N ∴⋂={}2,1,0,1--.故选:A【点睛】本题考查集合的交集运算,涉及二次函数的值域,属于基础题.2.B【分析】根据二次根式以及对数函数的性质求出函数的定义域即可.【详解】解:由题意得31010x x +>⎧⎨->⎩,解得:113-<<x ,故选B .【点睛】本题考查了求函数的定义域问题,考查对数函数的性质以及二次根式的性质,是一道基础题.3.D【分析】结合指数函数和对数函数性质,分别与中间值0和1比较.【详解】700.61<<,0.671>,0.6log 70<,∴c<a<b .故选:D.【点睛】本题考查比较幂与对数的大小.在比较不同类型的数的大小时可与中间值0或1等比较.4.A【分析】由cos 22α=,可得5522,,612k k k z ππαπαπ=±=±∈,利用充分条件与必要条件的定义可得结果.【详解】因为cos 22α=-,所以5522,,612k k k z ππαπαπ=±=±∈,即cos 22α=不能推出5,12k k Z παπ=+∈,反之,由5,12k k Z παπ=+∈可推出cos 2α=故“cos 2α=”是“5,12k k Z παπ=+∈”的必要不充分条件,故选A .【点睛】本题主要考查充要条件的概念,二倍角公式,属于简答题.充要条件的判断问题,是高考不可少的内容,特别是充要条件可以和任何知识点相结合,充要条件的判断一般有三种思路:定义法、等价关系转化法、集合关系法.5.B【详解】设长方体车厢的长为xm ,高为hm ,则222232x h xh +⨯=+,即216x h xh +=+,∴162x h xh xh =++≥,即160xh +≤,解得0<≤,∴08xh <≤.∴车厢的容积为3216()V xh m =≤.当且仅当2x h =且216x h xh +=+,即4,2x h ==时等号成立.∴车厢容积的最大值为316m .选B .6.D【分析】利用余弦定理可求AC .【详解】由余弦定理可得22272cos 1326612AC AB BC AB BC B =+-⨯⨯=-⨯⨯=,故AC =故选:D.7.B【分析】由题意可知,事件“最后乙队获胜”的对立事件为:A 最后3局均为甲队获胜,利用独立事件和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,事件“最后乙队获胜”的对立事件为:A 最后3局均为甲队获胜,由独立事件的概率公式可得()328327P A ⎛⎫== ⎪⎝⎭,因此,则最后乙队获胜的概率是()19127P A -=.故选:B.8.B【分析】推导出90ABC ADC ∠=∠= ,可得出四边形ABCD 的外接圆直径为AC =球直径为26PC R ==,结合PA ⊥底面ABCD 可得答案.【详解】AB AD = ,BC BD =,AC AC =,ABC ∴ 与ADC △全等,ABC ADC ∠=∠∴,易知A 、B 、C 、D 四点共圆,则180ABC ADC ∠+∠= ,90ABC ADC ∴∠=∠= ,所以,四边形ABCD 的外接圆直径为AC 设四棱锥P ABCD -的外接球半径为R ,则249R ππ=,解得32R =,由PA ⊥底面ABCD ,BC ⊂底面ABCD ,所以PA BC⊥又AB BC ⊥,且AP AB A = ,所以BC ⊥平面PAB ,又PB ⊂面PAB ,所以BC PB ⊥同理可证:CD PD⊥设为O 为PC 的中点,则由直角三角形的性质可得:OA OB OD OC ===所以O 四棱锥P ABCD -外接球的球心,即PC 为其直径,即23PC R ==2PA ∴===,1112122ABC S AB BC =⨯⨯=⨯⨯= 所以1142212333P ABCD ABC V S AP -=⨯⨯=⨯⨯⨯=故选:B【点睛】关键点睛:本题考查了四棱锥外接球问题的处理,考查推理能力与计算能力,解答本题的关键是由条件得出90ABC ADC ∠=∠= ,从而求出AC ,进一步得出PC 为球的直径,属于中等题.9.1-【分析】根据()a βαβ=--可知()tan tan a βαβ=--⎡⎤⎣⎦,结合两角差的正切公式进行计算即可.【详解】由已知可得,tan tan()3(2)tan tan[()]11tan tan()13(2)ααββααβααβ----=--===-+-+⨯-.故答案为:1-.10.83【解析】||AB AC += 1AB AC ⋅=- ,AM ,BC 分别用AB ,AC表示,利用数量运算即可求值.【详解】如图,1,2,||AB AC AB AC ==+=222()2AB AC AB AC AB AC ∴+=++⋅ ,1+4+23AB AC =⋅=1AB AC ∴⋅=-,又2BM MC = ,22()33BM BC AC AB ∴==- ,212()333AM AB BM AB AC AB AB AC=+=+-=+ 2212121()()33333AM BC AB AC AC AB AB AC AB AC ∴⋅=+⋅-=-+-⋅ 1818.3333=-++=故答案为:8311.23,143,2n n n -=⎧⎨⋅≥⎩.【分析】由题意,根据1n n n S S a --=计算写出13(2)n n a a n +=≥,再代入12112a a =+,计算2a ,从而验证213a a ≠,写出2n ≥时等比数列的通项公式,从而写出{}n a 的通项公式.【详解】∵1112n n S a +=+,∴()11122n n S a n -=+≥,∴111122n n n n n S S a a a -+-==-,即13(2)n n a a n +=≥.又13a =,112112S a a ==+,解得24a =.故213a a ≠.∴数列{}n a 从第二项起是公比为3的等比数列,故当2n ≥时,22243n n n a a q --==⋅.∴23,143,2n n n a n -=⎧=⎨⋅≥⎩.故答案为:23,143,2n n n -=⎧⎨⋅≥⎩12【分析】首先根据几何关系确定AD BF ⊥,再根据斜率关系建立关于,,a b c 的等式,即可求解斜率.【详解】因为2AB OP =,所以AD BF ⊥,所以1AD BF k b bk a c=-⋅=-⋅,即2b ac =,所以22a c ac -=,即210e e +-=,解得12e =(负值舍去).13.(1)证明见详解【分析】(1)作出辅助线,构造平行四边形,由线线平行得到线面平行;(2)先证明出面面垂直,进而作出四棱锥的高,求出底面积和高,利用锥体体积公式进行求解.【详解】(1)取EC 中点M ,连结DM ,MF ,因为F 是EB 的中点,所以MF ∥BC ,∵AD BC FM ∥∥,12AD BC MF ==,∴四边形AFMD 为平行四边形∴AF ∥DM .又AF ⊄平面DEC ,DM ⊂平面DEC ,AF ∥平面DEC .(2)∵222EB CB EC +=,∴CB BE ⊥,又∵CB AB ⊥,AB BE B = ,∴CB ⊥平面ABE ,BC ⊂平面ABCD ∴平面ABCD ⊥平面ABE ,过E 作AB 的垂线,垂足为H ,则EH 为四棱锥E ABCD -的高.由题知EH =底面四边形ABCD 为直角梯形,其面积()12232S +⨯==,∴11333E ABCD V S EH -=⋅=⨯=.14.(1)220x y -+=;(2)证明见解析.【解析】(1)由l x ⊥轴(M 在x 轴上方),可得直线l 的方程,代入抛物线方程可求出点M 的坐标,进而可求出直线BM 的方程;(2)分直线l x ⊥轴和l 与x 轴不垂直两种情况讨论,联立直线与抛物线方程,结合韦达定理分别表示出12,k k ,即可证明出120k k +=.【详解】(1)直线l 的方程为2x =,代入抛物线方程得(2,2)M ,而(2,0)B -,可得直线:220BM x y -+=(2)当直线l x ⊥轴时,(2,2),(2,2),(2,0)M N B --,易得120k k +=;当直线l 与x 轴不垂直时,设直线1122:(2),(,),(,)l y k x M x y N x y =-,则22222222(2)2(42)40(0)(2)y xk x x k x k x k k y k x ⎧=⇒-=⇒-++=≠⎨=-⎩得21212242,4k x x x x k ++==所以121212121212(2)(2)28248022(2)(2)(2)(2)k x k x kx x k k kk k x x x x x x ---⋅-+=+==++++++综上知,120k k +=.【点睛】思路点睛:一般解决直线与抛物线的综合问题时:(1)注意观察应用题设中的每一个条件,明确确定直线、抛物线的条件;(2)强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.15.(1)29(2)19【分析】由对立事件的概率求法,结合独立事件的乘法公式、互斥事件的加法公式求甲队总得分为1分的概率、甲队总得分为2分且乙队总得分为1分的概率即可.【详解】(1)记“甲队总得分为1分”为事件B :甲队得1分,即三人中只有1人答对,其余两人都答错,其概率()22222222221111113333333339P B ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.∴甲队总得分为1分的概率为29.(2)记“甲队总得分为2分”为事件C ,记“乙队总得分为1分”为事件D .事件C即甲队三人中有2人答对,剩余1人答错,∴()2222222224 111 3333333339P C⎛⎫⎛⎫⎛⎫=⨯⨯-+⨯-⨯+-⨯⨯=⎪ ⎪⎝⎭⎝⎭⎝⎭事件D即乙队3人中只有1人答对,其余2人答错,∴()1231231231 111111 2342342344P D⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.由题意,事件C与事件D相互独立,∴甲队总得分为2分且乙队总得分为1分的概率()()()411949 P CD P C P D==⨯=。
2019年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试 数学试卷一、选择题:本大题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M =*x |x >−1+,N =*x|x 2>1+,则M ∩N =( )A.*x|x >−1+B. *x|x >−1+或*x|x >1+C. *x|x >1+D. *x|−1<x <1+2.已知向量a ⃗=(1,2),b ⃗⃗=(1,-3),则|3a ⃗+b⃗⃗|=( ) A.5 B.4 C.3 D.√53.点(1,-1)到直线x −2y −8=0的距离是( )A.5B. √5C.√55D.154.已知α=2kπ+π2(k ∈Z ),则tan α2=( ) A.-1 B.−√22 C. √22 D.1 5.若2x+5>14,则x 的取值范围是( )A.(-7,+∞)B.(7,+∞)C.(-3,+∞)D.(3,+∞)6.已知圆锥的母线长为4,底面周长为2π,该圆锥的表面积是( )A. 4πB. 5πC. 8πD. 9π7.从1,2,3,4,5这5个数中,任取2个不同的数,其和为偶数的概率是( ) A .34 B. 35C . 12 D. 25 8.记等差数列*a n +的前n 项和为S n ,若a 5+a 6+a 7=15,则S 11=( )A.110B.80C.55D.309.若方程x 2+y 2+4ax −2y +5a =0表示的曲线是圆,则a 的取值范围是( )A.(14,1)B. (−1,−14)C.( −∞,14 )∪(1,+∞)D. ( −∞,−1 )∪(−14,+∞)10.函数f (x )=sin x cos x +cos 2x 的最大值是 ( )A.√22B.1+√22C. √2D.1+√2二、填空题:本题共6小题,每小题6分,共36分.11.(1+2x )7的展开式中的系数是_________.(用数字作答)12.双曲线x 24−y 2=1的离心率是_________.13.已知*a n +是各项均为正数的等比数列,且a 3,3a 2,a 4,成等差数列,则的公比为14.在ΔABC 中,AC =2,BC =3,AB =4,则cos∠ACB =_________.15.已知二次函数f (x )=ax 2−3a 2x −1,若f (x )在(1,+∞)单调递增,则a 的取值范围是_________.16.已知正四棱柱ABCD −A 1B 1C 1D 1的底面边长为2,点P 是底面A 1B 1C 1D 1的中心,且点P到直线AB的距离是3,则ΔPAC的面积为_________.三、解答题:本题共3小题,每小题18分,共54分.解答应写出文字说明、证明过程或演算步骤.【学子之家精品店出品haiwang103】17.(18分)已知ΔABC的内角A,B,C成等差数列.(1)求B;(2)求sinA+√3cos A的最大值.18.(18分)已知椭圆c:x2a2+y2b2=1(a>b>0)的离心率为√63,焦距为4.(1)求C的方程(2)过点(-3,0)且斜率k的直线l与椭圆C交于A,B两点,O为坐标原点,当AO⊥BO时,求k的值。
全国体育单招数学测试题一、 选择题(6×10=60分)1. 已知集合{}5,4,3,2,1=A ,{}023B 2=+-=x x x ,则A ∩B 等于( ) A. {1,3} B. {1,2} C. {1} D. {2,3} 2. 函数x x f πsin )(=的最小正周期是( )A. 1B. 2C. πD.π2 3. 已知平面内单位向量a ,b 的夹角为90°,则=-b a 34( )A. 5B. 4C. 3D.2 4. 函数1log 1)(2-=x x f 的定义域为( ))2,0.(A ]2,0.(B ),2.(+∞C ),2.[+∞D 5. 在ABC ∆中,已知,︒=45A 2,2==a c ,则=C ( )A. ︒30B. ︒60C. ︒120D. ︒150 6. 已知α是第二象限角,且53)(cos =-απ,则=αsin ( ) 53.A -54.B - 53.C 54.D 7. 焦距为8,离心率54=e ,焦点在x 轴上的椭圆标准方程是( ) 12516.22=+y x A 1259.22=+y x B 11625.22=+y x C 1925.22=+y x D 8.︒-︒+15tan 115tan 1的值是( )A .3B .23C .-3D . -239. 2019是等差数列 ,11,7的第( )项A. 503B. 504C. 505D. 50610. 函数)6sin(x y -=π的一个单调减区间是( )A.]32,3[ππ-B.]35,3[ππC.]35,3[ππ-D.]3,32[ππ-二、填空题(6×6=36分)11. 等比数列{}n a 中,0841=+a a ,则公比=q . 12. 双曲线1222=-y x 的离心率为 .13. 已知)53,3(),5,1(B A -,以AB 为直径的圆的方程为 . 14. 函数1)12()(23---=ax x a x f 为偶函数,则=-)2(f .15. 已知正△ABC 边长为1,AB =a ,BC =b ,AC =c ,则|a +2b -c |等于 . 16. 设12=+b a ,且0,0>>b a ,则使得t ba >+11恒成立的t 的取值范围是 .选择题答案填写处三、解答题(18分×3=54分)17.(本小题18分)已知n S 为等差数列{}n a 的前n 项和,且33=a ,14S 7=.(1)求n a 和n S ; (2)若nn a b 2=,求{}n b 的前n 项和n T .18. (本小题18分) 已知直线l :023=-+y x 的倾斜角为角α.(1)求αtan ; (2)求αsin ,α2cos 的值.19. (本小题18分)已知抛物线)0(22>=p px y 的焦点与双曲线1322=-y x 的一个焦点重合.(1)求抛物线方程;(2)若直线l :02=--kx y 与抛物线只有一个交点,求直线l 方程.参考答案一、选择BBACA DDABA 二、填空:11.2- 12. 26 13.9)52()1(22=-+-y x 14. -3 15. 1 16.)223,(+-∞三、17.(1)6-n ;2)11(n n -;(2)n--6264. 18(1)31-;(2)1010;5419.(1)x y 82= ; (2)02,02-=+-=y x y 或。
2017年全国普通高等学校运动训练、民族传统体育专业单招统一招生考试 数学试题一、选择题:(本大题共10小题,每小题6分,共60分)1、设集合}5,4,3,2,1{=M ,}6,3,1{=N ,则=N M ( ) A. }3,1{ B. }6,3{ C. }6,1{ D. }6,5,4,3,2,1{2、函数131)(+=x x f 的定义域为 ( ) A. }31|{−≥x x B. }3|{−≥x x C. }31|{−>x x D. }3|{−>x x 3、设甲:四边形ABCD 为矩形;乙:四边形ABCD 为平行四边形,则 ( )A. 甲是乙的充分条件但不是乙的必要条件B. 甲是乙的必要条件但不是乙的充分条件C. 甲是乙的充分必要条件D. 甲既不是乙的充分条件也不是乙的必要条件 4、从7名男运动员和3名女运动员中选出2人组队参加乒乓球混合双打比赛,则不同的选法共有( )A. 12种B. 18种C. 20种D. 21种5、ABC ∆的内角A ,B ,C 的对边分别为c b a ,,,若222c bc b a ++=,则A= ( ) A. 150 B. 120 C. 60 D.306、已知抛物线y x C 4:2=的焦点为F ,过F 作C 的对称轴的垂线,与C 交于A 、B ,则=||AB( )A. 8B. 4C.2D. 1 7、设252cos2sin=+αα,则=αsin ( ) A.23B. 21C. 31D. 418、点P 在直二面角βα−−AB 的交线AB 上,C ,D 分别在βα,内,且4π=∠=∠DPA CPA ,则=∠CPDA. 6πB. 4πC. 3πD. 2π9、已知点)2,3(),4,5(−−B A ,则以AB 为直径的圆的方程为 ( )A. 25)1()1(22=+++y x B. 25)1()1(22=−++y x C. 100)1()1(22=+++y x D. 100)1()1(22=−++y x10、过点)2,1(P 且斜率小于0的直线与x 轴,y 轴围成的封闭图形面积的最小值为 ( ) A. 2 B. 22 C. 4 D. 24二、填空题:(本大题共6小题,每小题6分,共36分)11、已知平面向量)2,1(),1,1(−=−=→→b a ,则=+→→b a 2 。
2023年全国普通高等学校运动训练、民族传统体育专业单招统一招生考试数学试卷一、单选题1.设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}2.不等式23180x x -++<的解集为()A .{6x x >或3}x <-B .{}36x x -<<C .{3x x >或6}x <-D .{}63x x -<<3.已知角α终边上一点P 的坐标为()512-,,则sin α的值是A .1213-B .1213C .513D .513-4.函数2y x=在区间[2,4]上的最大值、最小值分别是()A .14,12B .12,1C .12,14D .1,125.函数11y x =+的定义域为()A .[)4,1--B .[)()4,11,---+∞ C .()1,-+∞D .[)4,-+∞6.在ABC 中,已知120B =︒,2AB =,则BC =()A .1BC D .37.若0a >、0b >,且411a b+=,则ab 的最小值为().A .16B .4C .116D .148.直线:3410l x y +-=被圆22:2440C x y x y +---=所截得的弦长为()A .B .4C .D .二、填空题9.数列{}n a 中,15a =,13n n a a +=+,那么这个数列的通项公式是______.10.已知向量()3,2a = ,()1,b λ= ,若a b ⊥,则λ=_____.11.已知函数()sin2f x x x =-,则它的单调递增区间是_________12.椭圆22110036x y +=上一点P 满足到左焦点1F 的距离为8,则12F PF ∆的面积是________.三、解答题13.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c cos sin B b A =,π4A =,b .(1)求角B ;(2)求ABC 的面积.14.若数列{}n a 的前n 项和22n n S a =-,N*n ∈.(1)求数列{}n a 的通项公式;(2)若()221log *n n b a n N -=∈,求数列{}n b 的前n 项和n T .15.已知圆C 过点(M -,(N ,且圆心在x 轴上.(1)求圆C 的方程;(2)设直线:10l mx y -+=与圆C 相交于A ,B 两点,若MA MB ⊥,求实数m 的值.参考答案:1.B【分析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.2.A【分析】根据二次不等式的解法求解即可.【详解】23180x x -++<可化为23180x x -->,即()()630x x -+>,即6x >或3x <-.所以不等式的解集为{6x x >或3}x <-.故选:A 3.A【解析】根据三角函数定义,sin yx r=,即可求解【详解】由题意,13r ==∴12sin 13y x r ==-故选:A【点睛】本题考查三角函数定义,属于基本题.4.D【分析】根据反比例函数的单调性即可解得最值.【详解】易知函数2y x=在区间[2,4]是单调递减函数,因此当2x =时,函数2y x=的最大值为1,当4x =时,函数2y x=的最小值为12.故选D .【点睛】本题考查函数单调性的应用,对于反比例函数ky x=当0k >时为减函数,当0k <时为增函数,是基础题.5.B【分析】偶次开根根号下为非负,分式分母不为零,据此列出不等式组即可求解.【详解】依题意4010x x +≥⎧⎨+≠⎩,解得41x x ≥-⎧⎨≠-⎩,所以函数的定义域为[)()4,11,---+∞ .故选:B .6.D【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长.【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a c =+-⨯⨯⨯ ,即:22150a a +-=,解得:3a =(5a =-舍去),故3BC =.故选:D.【点睛】利用余弦定理及其推论解三角形的类型:(1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角;(3)已知三角形的两边与其中一边的对角,解三角形.7.A【分析】根据基本不等式计算求解.【详解】因为0a >、0b >,所以41+≥a b 1≥4,即16ab ≥,当仅当41a b=,即82a b ==,时,等号成立.故选:A.8.A【分析】直接利用直线被圆截得的弦长公式求解即可.【详解】由题意圆心()1,2C ,圆C 的半径为3,故C 到:3410l x y +-=2=,故所求弦长为=故选:A.9.32n a n =+【分析】根据给定条件,判定数列{}n a 是等差数列,再求出通项公式作答.【详解】数列{}n a 中,因13n n a a +=+,即13n n a a +-=,因此,数列{}n a 是等差数列,公差d =3,所以数列{}n a 的通项公式是1(1)32n a a n d n =+-=+.故答案为:32n a n =+10.32-【分析】根据向量的垂直的坐标表示求解即可.【详解】解:因为a b ⊥ ,()3,2a =,()1,b λ= ,所以320a b λ⋅=+=,解得32λ=-故答案为:32-11.7[,)1212k k k Z ππππ-+-∈【分析】先把函数化简变形成余弦型函数,利用余弦型函数的性质求出结果.【详解】函数()sin 2cos 22cos(2)6f x x x x π=-=+,令222()6k x k k Z ππππ-++∈,整理得:7()1212k x k k Z ππππ-+-∈,所以函数的单调递增区间为:7[,)1212k k k Z ππππ-+-∈.故答案为:7[,)1212k k k Z ππππ-+-∈.12.【解析】根据椭圆的定义再利用余弦定理求出12cos F PF ∠,最后由面积公式计算可得;【详解】解:由椭圆的定义得12||||220PF PF a +==,18PF =,∴212PF =,22222212121212||||812161cos 281242PF PF F F F PF PF PF +-+-∠===-⨯⨯⋅,∴214n si F PF ∠=,则12181224PF F S =⨯⨯⨯△.故答案为:13.(1)π3B =;【分析】(1)根据正弦定理结合特殊角的三角函数即得;(2)根据正弦定理,三角形面积公式进行求解即可.(1)cos sin B b A =,cos sin sin A B B A =,又sin 0A ≠,所以tan B =()0,πB ∈,所以π3B =;(2)由正弦定理可知:sin sin 22a b a A B =⇒又5ππ12C A B =--=,所以5πππππ1sin sinsin cos cos sin 12464622224C ==⨯+⨯=,所以113sin 22346ABC S ab C +==⨯=.14.(1)2n n a =;(2)2n T n =.【分析】(1)根据公式11(2,),(1)n n n S S n n N a a n *-⎧-≥∈=⎨=⎩,结合等比数列的定义、通项公式进行求解即可;(2)根据对数的运算性质,结合等差数列的定义、等差数列前n 项和公式进行求解即可.【详解】(1)数列{}n a 的前n 项和22n n S a =-,N*n ∈.2n ≥时,()112222n n n n n a S S a a --=-=---,化为:12n n a a -=,1n =时,1122a a =-,解得12a =.∴数列{}n a 是等比数列,首项为2,公比为2.2n n a ∴=.(2)221log 21n n b a n -==-.因为12n n b b +-=,∴数列{}n b 是等差数列,首项为1,公差为2,所以21()(1+21)22n n n a a n n T n +-∴===.15.(1)()2229x y ++=(2)12m =【分析】(1)设圆C 的半径为r ,圆心(),0C a ,由距离公式得出圆C 的方程;(2)由MA MB ⊥得出直线l 过圆心()2,0C -,从而得出m 的值.(1)设圆C 的半径为r ,圆心(),0C a ,由题意得()2222224,,r a r a ⎧=++⎪⎨⎪=+⎩解得2,3,a r =-⎧⎨=⎩∴圆C 的方程为()2229x y ++=.(2)∵点M 在圆上,且MA MB ⊥,∴直线l 过圆心()2,0C -,∴2010m --+=,解得12m =.。
机密★启用前2019年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数 学一、选择题:本题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案的字母在答题卡上涂黑.1.设集合{|1}M x x =>-,2{|1}N x x =>,则M N =( ).A .{|1}x x >-B .{|1x x <-或1}x >C .{|1}x x >D .{|11}x x -<<2.已知平面向量(1,2)a =,(1,3)b =-,则|3|a b +=( ).A .5B .4C .3D 3.点(1,1)-到直线280x y --=的距离是( ).A .5BC .D .154.已知2()2k k Z παπ=+∈,则tan2α=( ).A .1-B .2 C .2D .15.若5124x +>,则x 的取值范围是( ).A .(7,)-+∞B .(7,)+∞C .(3,)-+∞D .(3,)+∞6.已知圆锥的母线长为4,底面周长为2π,则该圆锥的表面积是( ). A .4πB .5πC .8πD .9π7.从1 , 2 , 3 , 4 , 5这5个数中,任取两个不同的数,其和为偶数的概率是( ).A .34B .35C .12D .25 8.记等差数列{}n a 的前n 项和为n S ,若56715a a a ++=,则11S =( ). A .110B .80C .55D .309.若方程224250x y ax y a ++-+=表示的曲线是圆,则a 的取值范围是( ).A .1(,1)4B .1(1,)4- C .1(,)(1,)4-∞+∞D .1(,1)(,)4-∞--+∞10.函数2()sin cos cos f x x x x =+的最大值是( ).A .B . CD .1+二、填空题:本题共6小题,每小题6分,共36分.11.7(12)x +的展开式中,2x 的系数是 .(用数字作答)12.双曲线2214x y -=的离心率是 .13.已知{}n a 是各项均为正数的等比数列,且3a ,23a ,4a 成等差数列,则{}n a 的公比为 . 14.在ABC ∆中,2AC =,3BC =,4AB =,则cos ACB ∠= .15.已知二次函数22()31f x ax a x =--,若()f x 在(1,)+∞上单调递增,则a 的取值范围是 .16.已知正四棱柱1111ABCD A B C D -的底面边长为2,点P 是底面1111A B C D 的中点,且点P 到直线AB 的距离是3,则PAC ∆的面积为 .三、解答题:本题共3小题,每小题18分,共54分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分18分)已知ABC ∆的内角A ,B ,C 成等差数列. (1)求B ;(2)求sin A A +的最大值.18.(本小题满分18分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率是,焦距为4.(1)求C 的方程;(2)过点(3,0)-且斜率为k 的直线l 与椭圆C 交于A ,B 两点,O 为坐标原点,当AO BO ⊥时,求k 的值.-的底面是边长为2的正方形,侧面PAD⊥底面ABCD,19.(本小题满分18分)如图,四棱锥P ABCD==,E,F分别为PC,BD的中点.且PA PDEF平面PAD;(1)证明://--的正切角.(2)求二面角P DB A2019年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数 学参考答案与试题解析【选择题&填空题答案速查】一、选择题:本题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案的字母在答题卡上涂黑.1.设集合{|1}M x x =>-,2{|1}N x x =>,则M N =( ).A .{|1}x x >-B .{|1x x <-或1}x >C .{|1}x x >D .{|11}x x -<<【解析】集合{|1}M x x =>-,22{|1}{|10}{|(1)(1)0}{|11}N x x x x x x x x x x =>=->=+->=<->或,{|1}MN x x ∴=>,故选:C .2.已知平面向量(1,2)a =,(1,3)b =-,则|3|a b +=( ).A .5B .4C .3D 对于向量(,)n x y =,2||n x y =+3(31a b +=⨯+23|4a b +=+选:A .3.点(1,1)-到直线280x y --=的距离是( ).A .5 BC .D .154.已知2()2k k Z απ=+∈,则tan2=( ).A .1-B .C .D .1选:D . 5.若5124x +>,则x 的取值范围是( ).A .(7,)-+∞B .(7,)+∞C .(3,)-+∞D .(3,)+∞单调递增),7x ∴>-,所以x 的取值范围是(7,)-+∞,故选:A .6.已知圆锥的母线长为4,底面周长为2π,则该圆锥的表面积是( ). A .4πB .5πC .8πD .9π7.从1 , 2 , 3 , 4 , 5这5个数中,任取两个不同的数,其和为偶数的概率是( ).A .34B .35C .12D .258.记等差数列{}n a 的前n 项和为n S ,若56715a a a ++=,则11S =( ). A .110B .80C .55D .309.若方程224250x y ax y a ++-+=表示的曲线是圆,则a 的取值范围是( ).A .1(,1)4B .1(1,)4- C .1(,)(1,)4-∞+∞D .1(,1)(,)4-∞--+∞10.函数2()sin cos cos f x x x x =+的最大值是( ).A .B .CD .1+,sin(2x +二、填空题:本题共6小题,每小题6分,共36分.11.7(12)x +的展开式中,2x 的系数是 84 .(用数字作答)【解析】由二项式定理的通项公式1r n r r r n T C a b -+=,可设含2x 项的项是17(2)rr r T C x +=,可知2r =,所以系数27484C ⨯=,得.故答案为:84.12.双曲线2214x y -=的离心率是.13.已知{}n a 是各项均为正数的等比数列,且3a ,23a ,4a 成等差数列,则{}n a 的公比为 2 .【解析】设等比数列{}n a 的公比为q ,因为3a ,23a ,4a 成等差数列,所以3426a a a +=,即22226a q a q a +=,因为20a ≠,所以260q q +-=,解得2q =或3q =-,因为数列{}n a 是各项均为正数的等比数列,所以0q >,所以3q =-不合题意,舍去,所以2q =.故答案为:2. 14.在ABC ∆中,2AC =,3BC =,4AB =,则cos ACB ∠=14-.15.已知二次函数22()31f x ax a x =--,若()f x 在(1,)+∞上单调递增,则a 的取值范围是(0,]3 . 【解析】因为()f x 在(1,)+∞上单调递增,则2'()230f x ax a =-≥在(1,)+∞上恒成立,所以20230a ax a >⎧⎨-≥⎩在16.已知正四棱柱1111ABCD A B C D -的底面边长为2,点P 是底面1111A B C D 的中点,且点P 到直线AB 的距离是3,则PAC ∆的面积为 4 .三、解答题:本题共3小题,每小题18分,共54分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分18分)已知ABC ∆的内角A ,B ,C 成等差数列. (1)求B ;(2)求sin A A +的最大值.18.(本小题满分18分)已知椭圆2222:1(0)xy C a b a b +=>>的离心率是,焦距为4.(1)求C 的方程;(2)过点(3,0)-且斜率为k 的直线l 与椭圆C 交于A ,B 两点,O 为坐标原点,当AO BO ⊥时,求k 的值.19.(本小题满分18分)如图,四棱锥P ABCD -的底面是边长为2的正方形,侧面PAD ⊥底面ABCD ,且PA PD ==,E ,F 分别为PC ,BD 的中点. (1)证明://EF 平面PAD ; (2)求二面角P DB A --的正切角.∆的【解析】(1)证明:连接AC,则AC交于BD点F,E,F分别为PC,BD的中点,所以EF为PAC。
单独考试招生文化考试数学卷(满分120分,考试时间120分钟)一、选择题:(本题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数12,3,z m i z i =+=-若12z z ⋅是纯虚数,则实数m 的值为( )A .13-B .-3C .3D .32 2.若)(x f 是R 上的减函数,且)(x f 的图象经过点A (0,4)和点B (3,-2),则当不等式3|1)(|<-+t x f 的解集为(-1,2)时,t 的值为( )(A )0 (B )-1 (C )1 (D )23.首项为-24的等差数列,从第10项开始为正,则公差d 的取值范围是( )(A )38>d (B )3<d (C )38≤3<d (D )d <38≤34.为了使函数)0(sin >=ωωx y 在区间[0,1]上至少出现50次最大值,则ω的最小值是( )(A )π98 (B )π2197 (C )π2199 (D )π1005、设集合A ={0,2,a},B ={1,a2},若A ∪B ={0,1,2,5,25},则a 的值为( )A .6B .8C .2D .56.已知b a ,为非零向量,则||||b a b a -=+成立的充要条件是( )(A )b a // (B )a 与b 有共同的起点 (C )||||b a = (D )b a ⊥7.不等式a x ax >-|1|的解集为M ,且M ∉2,则a 的取值范围为( ) (A )(41,+∞) (B )41[,+∞) (C )(0,21) (D )(0,]21)8. 已知集合A={-1,0,1},集合B={-3,-1,1,3},则A ∩B=( )A. {-1,1}B.{-2}C.{3}D.∅9. 不等式x2-4x ≤0的解集为( )A. [0,4]B.(1,4)C.[-4,0)∪(0,4]D.(-∞,0]∪[4,+∞)10. 函数f (x )=ln(x −2)+1x−3的定义域为( ) A. (2,+∞) B.[2,+∞)C.(-∞,2]∪[3,+∞)D.(2,3)∪(3,+∞) 11. 已知平行四边形ABCD ,则向量AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =( ) A. BD ⃗⃗⃗⃗⃗ B.DB ⃗⃗⃗⃗⃗ C.AC ⃗⃗⃗⃗⃗ D.CA⃗⃗⃗⃗⃗ 12. 下列函数以π为周期的是( )A.y =sin (x −π8)B.y =2cos xC.y =sin xD.y =sin 2x13. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是( )A. 400B.380C.190D.4014. 已知直线的倾斜角为60°,则此直线的斜率为( )A. −√33B.−√3C.√3D.√3315. 若sin α>0且tan α<0,则角α终边所在象限是( )A. 第一象限B.第二象限C.第三象限D.第四象限二、填空题:(本题共5小题,每小题6分,共30分.)1.全称命题“”的否定是___________2.设f(x)=x+(m -4)x+2为偶函数,则实数m 的值为_______.3.f(x)=在(一∞,1]上是增函数,则m 的取值范围是_______.4.{}{},13),(,3),(=+==-=y x y x B y x y x A 那么=B A _____;5. 042=-x 是x+2=0的 ____条件.三、解答题:(本题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤.)1、已知函数232()xf x x a -=+.(1)若0a =,求()y f x =在(1,(1))f 处的切线方程;(2)若函数()f x 在1x =-处取得极值,求()f x 的单调区间,以及最大值和最小值.2、求过点),(24-,且与直线033=+-y x 平行的直线方程。
2020年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数学一、选择题:本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项的字母填写在题后的括号内。
1.已知集合A={x|4<x<10},B={x|x=n2,n∈N},则A∩B=()A. ∅B.{3}C.{9}D.{4,9}2.1, 3的等差中项是()A.1B.2C.3D.43.函数f(x)=sin2x+cos2x的最小正周期是()A.2πB.3π2C.π D.π24.函数f(x)=√3−4x+x2的定义域是()A.RB.[1,3]C.(-oo,1]U[3,+oo)D.[0,1]5.函数y=1√x2−2x+2图象的对称轴为()A. x= 1B. x=12C. x= −12D. x= -16.已知,则()A. 35B.310C.−310D. −357.函数f(x)=ln(-3x2+1)的单调递减区间为()A.(0,√33) B.(−√33,0) C.(−√32,√32) D.(−√33,√33)8.若一个椭圆的两个焦点三等分它的长轴,则该椭圆的离心率为()A. B. C. D.9.双曲线x2a2−y2b2=1(a>0,b>0)的两条渐近线的倾斜角分别为α和β,则cosα+β2=()A.1B.√32C.12D.010.已知a=0.20.3,b=0.30.3,c=0.2−0.2,则()A. a<b<cB. b<a<cC. b<c<aD. a<c<b二、填空题:本大题共6小题,每小题6分,共36分。
把答案填在题中横线上。
11.从1,2,3,4,5中任取3个不同数学,这3个数字之和是偶数的概率为____________12.已知向量a, b满足|a|=2,|a+b|=1,且a与b的夹角为150°,则|b|=___________13.不等式log1x>2的解集是____________214.等比数列{an}中,若a1+a2=3,a4+a5=12,则a3=____________215.(x−3y)5的展开式中x2y3的系数为______________16.若平面α, β, r满足α⊥γ,α∩r=a,β⊥γ,β∩r=b,有下列四个判断:①a//β②当α//β时,a//b③a⊥β④当α∩β=c时,c⊥γ其中,正确的是_____________(填写所有正确判断的序号)三、解答题:本大题共3小题,每小题18分,共54分。
2019年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数学模拟试卷(一)注意事项:1.本试题卷包括选择题、填空题和解答题三部分共19小题,共150分;2.本卷考试时间:120分钟3.用钢笔或圆珠笔直接答在试题卷中,答卷前将密封线内的项目填写清楚.一、选择题:本大题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M = {x|0〈x〈1},集合N={x|—1〈x<1},则下列正确的是【】A.M∩N=N B.M∪N=M C.M∩N=M D.M∪N= M∩N2.“a〉0,b>0”是“ab〉0”的【】A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.不等式1xx-<的解集是【】A.{x|0<x<1} B.{x|1〈x<∞} C.{x|—∞<x<0}D.{x|-∞<x<0}4.函数(1)1xy xx=≠-+的反函数是【】A.(1)1xy xx=≠-B.(1)1xy xx=≠-C.1(0)xy xx-=≠ D.1(0)xy xx-=≠5,…则【】A.第6项 B.第7项 C.第10项 D.第11项6.下列函数中,在区间(0,)+∞上为增函数的是【】A.1()3=xy B.3logy x= C.1yx= D.cos=y x 7.已知0b a>>,且1a b+=,则此221,2,,2ab a b b+四个数中最大的是【】A.b B.22ba+ C.ab2 D.218.已知函数⎩⎨⎧≤>=,2,log)(2xxxxfx,则=-))4((ff【】第 1 页共3 页第 2 页 共 3 页A .4B .1C .4-D .41- 9.函数12log (32)y x =-的定义域是 【 】A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]310.函数)sin(ϕω+=x A y 在一个周期内的图象如下,此函数的解析式为 【 】A .)322sin(2π+=x yB .)32sin(2π+=x yC .)32sin(2π-=x yD .)32sin(2π-=x y二、填空题:本大题共6小题,每小题6分,共36分 11.0tan 600=_________.12.设公比为正数的等比数列,若151,16,a a ==则数列的前5项的和为_________.13.一个有限项的等差数列,前4项之和为40,最后4项之和是80,所有项之和是210,则此数列的项数为 . 14.在ABC ∆中,AC=2,BC=1, 3cos 4C =,则AB = .15.已知tan 2α=,sin 3cos sin cos αααα-+的值为__________. 16.已知函数22()4(0)f x ax a x=+>有最小值8,则a = .三、解答题:本大题共3小题,共54分.解答应写出文字说明、证明过程或演算步骤。
全国普通高校运动训练民族传统体育专业单招统一招生考试数学模拟试卷4一、选择题(本大题共8小题,每小题8分,共64分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}21A x x =-<≤,{}2,1,0B =--,则A ∩B =().A.{-2,-1,0,1}B.{-1,0,1}C.{-1,0}D.{-2,-1,0}2.函数y =)A .(-∞B .(-∞C .[)3,+∞D .()3,+∞3.下列函数中,既是偶函数,又在区间(-∞,0)上单调递增的函数是A.y =x 2 B.y =2x C.y =-ln|x | D.y =cos x4.已知向量()1,2a =r,5a b ⋅= ,8a b += ,则b =()A.6B.5C.8D.75.已知函数)3(sin sin )(22π++=x x x f ,则f (x )的最小值为()A.12 B.14C.34D.226.过点A (3,0)且与y 轴相切的圆的圆心的轨迹为()A .圆B .椭圆C .直线D .抛物线7.锐角△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,已知3sin2B =2b sin A cos B ,则a =()A .1B .2C .3D .68.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,底面ABCD 为正方形,E ,F 分别为B 1C 1,CD 的中点,直线BE 与平面11ABB A 所成角为45°,给出下列结论:①//EF 平面11BB D D ;②11EF AC ⊥;③异面直线BE 与1D F 所成角为60°;④三棱锥B CEF -的体积为长方体体积的112.其中,所有正确结论的序号是()A.①②③B.①②④C.②③④D.①②③④二、填空题(本大题共4小题,每小题8分,共32分.)9.()52x y -的展开式中,含23x y 项的系数为________(用数字作答).10.若关于x 的不等式28210mx mx ++<的解集为{}71x x -<<-,则实数m 的值为______.11.若双曲线2221(0)x y m m -=>的渐近线与圆22410x y x +-+=相切,则m =______.12.如图,AB 为圆O 的直径,点C 在圆周上(异于点A ,)B ,直线P A 垂直于圆O 所在的平面,点M 是线段PB 的中点.有以下四个命题:①MO ∥平面PAC ;②PA ∥平面MOB ;③OC ⊥平面PAC ;④平面PAC ⊥平面PBC .其中正确的命题的序号是______.三、解答题(本题共3小题,每小题18分,共54分)13.在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为56、45、34、13,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第三轮才被淘汰的概率;(Ⅱ)求该选手至多进入第三轮考核的概率;14.设S n 为等差数列{a n }的前n 项和,57a =-,555S =-.(1)求{a n }的通项公式;(2)求S n 的最小值及对应的n 值.15已知椭圆C 的标准方程为()222210x y a b a b +=>>,且右顶点到两焦点1F ,2F距离之和为2.(1)求椭圆C 的标准方程;(2)过左焦点1F 且斜率为1的直线l 交椭圆C 于A 、B 两点,求A 、B两点的坐标答案和解析1.C 【详解】因为{}21A x x =-<≤,{}2,1,0B =--,所以A B = {}1,0-.故选:C 2.C【详解】由题意得3270x -≥,即333x ≥,解得3x ≥.故选:C.3.C3.D由()1,2a =r得:||a ==r ,由8a b += 得2222251064a b a a b b b +=+⋅+=++= ,即得249,||7b b ==,故选:D 4.A【详解】已知函数f (x )=sin 2x +sin 2(x 3π+),=21cos 21cos 2322x x π⎛⎫-+⎪-⎝⎭+,=1cos 22111cos 222223x x x π⎛⎫⎛⎫--=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为[]cos 21,13x π⎛⎫+∈- ⎪⎝⎭,所以f (x )的最小值为12.故选:A 6.D解析:如图,设P 为满足条件的一点,不难得出结论:点P 到点A 的距离|PA |等于点P 到y 轴的距离|PB |,故点P 在以点A 为焦点,y 轴为准线的抛物线上,故点P的轨迹为抛物线.7.C解:因为3sin2B =2b sin A cos B ,可得6sin B cos B =2b sin A cos B ,因为B 为锐角,所以6sin B =2b sin A ,由正弦定理可得6b =2ab ,所以a =3.故选:C .8.D 【详解】取BC 中点为G ,连结,EG FG .对于①,因为,,E F G 分别是11,CD BC B C ,的中点,所以1//EG BB ,//FG BD ,因为1BB ⊂平面11BB D D ,EG ⊄平面11BB D D ,所以//EG 平面11BB D D ,同理,//FG 平面11BB D D .因为,EG ⊂平面EFG ,FG ⊂平面EFG ,EG FG G = ,所以平面//EFG 平面11BB D D ,又EF ⊂平面EFG ,所以//EF 平面11BB D D ,所以①正确;对于②,由已知可得四边形A 1B 1C 1D 1是正方形,1111B D A C ⊥,又1BB ⊥平面A 1B 1C 1D 1,11A C ⊂平面A 1B 1C 1D 1,所以111BB A C ⊥,因为11B D ⊂平面11BB D D ,1BB ⊂平面11BB D D ,1111BB B D B ⋂=,所以11A C ⊥平面11BB D D ,又//EF 平面11BB D D ,所以11EF AC ⊥,故②正确;对于③,取AD 中点为H ,连结11,,BH D H D E HF ,.因为11BE BB EB =-uur uuu r uuu r ,11HD DD DH =-uuur uuur uuu r ,11BB DD =uuu r uuur ,1111122EB C B DA DH ===uuu r uuu u r uu u r uuu r ,所以1BE HD =uur uuur ,所以1//BE HD 且1=BE HD ,所以四边形1BED H 是平行四边形,则1//D H BE ,所以异面直线BE 与1D F 所成角即等于直线1D H 与1D F 所成角1HD F ∠,因为直线BE 与平面11ABB A 所成角为45°,11B C ⊥平面11ABB A ,所以145EBB ∠= ,所以11B E BB =,设2AB =,则1111112BB B E B C ===,则112D F D H FH ===所以1D HF V 为等边三角形,所以160HD F ∠=o,故③正确;对于④,设长方体体积为V ,则1V CD BC CC =⨯⨯.因为CD ⊥平面11BCC B ,则13B CEF F BCE BCE V V CF S --==⨯⨯V 11132CF BC CC =⨯⨯⨯1111212CD BC CC V =⨯⨯⨯=,故④正确.故①②③④正确.故选:D.9.-40【详解】解:5(2)x y -的展开式的通项公式:()()515 2rrr r T C x y -+=-,要求含23x y 项的系数,令53r -=,解得2r =.5(2)x y -的展开式中23x y 项的系数为:()()25225 21104(1)40C --=创-=-故答案为:40-10.3【详解】由题可知,-7和-1是二次方程28210mx mx ++=的两个根,故()21713m m=-⨯-⇒=.经检验满足题意故答案为:3.11.33【详解】解:双曲线2221(0)x y m m-=>的渐近线:x my =±,圆22410x y x +-+=的圆心(2,0)双曲线2221(0)x y m m-=>的渐近线与圆22410x y x +-+=相切,=33m =或33m =-(舍去).故答案为:3.12.①④【详解】对①,因为,M O 为,BP BA 的中点,故MO 为三角形BPA 的中位线,故MO ∥平面PAC .故①正确.对②,因为PA ⊆平面MOB ,故②错误.对③,因为BC AC ⊥,故OC 不会垂直于AC ,故OC 不垂直于平面PAC .故③错误对④,因为BC AC ⊥,PA ⊥面ABC ,故PA BC ⊥.又PA AC A = .故BC 平面PAC ⊥,又BC ⊆平面PBC ,故平面PAC ⊥平面PBC .故④正确.故答案为①④13.解:(Ⅰ)16;(Ⅱ)12【详解】(Ⅰ)设事件(1,2,3,4)i A i =表示“该选手能正确回答第i 轮问题”.由已知15()6P A =,24()5P A =,33()4P A =,41()3P A =.(Ⅰ)设事件B 表示“该选手进入第三轮被淘汰”,则1235431()()(1)6546P B P A A A ==⨯⨯-=(Ⅱ)设事件C 表示“该选手至多进入第三轮考核”,则1121231515431()((1)6656542P C P A A A A A A =++=+⨯+⨯⨯-=14.(1)217n a n =-;(2)当8n =时,n S 的值最小,且864.S =-【详解】解:(1)设等差数列{}n a 的公差为d .由题意可得515147,54555,2a a d S a d =+=-⎧⎪⎨⨯=+=-⎪⎩解得115,2a d =-=.故11()217n a a n d n =+-=-.(2)由(1)可得()2116.2n n n n S na d n n -=+=-因为28()64,n S n =--所以当8n =时,n S 取得最小值,最小值为864.S =-15.(1)∵右顶点到两焦点1F ,2F 的距离分别为a +c ,a -c ,∴()()a c a c ++-=,()()2a c a c +--=,解得a =c =1,∴2221b a c =-=,∴椭圆C 的标准方程为2212x y +=;(2)由(1)可知左焦点1F 的坐标为()1,0-,∴直线l 的方程为y =x +1,联立直线l 与椭圆C 的方程得221220y x x y =+⎧⎨+-=⎩,整理得2340x x +=,解得43x =-或0,即A ,B 两点的坐标分别为41,33⎛⎫-- ⎪⎝⎭,()0,1。
全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数学模拟试题(四)无答案2019年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数学模拟试题(四)(总分150分,时间90分钟)一、选择题(本大题共10小题,每小题6分,共计60分。
每小题只有一个正确答案。
)1. 如果集合{}1,2,3,4,5,6,7,8U =,{}1,35,8A =,,{}2,4,8B =,那么(AU)B 等( )A. {}1,23,4,5,8,B. {}24,C. {}8,2D. {}2,4,7 2. 已知(1,2),(1,)a b x =-=,若a b ⊥,则x 等于( )A. 21B. 21- C. 2 D.-23. 把函数y=x 2-1的图像按向量a=(2,3)平移,得到y=f(x )的图像,则f (x ) = ( )A. (x -2)2-4B. (x +2)2-4C. (x -2)2+2D. (x +2)2+2 4. 已知函数)1(156≠∈-+=x R x x x y ,那么它的反函数为 ( )A. ()1156≠∈-+=x R x x x y 且 B. ()665≠∈-+=x R x x x y 且 C.⎪⎭⎫⎝⎛-≠∈+-=65561x R x x x y 且 D.()556-≠∈+-=x R x x x y 且5. 不等式024<--x x •的解集是 ( ) A. {x|0<x<1} B. {x|2<x<4} C. {x|x<2或x>4} D. {x|-∞<x<0}6. 已知点(1,cos )θ到直线sin cos 1x y θθ+=(0)2πθ<≤的距离为14,则θ等于 ( )A.6πB.4πC.3πD.2π7. 设f (x )是定义在(,)-∞+∞内的奇函数,且是减函数。
若0a b +>,则( )A.()()f a f b >B.()()f a f b <C.()()0f a f b +>D.()()0f a f b +<8. 若数列{na }是公差为2的等差数列,则数列{2na }是( ) A. 公比为4的等比数列 B.公比为2的等比数列C. 公比为12的等比数列D.公比为14的等比数列 9. 3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是 ( ) A.1440 B.720 C.360D.310 10设双曲线22221x y a b -=,(0,0)a b >>的实轴长、虚轴长、焦距成等差数列,那么这个双曲线的离心率e 等于( ) A. 2 B. 3 C. 53D. 43。
2019年全国普通高等学校运动训练、民族传统体育专业单独统一招
生考试数学模拟试卷(一)
注意事项:
1.本试题卷包括选择题、填空题和解答题三部分共19小题,共150分; 2.本卷考试时间:120分钟
3.用钢笔或圆珠笔直接答在试题卷中,答卷前将密封线内的项目填写清楚.
一、选择题:本大题共10小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求
的.
1.设集合M = {x |0<x <1},集合N={x |-1<x <1},则下列正确的是 【 】
A .M∩N=N
B .M ∪N=M
C .M∩N=M
D .M ∪N= M∩N
2.“a >0,b >0”是“ab >0”的 【 】
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
3.不等式1
0x x
-<的解集是 【 】
A .{x |0<x<1}
B .{x |1<x <∞}
C .{x |-∞<x <0}
D .{x |-∞<x <0}
4.函数(1)1x
y x x =
≠-+的反函数是 【 】 A .(1)1x y x x =≠- B .(1)1x
y x x =≠-
C .1(0)x y x x -=≠
D .1(0)x
y x x
-=≠
52,5,22,11,,…则25 【 】
A .第6项
B .第7项
C .第10项
D .第11项
6.下列函数中,在区间(0,)+∞上为增函数的是 【 】
A .1()3
=x
y B .3log y x = C .1
y x
= D .cos =y x 7.已知0b a >>,且1a b +=,则此
221
,2,,2
ab a b b +四个数中最大的是 【 】 A .b B .2
2b a + C .ab 2 D .2
1
8.已知函数⎩⎨
⎧≤>=0
,2
0,log )(2x x x x f x
,则=-))4((f f 【 】
A .4
B .41
C .4-
D .4
1- 9.函数12
log (32)y x =
- 【 】
A .[1,)+∞
B .2(,)3+∞
C .2
[,1]3
D .2(,1]3
10.函数)sin(ϕω+=x A y 在一个周期内的图象如下,此函数的解析式为 【 】
A .)322sin(2π+=x y
B .)3
2sin(2π+=x y C .)3
2sin(2π-=x y D .)3
2sin(2π
-
=x y
二、填空题:本大题共6小题,每小题6分,共36分
11.0
tan 600=_________.
12.设公比为正数的等比数列,若151,16,a a ==则数列的前5项的和为_________.
13.一个有限项的等差数列,前4项之和为40,最后4项之和是80,所有项之和是210,则此数列的项数为 .
14.在ABC ∆中,AC=2,BC=1, 3
cos 4
C =,则AB = . 15.已知tan 2α
=,
sin 3cos sin cos αα
αα
-+的值为__________.
16.已知函数2
2()4(0)f x ax a x
=+>有最小值8,则a = .
三、解答题:本大题共3小题,共54分。
解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分18分)
在等差数列{}()
n a n N *∈中,已知242,4a a ==, (1)求数列{}n a 的通项公式;
(2)设 2n a
n b =,求数列{}n b 前5项的和S 5.
18.(本小题满分18分) 已知函数()2sin()3
π
=-
f x x ,∈x R .
(1)写出函数()f x 的周期;
(2)将函数()f x 图象上的所有的点向左平行移动3
π
个单位,得到函数()g x 的图象,写出函数()g x 的表达式,并判断函数()g x 的奇偶性.
19.(本小题满分18分) 已知函数f (x )=log 2(x-1). (1)求函数f (x )的定义域;
(2)设g(x )= f (x )+a ;若函数y =g (x )在(2,3)有且仅有一个零点,求实数a 的取值范围; (3)设h (x )=()()
m
f x f x +
,是否存在正实数m ,使得函数y =h (x )在[3,9]内的最大值为4?若存在,求出m 的值;若不存在,请说明理由.。