风机变频器选型
- 格式:doc
- 大小:47.00 KB
- 文档页数:4
变频器的参数及其选择方法随着现代工业的发展,变频器作为一种重要的电气设备,在各个行业中得到了广泛应用。
变频器的参数设置和选择对于设备的稳定运行和性能表现起着至关重要的作用。
本文将介绍变频器的参数及其选择方法,帮助读者更好地了解和应用变频器。
一、变频器的参数1. 额定输入功率(Pn):变频器的额定输入功率是指变频器可以连续正常运行的功率。
在选型时,需要根据所需的负载功率来选择合适的额定输入功率。
2. 额定输出电流(In):额定输出电流是指变频器能够提供给负载的最大电流。
在选型时,需要根据负载的性质和所需的工作电流来确定合适的额定输出电流。
3. 输入电压范围(V):输入电压范围是指变频器可以正常工作的电压范围。
在选型时,应根据现场的电源电压情况选择适当的输入电压范围。
4. 输出电压范围(V):输出电压范围是指变频器可以输出的电压范围。
在选型时,应根据负载设备对电压稳定性的要求选择合适的输出电压范围。
5. 短路保护:短路保护是变频器的一项重要功能,能够在发生短路时及时切断输出电流,保护设备和使用者的安全。
6. 过载保护:过载保护是变频器的另一项重要功能,能够在负载过载时及时切断输出电流,保护设备免受损坏。
7. 控制方式:变频器的控制方式有多种,如电压控制、速度控制和转矩控制等。
在选型时应根据具体的应用需求选择合适的控制方式。
二、变频器的选择方法1. 确定负载类型:首先需要确定所需控制的负载类型,如电动机、泵、风机等。
不同的负载类型对变频器的要求不同,因此在选型时需要明确负载类型。
2. 计算负载功率:根据实际负载工作条件和负载参数,计算负载功率。
负载功率是选择变频器的重要依据,应精确计算以确保变频器能够满足负载需求。
3. 分析负载特性:根据负载的启动特性、工作特性和负载惯量等参数,分析负载对变频器的要求。
例如,对于负载惯量大的设备,需要选择具有较强驱动能力的变频器。
4. 选择合适的变频器:根据前述确定的参数要求,选择具有合适额定输入功率、额定输出电流、输入电压范围和输出电压范围等参数的变频器。
风机、水泵变频器选型方法一、首先需要注意,1.罗茨风机及潜水泵及齿轮泵等不是平方转矩的风机水泵类负载,是恒转矩负载,平方转矩类风机水泵负载一般都是针对于离心风机及水泵来的,这种负载在出口关闭情况下出口压力升到额定压力后就不升高了,因为没有流量所以负荷降低。
2.风机水泵类负载一般在设计时是按照最大需量设计的,存在富余功率。
对于这类负载使用变频器按需使用就有节能的空间。
二、正确的把握变频器驱动的机械负载对象的转速——转矩特性,是选择电动机及变频器容量、决定其控制方式的基础。
风机、泵类的负载为平方转矩负载。
随着转速的降低,所需转矩以平方的比例下降,低频时负载电流小,电机过热现象不会发生;但有些负载的惯量大,必须设定长的加速时间,或再启动时的大转矩引起的冲击,因此选型时需考虑裕量;另:当电机以超出基频转速以上的转速运行时,负载所需的动力随转速的提高而急剧增加,易超出电机与变频器的容量,将导致运行中断或电机发热严重。
对于恒转矩负载,要选用G型的变频器;P型变频器适用于普通的风机和离心式水泵等负载。
(罗茨风机、螺杆泵、泥浆泵、往复式柱塞泵等则要用G型)--------------百度文库及工控网、自动化网,总结的选型方法摘抄如下:1) 根据负载特性选择变频器,如负载为恒转矩负载需选变频器,如负载为风机、泵类负载应选择风机、泵类变频器。
因为风机、水泵会随着转速增大力矩。
而刚启动时力矩较小。
2) 选择变频器时应以实际电机电流值作为变频器选择的依据,电机的额定功率只能作为参考。
另外,应充分考虑变频器的输出含有丰富的高次谐波,会使电动机的功率因数和效率变坏。
因此用变频器给电动机供电与用工频电网供电相比较,电动机的电流会增加10%而温升会增加20%左右。
所以在选择电动机和变频器时,应考虑到这种情况,适当留有余量,以防止温升过高,影响电动机的使用寿命。
3) 变频器若要长电缆运行时,此时应该采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不够。
经济型变频器型号电源额定容量(KVA)额定输出电流(A)适配电机(KW)S1-2S0004(-B)单相220V0.9 2.50.4S1-2S0007(-B)单相220V 1.540.75S1-2S0015(-B)单相220V 2.87.5 1.5S1-2S0022(-B)单相220V 4.111 2.2S1-4T0007(-B)三相380V 1.7 2.50.75S1-4T0015(-B)三相380V 2.64 1.5S1-4T0022(-B)三相380V 3.4 5.2 2.2 ()S1-4T0040(-B)三相380V 5.994通用型变频器型号电源额定容量(KVA)额定输出电流(A)适配电机(KW)G1-4T0007G三相380V 1.75 2.50.75G1-4T0015G三相380V 2.64 1.5G1-4T0022G三相380V 3.4 5.2 2.2G1-4T0040G三相380V 5.994G1-4T0055G三相380V8.613 5.5G1-4T0075G三相380V11.2177.511275G1-4T0110G三相380V16.52511G1-4T0150G三相380V213215G1-4T0185G三相380V253818.5G1-4T0220G三相380V304522G1-4T0300G三相380V406030G1-4T0370G三相380V507537G1-4T0450G三相380V609045G1-4T0550G三相380V7511055G1-4T0750G三相380V15075G14T0750G99G1-4T0900G三相380V11617690G1-4T1100G三相380V139210110G1-4T1320G三相380V164250132G1-4T1600G三相380V197300160风机水泵型变频器型号电源额定容量(KVA)额定输出电流(A)适配电机(KW)G1-4T0055P三相380V8.613 5.5G1-4T0075P三相380V11.2177.5G14T0110PG1-4T0110P三相380V16.52511G1-4T0150P三相380V213215G1-4T0185P三相380V253818.5G1-4T0220P三相380V304522G14T0300P40G1-4T0300P三相380V6030G1-4T0370P三相380V507537G1-4T0450P三相380V609045G1-4T0550P三相380V7511055G14T0750P三相380V99G1-4T0750P15075G1-4T0900P三相380V11617690G1-4T1100P三相380V139210110G1-4T1320P三相380V164250132G14T1600P三相380V197300160G1-4T1600PG1-4T1850P三相380V224340185深圳市德天奥科技有限公司电话:*************网址:Q Q:16605985手机:139****8759。
23冷却塔风机变频改造方案冷却塔是一种常见的冷却设备,用于将热水或冷却剂排放到大气中,以使其冷却。
冷却塔通常由风机来促进空气循环,以提高散热效果。
然而,传统的冷却塔风机通常是定速运行的,这导致了一些问题,例如高耗电和能源浪费。
因此,对冷却塔风机进行变频改造是一种有效的节能措施,可以降低能源消耗,提高设备的效率。
变频改造方案的主要目标是通过控制风机的转速,使其能根据工作负荷的变化来调整风量。
具体的变频改造方案如下:1.变频器的选型:选择适合冷却塔风机的变频器型号和规格,确保其具有足够的功率和稳定性。
2.风机传动系统的改造:如果冷却塔风机采用皮带传动系统,可以使用双齿轮传动系统替代。
这种传动系统更加稳定和高效,能够减少能量损耗。
3.风机控制系统的改造:安装变频器并与原来的控制系统进行连接,通过变频器来控制风机的转速。
这样,冷却塔风机的转速可以根据需要自动调整,从而实现节能和调节风量的目的。
4.温控系统的改造:安装温度探测器和温控器,测量和控制冷却塔的进水温度。
当进水温度达到或超过设定值时,温控器会自动调整冷却塔风机的转速,以保持合适的冷却效果。
5.变频器的运维和维护:定期检查变频器的运行状态和设定参数,保证其正常工作。
另外,注意变频器的散热问题,保证其在适宜的温度范围内运行。
通过上述的变频改造方案,可以有效地降低冷却塔风机的能耗,提高设备的运行效率。
1.节能减排:由于风机转速可以按需调整,变频改造能够降低能耗,减少对电力资源的消耗,达到节能减排的目的。
2.精确控制:通过变频器可以实现对风机转速的精确控制,使得冷却塔在不同负荷下能够提供所需的冷却效果,提高设备的运行效率。
3.设备寿命延长:变频器可以减小风机的启停冲击,降低设备的磨损和故障率,从而延长了设备的使用寿命。
综上所述,对冷却塔风机进行变频改造是一种有效的节能措施,可以降低能源消耗,提高设备的效率。
变频器的选型和安装要根据冷却塔的实际情况进行,同时要注意变频器的运维和维护。
风机选型的一般步骤1、计算确定场地的通风量风机风量的定义为:风速V与风道截面积F的乘积.大型风机由于能够用风速计准确测出风量,所以风量计算也很简单.直接用公式Q=VF.便可算出风量.风机数量的确定根据所选房间的换气次数.计算厂房所需总风量.进而计算得风机数量. 计算公式:N=V×n/Q 其中:N--风机数量台, V--场地体积m3, n--换气次数次/时, Q--所选风机型号的单台风量m3/h. 风机型号的选择应该根据厂房实际情况.尽量选取与原窗口尺寸相匹配的风机型号.风机与湿帘尽量保持一定的距离尽可能分别装在厂房的山墙两侧.实现良好的通风换气效果.排风侧尽量不靠近附近建筑物.以防影响附近住户.如从室内带出的空气中含有污染环境.可以在风口安装喷水装置.吸附近污染物集中回收.不污染环境2、计算所需总推力ItIt=△P×AtN其中,At:隧道横截面积m2△ P:各项阻力之和Pa;一般应计及下列4项:1 隧道进风口阻力与出风口阻力;2 隧道表面摩擦阻力,悬吊风机装置、支架及路标等引起的阻力;3 交通阻力;4 隧道进出口之间因温度、气压、风速不同而生的压力差所产生的阻力.3、确定风机布置的总体方案根据隧道长度、所需总推力以及射流风机提供推力的范围,初步确定在隧道总长上共布置m组风机,每组n台,每台风机的推力为T.满足m×n×T≥Tt的总推力要求,同时考虑下列限制条件:1 n台风机并列时,其中心线横向间距应大于2倍风机直径2 m组台风机串列时,纵向间距应大于10倍隧道直径4、单台风机参数的确定射流风机的性能以其施加于气流的推力来衡量,风机产生的推力在理论上等于风机进出口气流的动量差动量等于气流质量流量与流速的乘积,在风机测试条件先,进口气流的动量为零,所以可以计算出在测试条件下,风机的理论推力:理论推力=p×Q×V=pQ2/ANP:空气密度kg/m3Q:风量m3/sA:风机出口面积m2试验台架量测推力T1一般为理论推力的倍.取决于流场分布与风机内部及消声器的结构.风机性能参数图表中所给出的风机推力数据均以试验台架量测推力为准,但量测推力还不等于风机装在隧道内所能产生的T,这是因为风机吊装在隧道中时会受到隧道中气流速度产生的卸荷作用的影响柯达恩效应,可用推力减少.影响的程度K1和K2来表示和计算: T=T1×K1×K2或T1=T/K1×K2其中T:安装在隧道中的射流风机可用推力NT1: 试验台架量测推力NK1:隧道中平均气流速度以及风机出口风速对风机推力的影响系数K2:风机轴流离隧道壁之间距离的影响系数5、特定场合风机选型1仓库通风首先,看仓储货品是否是易燃易爆货品,如:油漆仓库等,必须选择防爆系列风机;其次,看噪声要求高低,可以选择屋顶风机或环保式离心风机,而且有款屋顶风机是风力启动,更可以省电呢;最后,看仓库空气所需换气量的大小,可以选择最常规的轴流风机SF型或排风扇FA型;2厨房排风首先,对于室内直排油烟的厨房即排风口在室内墙上,可以根据油烟大小选择SF型轴流风机或FA型排气风扇;其次,对于油烟大,且油烟需要经由长管道,并管道里有打弯处理的厨房,强烈建议使用离心风机最为通用,11-62低噪声环保型离心风机也很实用,这是因为离心风机的压力较轴流风机大,且油烟不经过电机,对电机的保养和换洗更容易;最后,建议油烟强烈的厨房选用以上两种方案并用,效果更佳;3高档场所通风对于酒店、茶坊、咖啡吧、棋牌室、厅等高档场所通风,就不适宜用常规风机了;首先,对于小室的通风,使通风管道连接中央通风管的房间,可以在兼顾外观与噪声基础上,选择FZY系列小型轴流风机,它体积小,塑料或铝制外观,低噪声与高风量并存;其次,对风量与噪声要求更严格的角度说,风机箱是最好选择;箱体内部有消音棉,外接中央通风管道后可以达到减噪的显著效果;最后,补充一下,对于健身房的室内吹风,务必选则大风量的FS型工业电风扇,而非SF型岗位式轴流风机;这是从外观及安全性方面考虑;6、污水处理中风机选型一、鼓风机是污水处理工程中常用的充氧设备,在污水厂风机选型时,风机厂家产品样本上给出的均是标准进气状态下的性能参数,我国规定的风机标准进气状态: 压力p0 =101. 3 kPa ,温度T0 = 20 ℃,相对湿度φ= 50 % ,空气密度ρ= 1. 2 kg/ m3 ;然而风机在实际使用中并非标准状态,当鼓风机的环境工况如温度、大气压力以及等不同时,风机的性能也将发生变化,设计选型时就不能直接使用产品样本上的性能参数,而需要根据实际使用状态将风机的性能要求,换算成标准进气状态下的风机参数来选型;二、风机选型中应关注鼓风机出口压力影响因素的分析容积式排气压力的高低并不取决于风机本身,而是气体由鼓风机排出后装置的情况,即所谓“背压”决定的,具有强制输气的特点;鼓风机铭牌上标出的排气压力是风机的额定排气压力;实际上,鼓风机可以在低于额定排气压力的任意压力下工作,而且只要强度和排气温度允许,也可以超过额定排气压力工作;对于污水处理厂而言,排气系统所产生的绝对压力背压为管路系统的压力损失值、水深和环境大气压力之和,如图1 所示;若由于某种原因,如或管路堵塞,使管路系统的压力损失增加,“背压”也会升高,于是鼓风机的压力也就相应升高;又若曝气头破裂或管路泄漏等原因,管路系统的压力损失则会减少“, 背压”便不断降低,鼓风机的压力也随之降低;综上所述,确定曝气鼓风机压力时,只需要鼓风机在标准状态下所能达到的绝对压力等于使用状态下的大气压力、曝气池水深和管路损失之和;三、风机选型时应关注鼓风机空气流量因素在计算污水处理的需氧量时,其结果为标准状态下所需氧的质量流量qm kg/ min ,再将其换算成标准状态下所需空气的容积流量qv1m3/ min ,如果鼓风机的使用状态不是标准状态,例如在高原地区使用,则空气密度、含湿量会发生变化,鼓风机所供应的空气容积流量与标准状态是相同的,而所供空气的质量流量将减少,有可能导致供氧量不足;因此,必须计算出能供应相同质量流量的容积流量,即换算流量;在高原地区使用时,环境大气压力也会发生变化,压力比相应升高,那么,鼓风机的泄漏流量则会增大,这将导致鼓风机所供应的空气容积流量减少,也可能造成供氧量不足;因此,设计时必须考虑使用条件发生变化时各种因素的影响,以保证风机所供应的实际空气流量能够满足使用要求,并需计算出换算流量和泄漏流量;四、风机选型应关注鼓风机供气流量的变化规律对于同一台鼓风机,在冬季和夏季,其容积流量是不会发生变化的,但因空气密度的不同质量流量会发生变化,也就是说供氧量会有所不同;鼓风机在标准状态与使用状态下的容积流量是不变的,但因为空气密度ρ 、含湿量等发生了变化,导致鼓风机输送至曝气池的供氧量FOR 在冬季温度降低时增加、夏季温度升高时降低;例如,某一污水处理厂,选用上述计算例题中的,根据环境温度变化, 计算出鼓风机的实际供氧量,其一年的变化规律在实际运行过程中,由于进水量、水质、水温、ML S S 等参数的变化,系统需氧量SOR 也会发生变化在夏季,水温较高,曝气池需氧量SOR 增大,但鼓风机的供氧量FOR在减少,这是设计时考虑需氧量的最不利工况点,此时,供氧量、需氧量基本相当;在冬季,水温降低,曝气池需氧量SOR 减少,但鼓风机的供氧量FOR 增大,此时,供氧量较需氧量大出许多;这是由于冬季气温降低,空气密度增加,那么风机所供给的干空气的质量流量较标准状态大幅度增加,从而引起供氧量增加,从运行的实际测量情况来看,每年冬季曝气池的溶解氧较夏季会高出1~3mg/ L ;因此,在生产运行过程中,需要针对这种变化对设备进行及时的调整,使鼓风机的充氧能力与实际运行中的需氧量相适应;对于罗茨鼓风机来说,使用变频器,通过改变风机转速来调整供风量是很经济实用的;不同季节曝气池需氧量SOR 、鼓风机供氧量FOR 变化规律五、结论综上所述,同一台鼓风机在不同的使用条件下,其性能的变化非常大,所以必须通过严谨的计算进行选型, 否则有可能导致生化系统的供氧不足; 另外,在冬季和夏季由于空气密度发生了变化,鼓风机所供应氧气的质量流量变化很大,冬季供氧量大大超过了需氧量,所以,应采取变频调速等措施使生化系统的溶解氧浓度保持稳定;7、风机变频器选型风机在启动时,电流会比额定高5-6倍的,不但会影响风机的使用寿命而且消耗较多的电量.系统在设计时在电机选型上会留有一定的余量,电机的速度是固定不变,但在实际使用过程中,有时要以较低或者较高的速度运行;SAJ变频器可实现电机软启动、补偿功率因素、通过改变设备输入电压频率达到节能调速的目的,而且能给设备提供过流、过压、过载等保护功能;。
三菱变频器风扇/风机选型成都锦恒荣泰电气设备有限公司ABB变频器风扇、施耐德变频器风扇、西门子变频器风扇、安川变频器风扇、富士变频器风扇、三菱变频器风扇、AB变频器风扇、松下变频器风扇、三肯变频器风扇、日立变频器风扇、威肯变频器风扇、艾默生变频器风扇、丹佛斯变频器风扇、欧陆变频器风扇MMF-04C12DH-CC1MMF-04C12DH-RCJMMF-04C12DH-RCMMF-04C12DM-RC1MMF-04C12DS-RC4MMF-04C12DS-RCBMMF-04C12DS-RCCMMF-04C12DS-RCFMMF-04C12DS-RO6MMF-04C24DS-CC1MMF-04C24DS-CC2MMF-04C24DS-EO1MMF-04C24DS-EO2MMF-04C24DS-MCAMMF-04C24DS-RC2 MMF-04C24DS-RC4 MMF-04C24DS-RC6 MMF-04C24DS-RCA MMF-04C24DS-RCB MMF-04C24DS-ROF MMF-04C24DS-ROP MMF-04C24DS-ROR MMF-06C12DS-RB4 MMF-06D12DH-RB5 MMF-06D12DL-RB1 MMF-06D12DL-ROH, MMF-06D12DS-RB3 MMF-06D24DH-FA1 MMF-06D24DH-ROF MMF-06D24DH-ROF MMF-06D24DL-FC MMF-06D24DS-FC1 MMF-06D24DS-FC2 MMF-06D24DS-FC5 MMF-06D24DS-RA6MMfD24ES-FC4MMF-06D24ES-FC5 MMF-06D24ES-FC6 MF-06D24ES-FC8 MMF-06D24ES-FO1 MMF-06D24ES-FO2 MMF-06D24ES-FO2 MMF-06D24ES-FO3 MMF-06D24ES-FO4 MMF-06D24ES-RC1 MMF-06D24ES-RC1 MMF-06D24ES-RC6 MMF-06D24ES-RO5 MMF-06D24ES-RO6 MMF-06D24ES-RO7 MMF-06D24ES-ROD MMF-06D24ES-ROT MMF-06E12DH-RC1 MMF-06E12DH-RC3 MMF-06E12DH-RO4 MMF-06E12DH-RP1 MMF-06E12DM-RC2 MMF-06E24DH-ROEMMF-06F24ES-RM4 MMF-06F24ES-RM5 MMF-06F24ES-RN8 MMF-06F24ES-RNB MMF-06F24ES-RNF MMF-06F24ES-RP1 MMF-06F24ES-RP1 MMF-06F24ES-RP3 MMF-06F24ES-RP5 MMF-06G12DH-RB1 MMF-06G12DH-RC2 MMF-06G12DH-RC5 MMF-06G12DS-RB2 MMF-06G12ES-CA1 MMF-06G12ES-RB3 MMF-06G24DM-FC1 MMF-06G24DS-RA0 MMF-06G24DS-RO6 MMF-06G24DS-ROH MMF-06G24DS-RP2 MMF-06G24ES-RA1MMF-06G24ES-RP1 MMF-06G24SS-CP1 MMF-06G24TS-CP1 MMF-06G24TS-EN1 MMF-06G24TS-MM1 MMF-06G24TS-RM0 MMF-06G24TS-RN1 MMF-08C12DH-R13 MMF-08C12DM-RC5 MMF-08C12DS-FB3 MMF-08C12DS-RP2 MMF-08C24DH-ROT MMF-08C24DL-RC2 MMF-08C24DS-FC1 MMF-08C24DS-FC2 MMF-08C24DS-FC3 MMF-08C24DS-RC5 MMF-08C24DS-RC6 MMF-08C24ES-RM1 MMF-08C24ES-RM1 MMF-08D24ES-RM6MMF-08D24ES-RNB MMF-08D24ES-RNC MMF-08D24ES-RNG MMF-08D24ES-RNN MMF-08D24ES-RNP MMF-08D24ES-RP1 MMF-08D24ES-RP1 MMF-08D24ES-RP4 MMF-08G12DH-R MMF-08G12DH-RB1 MMF-08G12DH-RB3 MMF-08G12DH-ROB MMF-08G12DS-FB1 MMF-08G12DS-HB1 MMF-08G12DS-RB1 MMF-08G12ES-HB1 MMF-08G24DH-ROA MMF-08G24DM-FO1 MMF-08G24DM-RC1 MMF-08G24DM-RC2 MMF-08G24DM-RC3MMF-08G24DS-FO2 MMF-08G24DS-FO3 MMF-08G24DS-RC4 MMF-08G24DS-RC5 MMF-08G24DS-RC6 MMF-08G24DS-RC9 MMF-08G24DS-ROC MMF-08G24DS-ROD MMF-08G24DS-ROF MMF-08G24DS-ROG MMF-08G24DS-ROJ MMF-08G24ES-CN4 MMF-08G24ES-CP1 MMF-08G24ES-CP1 MMF-08G24ES-CX1 MMF-08G24ES-EN1 MMF-08G24ES-MM2 MMF-08G24ES-MN1 MMF-08G24ES-RO6 MMF-08G24ES-RO7 MMF-08G24ES-ROAMMF-09B12DL-RB1 MMF-09B12DM-RB6 MMF-09B12DM-RC9 MMF-09B12DM-RCA MMF-09B24DM-ROA MMF-09C24TS-RN9 MMF-09D24TS-CP1 MMF-09D24TS-EN1 MMF-09D24TS-EN1 MMF-09D24TS-EN2 MMF-09D24TS-EN3 MMF-09D24TS-EN4 MMF-09D24TS-MM5 MMF-09D24TS-MM6 MMF-09D24TS-MMA MMF-09D24TS-MMB MMF-09D24TS-MN1 MMF-09D24TS-MN2 MMF-09D24TS-RM1 MMF-09D24TS-RM5 MMF-09D24TS-RMAMMF-09D24TS-RN9 MMF-09D24TS-RP1 MMF-09D24TS-RP1 MMF-09D24TS-RP3 MMF-09D24TS-RP4 MMF-09D24TS-RP5 MMF-09D24TS-RP6 MMF-09D24TS-RP7 MMF-12B12DH-RAA。
HV300系列通用型变频器选型手册(0.4kW~500kW)通用技术规格公司简介质量管理体系环境管理体系职业健康安全管理体系【质量体系】深圳市禾望电气股份有限公司(股票代码603063)是一家专注于电力电子产品研发、制造、营销和服务的高新技术企业,产品涵盖大功率兆瓦级风电变频器、工程型变频器、通用变频器、光伏逆变器、SVG静止无功发生器、岸电电源和储能变流器等,现已成为国内技术和业绩领先的电气企业。
在工业传动领域,禾望电气在强大的定制工程型风电变频器平台基础上,自主研发了HD2000系列低压工程型变频器、HD8000系列中压多电平变频器和HV500系列高性能变频器,此外,禾望电气还拥有HV300系列通用变频器、油田专用HEC系列变频器,禾望电气的工业传动产品涵盖各个功率段及多种控制方式,适用于各种工业场景。
中国 · 深圳总部总部及研发基地:深圳制造基地:深圳、苏州、东莞、盐城营销服务中心:北京、上海、俄罗斯服务基地:华南、华东、西南、西北、华北、东北片区等16个服务基地和遍布全国的服务点。
【荣誉】CNAS认可实验室资质国家级高新技术企业国家科学技术进步奖产品外形尺寸(详见产品尺寸表)变频器系列名:HV300:hopeVert系列,通用型电路拓扑及冷却方式:A0:两象限风冷 W0:两象限水冷A1:四象限风冷 W1:四象限水冷电压等级:2:220V 4:380V 6:690V相数:D:单相/三相 T:三相负载类型:G:标准G型机E:小体积G型机空:G/P合一型机制动单元信息:B:内置制动单元空:无内置制动单元功率等级:00007:0.7kW 00075:7.5kW 00150:15kW 01850:185kW 20000:2MWHV300 — A0 2 T 00007 G B产品选型指引通用技术规格本节所述功率等级规格针对标准四极三相交流异步电动机而给出。
G、E:恒转矩负载。
P:风机、泵类负载。
变频器选型原则低压通用变频器的选择包括低压通用变频器的型式选择和容量选择两个方面,选择变频器的基本原则有两方面:变频器功能特性能保证可靠地实现工艺要求,能获得相对较好的性价比。
为使变频器功能特性能保证可靠地实现工艺要求,在变频器选型时应密切关注以下技术参数:1、根据电机实际工作电流选择变频器电机实际工作电流是变频器选型最关键的因素,变频器在长时间工作时必须满足变频器输出电流大于电机实际工作电流。
通常先选电机,再根据电机选变频器。
电机实际工作电流并不是电机铭牌上标注的额定电流,变频器选型时应先熟悉工况,初步估算出电机的工作电流与随时间变化的关系,然后才确定相对应变频器的型号。
1.1 一般情况下,变频器拖动恒转矩负载电机,以电机额定电流为依据选择变频器。
1.2 一般情况下,变频器拖动风机、泵类负载的电机,以电机额定电流为依据选择变频器。
1.3 时常短时间过载运行的电机,需要计算过载周期及过载电流。
变频器拖动这类型负载的电机,要求变频器最大输出电流Imax大于电机峰值电流,且变频器的参数I2t在自身所允许的范围之内,变频器选型时有可能放大一档或几档来才能满足现场需求。
现以10kW、20A额定电流电机举例:假如电机间歇性工作,1秒内过载运行时峰值电流为40A(额定电流2倍),之后停止运行20秒。
此时选型就要用到变频器过载曲线:首先将电机电流随时间变化的曲线出来,其次看变频器的输出电流曲线能否覆盖电机电流曲线(即变频器输出电流超过电机实是否际工作电流),只有变频器输出电流曲线覆盖电机电流曲线的变频器型号才适用于重载负荷的电机。
2、变频器选型应充分考虑环境对变频器的影响2.1 温度变频器的影响变频器选型时要考虑到使用环境温度一般在-10~40度工作环境的温度如果高于40度的情况下,每升高1度变频器应降额5%使用;工作环境的温度每升10℃,那么变频器的寿命就会减半,所以周围环境及变频器散热的问题一定要解决好.2.2 湿度对变频器的影响变频器选型时,若在湿度低于90%的环境中工作,空气的相对湿度小于或等于90%,无结露。
变频器的选型一、变频器的额定参数指标(一)额定输入指标(1)输入侧容量;(2)输入电压;(3)电源频率。
(二)额定输出指标(1)额定功率。
变频器额定容量为在连续不断的负载中,允许配用的最大负载容量。
必须注意,在生产机械中,负载的容量主要是根据发热状况来决定的。
在由变频器构成的控制系统中,当负载为变动的负载、断续的负载时负载且温升不超过允许值时,电动机是允许短时间(几分钟或几十分钟)过载的,而变频器一般只允许150%负载时运行1min。
(2)最大适配电动机功率。
变频器的最大适配电动机功率(kW)及对应的额定输出电流(A)是以4极普通异步电动机为对象制定的,6极以上电动机和变极电动机等特殊电动机的额定电流大于4极普通异步电动机,因此,在驱动4极以上电动机时就不能单单依据功率指标选择变频器,同时要考虑电流是否满足所选用的电动机额定电流。
(3)额定输出电压。
额定输出电压是变频器在额定输入条件下,以额定容量输出时,可连续输出的电压。
(4)额定输出电流。
额定输出电流是变频器在额定输入条件下,以额定容量输出时,可连续输出的电流,这是选择适配电动机的重要参数,其中电流值为有效值。
(5)短时过载能力。
短时过载能力是指变频器的输出电流允许超过额定值的倍数和时间。
大多数变频器的过载能力规定为150%/min。
二、变频器的选型原则及注意事项(一)变频器的容量选择总负载电流不超过变频器的额定电流,是选择变频器的基本原理。
由于变频器输出中包含谐波成分,其中电流有所增加,应适当考虑加大容量。
当电动机频繁启动、制动工作或处于重载启动且较频繁工作时,可选取大一档的变频器,以利于变频器长期、安全地运行。
还应考虑最小和最大运行速度极限,满载低速运行时电动机可能会过热,所选通用变频器应有可设定下限频率、可设定加速和减速时间的功能,以防止在低于该频率下运行。
一般风机,泵类负载不宜在15Hz以下运行,如果确实要在15Hz以下长期运行,需考虑电动机的容许温升,必要时应采用外置强迫风冷措施。
10KV矿业风机变频改造技术方案矿业风机是在矿山等环境中用于通风、降温和排烟的重要设备,其功率一般较大,使用频率高。
然而传统的矿业风机存在能源消耗高、运行效率低、电力系统负载大等问题,因此对其进行变频改造是提高矿业风机能效的重要手段。
1.变频器选型:根据矿业风机的功率、转速范围和负载特性,选择适合的变频器。
通过准确的负载特性参数对变频器进行调整,以实现最佳效果。
2.变频器安装:变频器的安装位置需尽可能靠近电动机,减少线路损耗。
同时,要合理布置变频器的通风与散热装置,保证其正常运行。
3.系统设计:针对不同的矿业风机工况,设计合理的变频系统。
通过合理的系统设计,可以实现对矿业风机的精确控制,提高其运行效率。
4.安全控制:增加可靠的安全保护装置,如风机转速监测装置、电流监测装置等,确保矿业风机在异常情况下及时停机,保护人员和设备的安全。
5.能耗监测:通过安装能耗监测装置,实时监测矿业风机的功耗,了解其能效表现,及时发现并解决能耗过高的问题。
6.智能化管理:引入智能化管理系统,对矿业风机进行在线监测和远程控制。
通过数据分析和预测,优化风机运行策略,提高其能效,并及时发现和排除故障。
通过以上的技术方案,可以有效改善传统矿业风机的能效问题,降低能源消耗,提高风机的运行效率,减轻电力系统负载。
这样不仅可以减少能源消耗,还可以节约运营成本,提高矿山的经济效益。
同时,通过智能化管理系统的引入,还可以实现对矿业风机的智能监测和控制,提高设备的稳定性和安全性。
总的来说,10KV矿业风机变频改造技术方案可以为矿业风机的节能减排和运行效率提升提供有效的解决方案,对于推动矿山的可持续发展具有重要意义。
风机型变频器选型
产品特点:
■针对风机节能控制设计
■内置PID和先进的节能软件
■高效节能,节电效果20%~60%(根据实际工况而定)
■简便管理、安全保护、实现自动化控制
■延长风机设备寿命、保护电网稳定、保减磨损,降低故障率
■实现软起,制动功能
更多描述: 应用行业:
□罗茨风机□矿山风机□离心风机□工业风机□环境工程
阿启蒙GP400系列高性能矢量变频器采用先进的DSP控制系统,通过高精度的控制算法完成优化的无速度传感器矢量控制,有效抑制低频震荡;丰富的端子使应用更加灵活,内置输入电抗器性能更稳定,完备的电磁兼容设计适用于对使用环境要求更加苛刻的场合。
此系列产品广泛应用纺织化纤、塑胶、建材、有色金属等对速度控制精度、转矩响应速度、低频输出有很高要求的场合。
在风机领域已经大面积使用。
产品主要特点:
✍高性能的电流矢量控制、V/f控制、转矩控制
✍丰富的外围接口
✍可扩展控制键盘
✍G/P合一
✍内置输入直流电抗器(18.5kW及以上机型)
✍16段多段速控制、PID控制、摆频控制
✍提供RS485串行通讯接口,采用标准Modbus协议
✍产品符合EMC(EN61000-6-4、EN61800-3)标准规范
二、变频节能原理:
1. 风机运行曲线
采用变频器对风机进行控制,属于减少空气动力的节电方法,它和一般常用的调节风门控制风量的方法比较,具有明显的节电效果。
由图可以说明其节电原理:
图中,曲线(1)为风机在恒定转速n1下的风压一风量(H-Q)特性,曲线(2)为管网风阻特性(风门全开)。
曲线(4)为变频运行特性(风门全开)假设风机工作在A点效率最高,此时风压为H2,风量为Q1,轴功率N1与Q1、H2的乘积成正比,在图中可用面积AH2OQ1表示。
如果生产工艺要求,风量需要从Q1减至Q2,这时用调节风门的方法相当于增加管网阻力,使管网阻力特性变到曲线(3),系统由原来的工况点A变到新的工况点B运行。
从图中看出,风压反而增加,轴功率与面积BH1OQ2成正比。
显然,轴功率下降不大。
如果采用变频器调速控制方式,风机转速由n1降到 n2,根据风机参数的比例定律,画出在转速n2风量(Q-H)特性,如曲线(4)所示。
可见在满足同样风量Q2的情况下,风压H3大幅度降低,功率N3随着显著减少,用面积CH3OQ2表示。
节省的功率△N=(H1-H3)×Q2,用面积BH1H3C表示。
显然,节能的经济效果是十分明显的。
2.风机在不同频率下的节能率
从流体力学原理得知,风机风量与电机转速功率相关:风机的风量与风机(电机)的转速成正比,风机的风压与风机(电机)的转速的平方成正比,风机的轴功率等于风量与风压的乘积,故风机的轴功率与风机(电机)的转速的二次方成正比(即风机的轴功率与供电频率的二次方成正比):
根据上述原理可知改变风机的转速就可改变风机的功率。
例如:将供电频率由50Hz降为45Hz,
则P45/P50=453/503=0.729,
即P45=0.729P50将供电频率由50 Hz降为40Hz,
则P40/P50=403/503=0.512,即P40=0.512P50
三、锅炉风机的变频节能改造:
锅炉的变频节能改造通常是指对锅炉风机的变频节能改造。
锅炉风机在设计时是按最大工况来考虑的,在实际使用中有很多时间风机都需要根据实际工况进行调节,传统的做法是用开关风门、阀门的方式进行调节,这种调节方式增大了供风系统的节流损失,在启动时还会有启动冲击电流,且对系统本身的调节也是阶段性的,调节速度缓慢,减少损失的能力很有限,也使整个系统工作在波动状态;而通过在锅炉风机上加装变频调速器(装置)则可一劳永逸的解决好这些问题,可使系统工作状态平缓稳定,并可通过变频节能收回投资。
锅炉的变频改造方案一例如下:
目前锅炉风机的装机概况:2×75KW,1×55KW。
所有风机均采用一对一(即一台变频器配一台电机)的配置方式,保留原工频系统且与变频系统互为备用,一般情况下的调节方式均为开环调节。
四、投资与节能:
变频节能系统(装置)在各类调速系统中使用时其节能效果对于单台设备可做到20-55%,在风机这类设备的一般应用的节能效果平均也可做到20-50%,在未受到其它因素的影响的情况下一般可取平均值,这些节能效果平均值是由实际应用中得到,权威性数据可由市场上公开出售的资料(书)查到;通过这些数据再进行一些简单的投资回收率的计算可知:变频节能系统(装置)的投资回收期一般为6-15个月(这是经验值也是权威数据)。
三晶变频器应用风机上的特点:
1、符合风机负载特性的二次方减转矩曲线
2、可根据负载自行设定运行曲线
3、调速节能。