高压输电线路防雷措施的分析与应用
- 格式:pdf
- 大小:266.64 KB
- 文档页数:3
500kV输电线路雷电干扰及防雷措施分析500kV超高压输电线路作为电网中重要组成部分,主要承担着工业企业生产所需的高压电的输送任务,其线路运行质量与高压电的输送息息相关。
雷击事故是当前影响500kV输电线路稳定运行的最主要因素,而且还会对整个电网的运行安全带来较大的影响。
因此需要针对500kV输电线路发生雷击的原因进行分析,从而针对实际情况采取有效的防雷措施,有效的保证电网运行的安全性和可靠性。
标签:500kV输电线路;雷击原因;防雷;措施前言随着我国经济的快速发展,有效的带动了我国电力行业的建设速度。
500kV 输电线路作为超高压输电线路,承担着高压电的输送任务,其供电可靠性直接关系到工业企业的正常高压电供应,因此需要做好500kV输电线路防雷工作。
这主要是由于500kV输电线路长期的处于自然环境下运行,不仅线路较长,而且分布较广,在运行过程中受地形条件及气候影响较大,这也使500kV输电线路极易受到雷电的侵袭,一旦雷击事故发生,则会导致线路出现跳闸故障,严重时还会损坏线路中的相关设备。
因此做好500kV输电线路防雷工作,才能有效的提高其运行的安全性。
1 高压输电线路发生雷击的原因1.1 设计水平及自身特点使其容易受到雷击破坏目前运行中的500kV输电线路最早建于上世纪80年代,这些早期投资建成的输电线路,在建设时受制于经费及技术等因素的制约,线路防雷水平不高。
再加之超高压输电线路与普通输电线路存在较大的差别,由于线路内部所流经的电压较高,这也导致在超高压输电线路周围存在着严重的电离现象,一旦雷雨天气,发生雷击现象的机率较大。
1.2 输电线路安装环境使其发生雷击事故增加近年来我国城镇化建设进程加快,土地资源越来越紧缺,这也导致高压输电线路安装环境受到诸多因素的影响,往往路线会选择在山坡等地区,这种地理环境无形中导致高压输电线路雷击概率增加。
再加之当前输电线路平均高度呈现出增加的态势,整体要高于过去的输电线路,这也增加了其受到雷击损坏的危险。
高压输电线路防雷措施分析及改进方法在高压输电线路的运行过程之中,雷击问题难以避免,且极易对输电线路的安全性及供电的稳定性产生影响,此时只有采取合理的措施,做好防雷工作,才能够确保人们的用电安全性及稳定性。
但就高压输电线路防雷措施而言,其仍存在一定的不足,应对之良好的分析,并通过一系列的方法,实现对高压输电线路防雷方面的良好改进。
标签:高压输电线路;防雷措施;改进方法1雷击问题给高压输电线路的影响1.1雷击问题分析改进并优化现有防雷技术方法时,必须优先考虑高压输电线路受到的雷击现象的具体情况,确定防雷工作的侧重点。
现分析线路雷击事件的具体情况,高压线路在雷雨天气中比较容易受到雷击影响,雷电可直接在线路导线处发挥作用;电路导线被雷电绕过后,可能受到雷电反击影响;雷电影响了线路附近的道路之后,输电线路系统受到间接影响,会形成感应过电压。
无论出现哪一种雷击事件,雷电波都会使输电线路的导线上生成大量的新电荷,破坏电路的平衡性,雷击现象之后,线路还会形成绝缘子闪络现象,线路跳闸问题生成,绝缘子断线与击穿事故给输电线路造成的影响更严重。
1.2输电线路防雷工作影响因素改进防雷措施,需要确定防雷保护工作的正确展开方向,找出影响线路防雷效果的主要影响因素。
杆塔的绕击数与其高度呈现出正比的关系,杆塔的高度数值增加后,地面屏蔽效果随之减弱,绕击区范围扩大,雷击事件形成概率增大,因此可调整杆塔高度。
高压输电线路所处区域的地形与雷击事故出现概率之间也有关联,设置在山区中的输电线路的实际绕击率偏高,因此有更大概率出现雷击的现象。
电流从地面的一处位置流向另一处位置时形成电阻值被称为接地电阻,接地电阻也是影响线路防雷效果的重要因素之一。
另外線路绝缘水平与波阻抗以及绕击数存在关联,共同影响输电线路的安全性。
2可行的防雷保护措施在既有的高压输电线路防雷保护系统的基础上,工作人员还可以利用以下几种技术手段来增强防雷工作工作的开设力度,更全面地完成防雷保护相关的工作。
35kV输电线路雷击跳闸分析及预防措施摘要:近几年来,因雷电而引发的输电线路掉落以及跳闸问题频频出现,不仅大大影响了用电设备运行的安全性,同时也在很大程度上对人们的日常工作生活造成了不良影响。
根据相关资料显示,全国各地每年都会发生多起因雷击造成的线路掉落和跳闸问题。
前几年,这一现象主要集中于山区,近些年则表现出了向平原地区转移的发展趋势。
可以说,雷击已成为影响输变电线路运行安全性和稳定性的主要因素。
关键词:35kV;输电线路;雷击跳闸;预防措施1 35kV输电线路运行的现状及雷击跳闸的类型1.1 35kV输电线路运行的现状35kV输电线路是电力系统中非常重要的组成部分,从目前情况来看,35kV输电线路运行过程中还存在如下几方面较为薄弱的环节:很大一部分35kV输电线路运行的时间过长,线路存在严重老化的问题,有些输电线路运行时间达到10年以上,甚至有的运行了30年以上,非常不利于线路运行的安全性和稳定性;某些输电线路没有进行避雷线的架设,缺少避雷线的屏蔽作用,这就造成了杆塔和线路全都暴露在雷电的打击范围内;一般情况下35kV 输电线路都只装设3~4片的绝缘子,这就造成线路的抗雷击能力比较低,不管是哪种雷击方式(主要有反击雷、感应雷以及绕击雷等等)都非常容易造成跳闸问题;对于输电线路来说,绝大部分都是布设在相对偏远的地区,例如山顶、半山坡以及丘陵地区相对比较突出的点,这些位置都非常容易遭到雷电的打击,从而引发跳闸事故。
1.2雷击跳闸的类型1.2.1反击类跳闸其主要特点为:故障点的接地电阻不符合标准要求,故障点主要是一基多相或者多基多相,在发生跳闸故障时在故障点会出现比较大的雷电流,一般情况下故障相是水平排列的中相或者垂直排列的中、下相。
1.2.2绕击类跳闸其主要特点为:输电线路架设有架空避雷线,故障点的接地电阻符合标准要求,故障点属于单基单相或者相邻两基同相,在发生跳闸故障时在故障点会出现比较小的雷电流,故障点发生的位置大都是在山顶边坡等容易绕击的区域,故障相大都是水平排列的边相或者垂直排列的上相。
高压输电线路综合防雷措施的应用高压输电线路是电力输送的重要组成部分,为确保电力输送的安全和稳定,高压输电线路的防雷工作显得尤为重要。
在现代社会,雷电对电力系统造成的影响是不可忽视的,因而高压输电线路综合防雷措施的应用显得至关重要。
本文将从高压输电线路防雷的必要性、常见的防雷措施及其应用效果等方面展开阐述。
一、高压输电线路防雷的必要性高压输电线路承担着将电能从发电站输送到用户的重要任务,是电力系统的重要组成部分。
由于自然界雷电活动的不可预测性和破坏性,使得高压输电线路成为雷电攻击的重要目标。
雷电对高压输电线路可能造成以下几方面的影响:1. 直接损坏设备:雷电直击导线、绝缘子、变压器等设备,可能导致设备的损坏,造成停电甚至事故。
2. 间接影响:雷电引起的电磁感应可能导致线路过电压,影响电力系统的正常运行。
3. 安全隐患:雷电对高压输电线路的影响可能造成对周围环境和人员的安全隐患。
由于上述原因,高压输电线路必须进行综合防雷工作,以保障电力系统的稳定运行和人员财产的安全。
1. 金属氧化物避雷器:金属氧化物避雷器是高压输电线路防雷的重要设备之一。
其原理是利用氧化锌等金属氧化物的非线性电阻特性,在电压大于一定值时形成导通通道,将雷电击中的能量引向大地,从而保护设备和线路免受雷击。
2. 接地网:接地网是将设备和线路上的电荷引入地下的装置,能够有效地把雷电击中的电荷引入地下,减少雷电对设备和线路的损害。
3. 防雷线:在高压输电线路上悬挂防雷线,以降低雷电击中导致的线路过电压,保护设备和线路的安全。
4. 避雷带:在高压输电线路周围设置避雷带,通过避雷带的导电性能将雷电击中的能量引入地下,减少雷电对周围环境和人员的影响。
5. 避雷接地装置:避雷接地装置是将高压输电线路上的导线通过接地装置引入地下,降低雷电对线路的影响。
综合防雷措施的应用可以显著地提高高压输电线路的防雷能力,保障电力系统的安全运行和人员财产的安全。
以下是综合防雷措施的应用效果:1. 提高设备和线路的抗雷能力:金属氧化物避雷器、接地网、防雷线等设备的使用可以有效地将雷电击中的能量引入地下,保护设备和线路免受雷击。
110kV高压电网输电线路防雷技术措施摘要:由于高压电网处于架空环境中,遭受雷击的概率较其他系统高,雷击输电线路事故给国民经济带来极大的损失,为减少此类事故的发生,本文对110kV架空输电线路雷害原因进行了分析,并提出了相关防雷技术措施,以供参考。
关键词:高压电网;雷击原因;防雷措施随着社会经济快速发展,对输电线路供电安全要求越来越严格,对于架空高压输电线路而言,影响最大的因素就是雷击,由于雷击导致的跳闸、停电的事故发生率高,给国民经济带来了极大的影响。
因此,为了确保电力系统的安全稳定运行,采取有效的防雷保护措施,对110kV架空电力线路的防雷保护和接地进行分析和研究,找出雷害事故频发的原因,寻求改进和完善的措施是非常有必要的。
1 雷害发生的成因及主要形式1.1 雷害发生的成因雷电是一种雷云放电的自然现象。
雷云放电的大部分是在云间或云内进行,只有小部分是对地发生的。
当雷云较低、周围又没有带异性电荷的云层,就会对地面突出物如架空线路铁塔或导线放电,产生很大的雷电流,可达几十甚至几百千安。
雷电流能在几个μs内达到最大值,然后在几十μs内衰减下去,它为2.6/40μs的冲击波。
表征雷电流的参数主要是雷电流幅值和雷电流波头的陡度(即雷电流变化的速度)。
雷云对地放电时,不但会在受雷电直击的线路上产生直击雷过电压,也会在雷击点附近未受雷击的线路上形成感应雷过电压。
当雷击过电压高于线路绝缘50%冲击耐受电压U50%时,线路绝缘击穿发生跳闸事故,严重时会发生电网大面积停电事故,威胁电网安全。
1.2 雷害发生的主要形式110kV架空线路发生雷害的主要形式是雷电的反击和绕击。
感应雷对110kV架空线路没有危害,但会对35kV及以下架空线路造成损害。
(1)雷电击中架空地线或杆塔顶时,雷电流下泄中会引起塔头电位升高,其电位大于绝缘子串U50%时,雷电流沿绝缘子串对导线放电,造成架空线路雷电反击闪络跳闸。
若遭受雷击架空线某杆塔高度h为24m,雷电强度I为40kA,杆塔接地电阻R为10Ω。
输电线路的防雷措施输电线路防雷设计的目的是提高线路的防雷性能,降低线路的雷击跳闸率。
在确定线路防雷的方式时,应综合考虑系统的运行方式、线路电压等级和重要程度、线路经过地区雷电活动的强弱、地形地貌特点、土壤电阻率等自然条件,并参考当地原有线路的运行阅历,经过技术经济比较,实行合理的爱护措施。
除架设避雷线措施之外,还应留意做好以下几项措施。
1.接地装置的处理(1)高压输电线路耐雷水平随杆塔接地电阻的增加而降低。
电压等级越高,降低杆塔接地电阻的作用将变得更加重要。
对土壤电阻率较高地区,应选择更换接地网形式和置换土壤的方法,达到降阻。
在雷击多发区域,主网线路杆塔接地电阻应保证小于10Ω,山区也应小于15Ω。
在雷雨季节前,对雷击多发区域线路应按规程要求的方法,进行杆塔接地电阻测量。
(2)接地装置埋深,要求大干0.6 m,采纳增大截面的接地引下线,引下线(热镀锌)表面要进行防腐处理。
严格根据规程执行接地装置的开挖检查制度。
重点检查接地装置的埋深、接头和截面的测量,对不合格的准时进行处理。
(3)降低杆塔接地电阻,还需要确保架空地线、接地引下线、地网相互之间的良好连接。
2.减小外边相避雷线的爱护角或者采纳负角爱护在以往进行防雷设计时,只要求遵照规程规定满意杆塔避雷线爱护角的要求就行了,忽视了山坡对防雷爱护角的影响,则造成了杆塔防雷爱护角不能满意防雷设计的实际要求,增加了线路闪络次数,影响了电网平安运行。
针对山区运行线路简单受绕击的状况,建议采纳有效屏蔽角公式计算校验杆塔有效爱护角,以便设计时针对爱护角偏大状况实行相应措施削减雷电绕击概率。
3.加强绝缘和采纳不平衡绝缘方式在雷电活动剧烈地段、大跨越高杆塔及进线段,应增加绝缘子片数。
由于这些地方落雷机会较多,塔顶电位高,感应过电压大,受绕击的概率也较大,通过适当增加绝缘子片数,增大导线和避雷线间的距离,达到加强绝缘的目的。
规程规定:全超群过40m的有地线杆塔,每增高10m应增加一片绝缘子。
110kv输电线路的防雷措施分析在科技发展飞速的今天,电力技术得到了大力发展,保护110kv输电线路的安全,维护110kv输电线路的正常使用是关键所在。
最容易影响110kv输电线路运行的因素是雷电,所以,如何防雷已经成为设计110kv输电线路的主要研究部分。
标签:110kv输电线路,防雷,优化设计110kv输电线路能否正常运行受到很多因素的影响,包括外界环境以及天气状况的制约。
例如,在雷雨多发的夏季,就会由于雷击事故造成输电线路的运行瘫痪,影响电网正常运行的可靠性。
同时影响人们正常的生产生活。
因防雷设计相对复杂,要想充分做好防雷设计,就要从多方面入手,包括110kv输电线路的施工、运行以及相应的维修等方面的一系列工作,只有有效运用这一系列的措施,才能够在一定程度上有效改进防雷接地技术,进而使得防雷设计的质量得到保障,避免雷击现象给110kv输电线路造成的运行故障,保证供电系统的正常运转。
一、雷击事故导致110kv输电线路故障的原因分析110kv输电线路沿线的地理位置及环境往往较为复杂,多数位于山区或无人地区,有着复杂的自然环境,110kv输电线路涉及范围广,距离大,又多位于雷击事故频发的重灾区,相比之下更容易发生线路跳闸,进而影响正常供电等问题。
因此,必须重视110kv输电线路的防雷设计,准确、及时的掌握110kv输电线路雷击故障的原因,并采取相应的解决措施,以保证110kv输电线路的安全、稳定运营。
输电线路遭受雷击后发生故障的原因具体分析来说就是因为雷云中带有很多的电荷成分,多数时候会出现在数显线路上空,通过地面的共同作用,雷云就会导致相对强大的电场的形成。
一旦雷云在输电线路杆塔上空经过,由于杆塔高度相对较高,进而就会较容易造成空气绝缘受到损坏,为雷电向地面放电提供了一定的途径。
自此,通过输电线路杆塔,电流就会以电流行波的形式放电,同时还会以电压行波的方式沿着导线散播。
但是,由此而产生的强大电流通过接地电子排除。
输电线路雷击故障的防护措施分析首先,针对输电线路雷击故障,引入防雷装置是必不可少的。
防雷装置主要由闪络器、接地装置和避雷针等组成。
闪络器能够将浮电位释放到大地上,防止雷电通过设备或线路流入地方电劢。
接地装置能够使系统设备、金属构架、设备房等与地之间导通,形成一个良好的大地接点,从而使雷电通过大地排除。
避雷针则分散雷电的能量,减少雷击的概率。
通过引入这些防雷装置,可以有效地减少雷击故障的发生,提高输电线路设备的安全性。
其次,应加强对输电线路设备的维护和检测工作。
定期进行设备的检查和维护,发现设备存在的潜在故障问题,并及时处理,是预防雷击故障的重要措施之一、通过使用红外热成像仪等设备,对线路设备进行定期的热成像检测,可以发现设备存在的潜在故障问题,如接触不良、绝缘老化等,及时进行维修和更换,减少雷击故障的发生。
此外,合理的线路布置和线路设计也是预防雷击故障的重要因素。
合理的线路布置可以减少雷电对输电线路的冲击程度,降低雷击故障的概率。
另外,合理的线路设计也可以减少雷电对设备和系统的影响,从而提高电力系统的稳定性。
例如,合理的避雷子站布置可以使雷电不易击中设备,减少雷击故障的发生。
此外,对于重要的输电线路,还可以采取无线遥测监测系统进行实时监测。
该系统可以通过无线电信号将线路的状态信息传送到监测中心,及时发现恶劣天气下可能导致雷击故障的情况,采取相应的应对措施,防止事故的发生。
最后,加强人员培训和安全教育也是预防雷击故障的重要环节。
员工应具备基本的防雷知识,了解防雷装置的工作原理和使用方法,掌握事故应急处理的方法,并定期进行相关的培训与演练,提高员工的应急处理能力。
此外,还需要加强对操作人员的安全教育,提高他们的安全意识和责任意识,防止因人为操作不当导致的雷击事故。
综上所述,输电线路雷击故障的防护措施主要包括引入防雷装置、加强设备维护和检测、合理的线路布置和设计、无线遥测监测系统以及加强人员培训和安全教育等。
高压输电线路防雷措施的分析与应用发表时间:2018-12-17T16:31:35.290Z 来源:《基层建设》2018年第31期作者:梁计周[导读] 摘要:高压输电线路在运行过程中,因为遭受雷击而影响正常运行的事件时有发生,特别是在复杂的山区,那里雷击活动频繁,土壤的电阻率高,导致输电线路的防雷效果非常的差。
阳江市阳江供电局摘要:高压输电线路在运行过程中,因为遭受雷击而影响正常运行的事件时有发生,特别是在复杂的山区,那里雷击活动频繁,土壤的电阻率高,导致输电线路的防雷效果非常的差。
基于此,文章概述了高压输电线路埅的重要性,分析了高压输电线路经常遇到雷击事故原因,并探讨了高压输电线路防雷措施与应用,以期能为供电系统安全运行提供有效的借鉴经验。
关键词:高压输电线路;防雷措施;杆塔;避雷器引言高压输电线路是电力能源传输的媒介,它是电网安全运行与分配的重要组成部分,输电线路的稳定运行对于电力系统至关重要。
如果输电线路的电压等级提高,对应的塔杆高度和线路尺寸逐步增加,使得输电线路越来越容易受到自然灾害的影响,尤其是雷击现象。
如何防范雷击对输电线路的影响对于提高电力系统的稳定性具有重要意义。
一、高压输电线路防雷的重要性整个电力系统中,高压输电线路占据着极其重要的地位,其运行的安全性直接影响到了电网系统的运行。
在电力系统各项故障中,因雷击而引发的故障比例相对较高。
同时,高压输电线路自身的结构通常较为复杂,一旦遭受到雷击灾害,容易出现跳闸、停电、甚至引发火灾,不仅影响到输电线路的正常运行,还危及人们的生命财产安全。
因此做好高压输电线路防雷措施,对于维护电力系统的正常运行,维持人们日常生产与生活所需,有效保障人们的生命财产安全,乃至有效促进经济的发展,都有着积极的现实意义。
二、近五年来线路雷击跳闸情况及原因分析本文对2010年至2014年五年时间内,阳江局输电所管辖线路的雷击跳闸情况进行了统计和分析。
五年来,阳江局输电所管辖线路共发生了170次雷击跳闸,占总跳闸次数的78%,是输电所管辖线路跳闸的第一大原因。
表2至表4对2010年至2014年五年间的雷击跳闸分类进行了统计。
1、阳江2010年至2014年期间各年度线路长度统计情况见表1。
表1:线路的长度统计(km)2、雷击跳闸发生的月份统计,具体见表4。
表2:雷击跳闸发生月份统计表从表2可以得知,雷击跳闸只发生在3月至10月的10个月中,集中发生在4月到9月这五个月,这6个月的雷击跳闸数占雷击总跳闸数的97.64%,其中跳闸最多的是6月,单月雷击跳闸数占雷击跳闸总数的41.2%。
经过上述统计,我们发现:(1)在每年的10月至次年的3月这六个月中没有雷击跳闸情况发生或雷击跳闸率较小,也就是说,这段时间是防雷设备停运检修的最佳时期。
(2)阳江地区的输电线路从4月份开始进入雷害季节,所以应在每年4月前完成防雷设备的检查和维护,例如接地电阻测量尽可能在12月底完成测量,来年1-2月份完成不及格地网的改造工作。
(3)在雷害高峰季节的5-9月,尤其是在6月,线路停电检修应充分考虑雷害带来的人身安全风险和电网风险,对电网可靠性有重大影响的线路尽量避免在这期间长时间停电。
3、各电压等级的雷击跳闸情况统计由于各年份线路长度不同,所以仅用跳闸次数无法来判断各年的雷击跳闸厉害程度,也很难判断雷击跳闸的年度变化趋势,为了了解各电压等级线路的雷击跳闸情况、雷击跳闸的厉害程度及雷击跳闸变化趋势,表3列出了历年各电压等级线路的雷击跳闸次数及跳闸率,并将历年的雷击跳闸率绘制成折线图,便于分析雷击跳闸变化趋势,如图4。
通过分析表3,可得110kV、220kV、500kV三个电压等级线路5年的平均雷击跳闸率分别为2.88次/百公里.年、0.926次/百公里.年、0.248次/百公里.年。
这个跳闸率是按年平均雷暴日93来计算的,换算到年40雷暴日的情况下,分别为1.239次/百公里.年、0.398次/百公里.年、0.107次/百公里.年。
国家电网《110-500kV架空输电线路运行规范》中的参考值是,换算到40雷暴日情况下,110kV雷击跳闸率不应大于表3:历年来各电压等级雷击跳闸次数和跳闸率统计表(次/百公里.年)图4:跳闸率年度变化趋势 0.525次/百公里.年,220kV雷击跳闸率不应大于0.315次/百公里.年,500kV雷击跳闸率不应大于0.14次/百公里.年。
由此可见,我们的500kV线路雷击跳闸率比较理想,220kV线路雷击跳闸率略有偏大,而110kV线路的雷击跳闸率过高,是该参考值的2.36倍。
从图4来看,多年来,500kV线路的雷击跳闸率没有过明显的变化,220kV线路雷击跳闸率波动中略有上升,但110kV线路雷击跳闸率有逐年下降的趋势,而且下降速度较快。
三、高压输电线路经常遇到雷击的原因分析出现雷电的情况有两种,一是地面物体和云的放电现象;二是雷云之间的放电现象。
大部分高压线路都是接地系统,遇到雷击时,会出现跳闸现象,影响线路的正常运行,造成高压输电线路遭受雷击的原因很复杂,但可以归纳为以下几点:(1)避雷线使用不规范,避雷线是高压输电线路重要避雷措施,当发生雷击时,避雷线能够将雷电和线路隔绝,进而避免雷击事故发生。
但是在具体设计过程中,很多人员忽略了杆塔保护角度问题,使得避雷线使用存在较大局限性,增加了闪络问题发生几率。
(2)高压输电线路的绝缘配置不足在高压输电线路运行的过程中,良好的绝缘配置能够有效避免电流出现回流的现象,进而提升高压输电线路防雷的效果。
一旦绝缘装置无法充分发挥作用,就容易导致安全事故的产生。
例如,绝缘装置老化或者脱落等现象,通常绝缘装置脱落容易造成严重的安全事故。
(3)高压输电线路的杆塔接地不良高压输电线路中雷击事故的发生,通常是由于雷电击中了高压输电线路或者高压输电线路周围的空点,导致过电压现象的产生。
据目前的研究表明,杆塔的接地装置与雷电过电压事故发生的概率有相当比例的关系。
一旦杆塔接地的地阻阻值过高,就会影响到高压输电线路的防雷效果。
四、高压输电线路防雷措施分析与应用3.1缩减杆塔接地电阻在高压输电线路运行过程中,杆塔接地电阻对杆塔顶电位产生重要影响,通常情况下,若杆塔高度属于正常水平,当其型号、尺寸、数量及其绝缘子型号确定后,缩减杆塔接地电阻能够有效提高线路的耐雷水平,并在最大限度上降低反击概率。
因此在防雷工作开展过程中,工作人员应采取有效措施,合理处理杆塔接地电阻问题。
例如在我国某地区高压输电线路防雷工作开展中,具体采取如下方式缩减杆塔接地电阻:①使用接地电阻降阻剂,降阻剂pH值为7.5~8.6,可对接地体产生钝化作用,当接地极周围敷设完工之后,工作人员可在其周围放置降阻剂,增大了接地极外形尺寸,从而降低周围大地介质与接地极之间的接触电阻,起到良好的降阻效果;②爆破接地技术,工作人员首先进行爆破制裂,接下来在裂缝中放入低电阻率材料,具体使用压力机进行操作,从而有效改善大范围内土壤的导电性;③外引接地,选取某一低土壤电阻率区域,在其中敷设辅助接地装置,进而降低整个接地系统电阻,若接地装置附近存在不冻河流,此方法效果显著,但是其会增加防雷成本,在具体操作时接地极长度最好控制在100m以内。
3.2应用不平衡绝缘方式不平衡绝缘方式具有较强的经济性,并且操作起来较为方便,能够有效提高线路的绝缘水平,进而增加了反击和绕击的耐雷能力。
在高压线路具体运行中,高杆塔、大跨越的线路跳闸几率明显高于一般线路,为了降低跳闸事故发生几率,可以适当加大避雷线与大跨越档距导线之间的距离,也可增加线路绝缘子串的数量,从而增强绝缘性能。
例如在我国某地区高压输电线路防雷工作中,操作人员选择了不平衡绝缘方式,两回路的绝缘水平相差值设定为相电压峰值,从而保证在雷击时,闪络先发生在绝缘子串片数较少的回路中,将闪络后的导线当作地线,进而促进另一回路耦合作用增强。
降低对应绝缘子串的过电压,增强线路的耐雷水平,降低闪络事故发生几率,从而保证此回路可正常供电。
3.3科学合理架设避雷线在架空送电线路防雷过程中,避雷线起到了关键作用,其功能主要表现为:能够隔离闪电,避免雷电直击导线,当雷电击中杆塔时,其可对雷电进行分流,从而减少流入杆塔的电流,降低塔顶电位。
因此在高压线路防雷工作开展中,工作人员应结合高压线路运行环境,科学合理的设置避雷线。
例如在我国某地区229kV高压输电线路防雷工作开展中,工作人员采取如下措施架设避雷线:在全线范围内架设避雷线,缩减避雷线对边角线的保护角,具体设置为20~30°。
在操作过程中充分考虑了耦合会随着保护角减少而增加的问题,在具体设计中应尽量权衡耦合损耗和绕击率,采取经济性较高的保护角。
同时合理控制杆塔两根地线间的距离,必须小于导线与地线间垂直距离的5倍。
此外,为了达到良好的保护效果,在每基铁塔处避雷线必须进行接地处理。
3.4输电防雷措施的应用 1)安全输电路径的设置过往的经验表明,输电线路遭受雷击的区域往往集中于某些特定的路段。
因此设计线路架设路径时,结合当地的具体情况合理地规避雷击区即可。
一般的雷击区集中在山区风口及顺风的河谷,四周为潮湿的山区,土壤电阻率有突变的地带等处。
2)线路档距设置当输电线路受到雷击影响之后,雷电波会沿着输电线路进行双向传播。
如果改变线路档距,输电线路的雷击承受水平也会产生一定变化。
在理想环境下,不考虑环境和其他避雷装置的影响,线路档距越大,线路的耐雷击水平就会越高,当线路档距达到一定数值时,输电线路的抗雷击特性会达到最大,当线路档距继续增大时,线路的抗雷特性会保持最大数值不变。
3)输电线路电压设置以500kV的输电线路为例,一般500kV输电线路都以交流电压传输为主,而交流电压在传输过程中具有周期性,在不同时段中产生的耐雷水平也不同。
因此,在防雷措施应用过程中,相位角的不同,线路的耐雷水平也有所不同。
一般来说,相位角的90°时,输电线路的耐雷水平最低,在100kA左右,方相位角达到270°时,输电线路的耐雷水平达到最大,数值在200kA左右。
四、结束语高压输电线路的防雷措施,对于电网系统的正常运行有着极其重要的作用。
因此要加强对高压输电线路日常的运行检查,对线路所处的环境与产生的变化进行监督,有效避免雷击所造成的影响。
由于目前并没有完全避免雷击的方法与技术,因此只能将每个防雷措施都做到最好,才能最大限度地减少高压输电线路的雷击事故,确保其安全稳定运行。
参考文献:[1]电力线路差异化防雷改造措施的选定和效果评估[J]. 付威. 中国高新技术企业. 2016(33)[2]110kV高压输电线路防雷保护探讨[J]. 王营. 科技创新与应用. 2016(11)[3]高压输电线路综合防雷措施的分析与探讨[J]. 周玉龙,雷海洋. 山东工业技术. 2018(07)[4]高压输电线路综合防雷措施的分析与探讨[J]. 莫燕明. 山东工业技术. 2015(13)。