高中数学-空间向量及其运算练习
- 格式:doc
- 大小:154.00 KB
- 文档页数:7
第一章空间向量与立体几何1.1空间向量及其运算1.1.1空间向量及其线性运算例1如图1.1-9,已知平行四边形ABCD ,过平面AC 外一点O 作射线OA ,OB ,OC ,OD ,在四条射线上分别取点E ,F ,G ,H ,使OE OF OG OH k OA OB OC OD====.求证:E ,F ,G ,H 四点共面.图1.1-9分析:欲证E ,F ,G ,H 四点共面,只需证明EH ,EF ,EG uuu r 共面.而由已知AD ,AB ,AC 共面,可以利用向量运算由AD ,AB ,AC共面的表达式推得EH ,EF ,EG uuu r 共面的表达式.证明:因为OE OF OG OH k OA OB OC OD====.所以OE kOA = ,OF kOB = ,OG kOC = ,OH kOD = .因为四边形ABCD 是平行四边形,所以AC AB AD =+ .因此EG OG OE kOC kOA k AC =-=-=()()k AB AD k OB OA OD OA =+=-+- OF OE OH OE EF EH=-+-=+ 由向量共面的充要条件可知,EH ,EF ,EG uuu r 共面,又EH ,EF ,EG uuu r 过同一点E ,从而E ,F ,G ,H 四点共面.练习1.举出一些表示三个不同在一个平面内的向量的实例.【答案】实例见解析;【解析】【分析】在空间几何体中,从一点出发的不同面的向量即可.【详解】在三棱锥P ABC -中,PA →,PB →,PC →不同在一个平面内;长方体ABCD A B C D ''''-中,从一个顶点A 引出的三个向量AB →,AD →,AA →'不同在一个平面内.2.如图,E ,F 分别是长方体ABCD A B C D ''''-的棱AB ,CD 的中点、化简下列表达式,并在图中标出化简结果的向量:(1)AA CB '- ;(2)AA AB BC '++ ;(3)AB AD B D ''-+ ;(4)AB CF + .【答案】(1)AD ' ;(2)AC ' ;(3)0 ;(4)A E【解析】【分析】根据空间向量加减运算的运算法则计算即可.【详解】(1)AA CB AA BC AA A D AD ''''''-=+=+= ;(2)AA AB B C AA A B B C AC '''''''++=++''= ;(3)0AB AD B D AB AD BD DB BD -+=-+=+''= ;(4)AB CF AB BE AE +=+= .3.在图中,用AB ,AD ,AA ' 表示A C ' ,BD ' 及DB ' .【答案】A C AB AD AA =+'-' ;BD AA AD AB ''-=+ ;DB AA AB AD ''=+- .【解析】【分析】根据空间向量的加减运算法则可转化.【详解】()A C A A AC AA AB AD AB AD AA =+=-''++=-''+ ,()()BD BD DD BA BC DD AB AD AA AA AD AB =+=++=-++=+-''''' ,()()DB DB BB DA DC BB AD AB AA AA AB AD =+=++=-++''''=-'+ .4.如图,已知四面体ABCD ,E ,F 分别是BC ,CD 的中点,化简下列表达式,并在图中标出化简结果的向量;(1)AB BC CD ++ ;(2)()12AB BD BC ++ ;(3)()12AF AB AC -+ .【答案】(1)AD ;(2)AF ;(3)EF【解析】【分析】根据空间向量的线性运算法则计算即可.【详解】(1)AB BC CD AC CD AD ++=+= ;(2)()12AB BD BC AB BF AF ++=+= ;(3)()12AF AB AC AF AE EF -+=-= .5.如图,已知正方体ABCD A B C D ''''-,E ,F 分别是上底面A C ''和侧面CD '的中心,求下列各式中x ,y 的值:(1)AC x AB BC CC →→→→⎛⎫''=++ ⎪⎝⎭(2)AE AA x AB y AD→→→→'=++(3)AF AD x AB y AA →→→→'=++【答案】(1)1x =;(2)12x y ==;(3)12x y ==.【解析】【分析】(1)化简+AC AB AD AA →→→→''=+即得解;(2)化简1()2AE AA AC →→→''=+即得解;(3)化简1122AF AD AC →→→'=+即得解.【详解】(1)+AC AB AD AA AB BC CC →→→→→→→'''=+=++,所以1x =;(2)1111111()()2222222AE AA AC AA AC AA AA AB AD AA AB AD →→→→→→→→→→→→'''''''=+=+=+++=++,所以12x y ==;(3)111111()222222AF AD AC AD AB AA AD AD AB AA →→→→→→→→→→'''=+=+++=++,所以12x y ==.1.1.2空间向量的数量积运算例2如图1.1-12,在平行六面体ABCD A B C D ''''-中,5AB =,3AD =,7AA '=,60BAD ∠=︒,45BAA DAA ''∠-∠=︒.求:图1.1-12(1)AB AD ⋅ ;(2)AC '的长(精确到0.1).解:(1)||||cos ,AB AD AB AD AB AD ⋅=〈〉,53cos 607.5=⨯⨯︒=;(2)()22AC AB AD AA ''=++ ()222||||2AB AD AA AB AD AB AA AD AA '''=+++⋅+⋅+⋅ ()222537253cos 6057cos 4537cos 45=+++⨯⨯︒+⨯⨯︒+⨯⨯︒98=+,所以13.3AC '≈.例3如图1.1-13,m ,n 是平面α内的两条相交直线.如果l m ⊥,l n ⊥,求证:l α⊥.图1.1-13分析:要证明l α⊥,就是要证明l 垂直于α内的任意一条直线g (直线与平面垂直的定义).如果我们能在g 和m ,n 之间建立某种联系,并由l m ⊥,l n ⊥,得到l g ⊥,那么就能解决此问题.证明:在平面α内作任意一条直线g ,分别在直线l ,m ,n ,g 上取非零向量l ,m ,n ,g .因为直线m 与n 相交,所以向量m ,n 不平行.由向量共面的充要条件可知,存在唯一的有序实数对(,)x y ,使g xm yn =+u r u r r .将上式两边分别与向量l作数量积运算,得l g xl m yl n ⋅=⋅+⋅ .因为0l m ⋅=r u r ,0l n ⋅=r r (为什么?),所以0l g ⋅=r u r.所以l g ⊥.这就证明了直线l 垂直于平面α内的任意一条直线,所以l α⊥.练习6.如图,在正三棱柱111ABC A B C -中,若1AB =,则1AB 与1BC 所成角的大小为()A.60︒B.90︒C.105︒D.75︒【答案】B【解析】【分析】取向量1,,BA BC BB 为空间向量的一组基底向量,表示出1AB 与1 BC ,再借助空间向量运算即可计算作答.【详解】在正三棱柱111ABC A B C -中,向量1,,BA BC BB 不共面,11AB BB BA =- ,11BC BC BB =+ ,令1||BB a = ,则||||BA BC == ,而1BB BA ⊥ ,1BC BB ⊥ ,于是得11112111()()AB BC BB BA BC BB BB BC BB BA BC BA BB ⋅=-⋅+=⋅+-⋅-⋅ 2cos 600a =-=,因此,11AB BC ⊥ ,所以1AB 与1BC 所成角的大小为90︒.故选:B7.如图,正方体ABCD A B C D ''''-的棱长为1,设AB a = ,AD b = ,AA c '= ,求:(1)()a b c ⋅+ ;(2)()a a b c ⋅++ ;(3)()()a b b c ⋅++ .【答案】(1)0;(2)1;(3)1【解析】【分析】在正方体中,根据线线关系,结合空间向量运算法则对每个小题进行运算即可.【详解】(1)在正方体中,AB AA ⊥',AB AD⊥故()0a b c a b a c →→→→→→→⋅+=⋅+⋅=(2)由(1)知,()()1a abc a a a b c →→→→→→→→→⋅++=⋅+⋅+=(3)由(1)及AD AA '⊥知,2()()()1a b b c a b c b b c →→→→→→→→→→++=⋅+++⋅=8.如图,在平行六面体ABCD A B C D ''''-中,4AB =,3AD =,5AA '=,90BAD ∠=︒,BAA '∠=60DAA '∠=︒.求:(1)AA AB '⋅ ;(2)AB '的长;(3)AC '的长.【答案】(1)10;(261;(385【解析】【分析】(1)根据数量积的定义即可计算;(2)由AB AA A B ''''=+ 平方即可求解;(3)由A AB AD A C A =+'+'即可求解.【详解】(1)1cos 6054102AA AB AA AB ''⋅=⋅⋅=⨯⨯= ;(2)AB AA A B ''''=+ ,()()222222252101661AB AA A B AA AB AA AA AB AB '''''''∴=+=+=+⋅+=+⨯+= ,61AB '= AB '61;(3) AC AC CC AB AD AA '''=+=++ ,()()222222AC AB AD AA AB AD AA AB AD AB AA AD AA '''''∴=++=+++⋅+⋅+⋅ 11169252054358522⎛⎫=++++⨯⨯+⨯⨯= ⎪⎝⎭,85AC '∴= AC '85.9.如图,线段AB ,BD 在平面α内,BD AB ⊥,AC α⊥,且AB a =,BD b =,AC c =.求C ,D 两点间的距离.222a b c ++【解析】【分析】连接AD ,可得222AD a b =+,根据AC AD ⊥可求.【详解】连接AD ,BD AB ⊥ ,22222AD AB BD a b ∴=+=+,AC α⊥,AD α⊂,AC AD ∴⊥,222222CD AD AC a b c ∴=+=++,222CD a b c ∴=++即C ,D 222a b c ++.习题1.1复习巩固10.如图,在长方体ABCD A B C D ''''-中,E 、F 分别为棱AA '、AB 的中点.(1)写出与向量BC 相等的向量;(2)写出与向量BC 相反的向量;(3)写出与向量EF 平行的向量.【答案】(1),,AD A D B C '''' ;(2),,,DA CB C B D A '''' ;(3),,,,D C CD A B BA FE'''' 【解析】【分析】(1)由相等向量的定义可判断;(2)由相反向量的定义可判断;(3)由平行向量的定义可判断.【详解】(1)由相等向量的定义知,大小相等,方向相同的两个向量为相等向量,所以与向量BC 相等的向量为,,AD A D B C '''' ;(2)由相反向量的定义知,大小相等,方向相反的两个向量为相反向量,所以与向量BC 相反的向量为,,,DA CB C B D A '''' ;(3)由平行向量的定义知,方向相同或相反的两个向量为平行向量,所以与向量EF 平行的向量为,,,,D C CD A B BA FE '''' .11.如图,已知平行六面体ABCD A B C D ''''-,化简下列表达式,并在图中标出化简结果的向量:(1)AB BC + ;(2)AB AD AA '++ ;(3)12AB AD CC '++ ;(4)()13AB AD AA '++ .【答案】(1)AC →,向量如图所示;(2)AC →',向量如图所示;(3)AE →,向量如图所示;(4)AF →,向量如图所示;【解析】【分析】根据平行六面体基本性质及空间向量基本运算化简每个小题即可.【详解】(1)AB BC AC →→→+=,向量如图所示;(2)在平行六面体ABCD A B C D ''''-中,有AD BC →→=,AA CC →→''=,故AB AD AA AB BC CC AC →→→→→→→'''++=++=,向量如图所示;(3)由AD BC →→=知,取CC '的中点为E ,12AB AD CC AB BC CE AE →→→→→→→'++=++=,向量如图所示;(4)由(2)知,取AC '的三等分点F 点,1()3AB AD AA AF →→→→'++=,向量如图所示;12.证明:如果向量a ,b 共线,那么向量2a b + 与a共线.【答案】证明见解析【解析】【分析】由向量共线定理可证明.【详解】如果向量a ,b 共线,则存在唯一实数λ,使得b a λ= ,则()222a b a a a λλ+=+=+ ,所以向量2a b + 与a 共线.13.如图,已知四面体ABCD 的所有棱长都等于a ,E ,F ,G 分别是棱AB ,AD ,DC 的中点.求:(1)AB AC ⋅uu u r uuu r ;(2)AD DB ⋅ ;(3)GF AC ⋅ ;(4)EF BC ⋅uu u r uu u r ;(5)FG BA ⋅ ;(6)GE GF ⋅ .【答案】(1)22a ;(2)22a -;(3)22a -;(4)24a ;(5)24a -;(6)24a 【解析】【分析】根据空间向量数量积的定义计算即可.【详解】 四面体ABCD 的所有棱长都等于a ,∴任意两条棱所在直线的夹角为3π, E ,F ,G 分别是棱AB ,AD ,DC 的中点,//,//,||||2a EF BD FG AC EF FG ∴==,(1)2cos 32a AB AC a a π⋅=⨯⨯= ;(2)22cos 32a AD DB a a π⋅=⨯⨯=- ;(3)2cos 22a a GF AC a π⋅=⨯⨯=- ;(4)//EF BD ,则直线BD 与直线BC 所成角就是直线EF 与直线BC 所成角,又3CBD π∠=,2cos 234a a EF BC a π⋅==∴⨯⨯ ;(5)//FG AC ,则直线AC 与直线AB 所成角就是直线FG 与直线BA 所成角,22cos 234a a FG BA a π⋅-∴=⨯⨯= ;(6)取BD 中点M ,连接AM ,CM ,则,AM BD CM BD ⊥⊥,AM CM M ⋂= ,BD ∴⊥平面ACM ,又AC ⊂平面ACM ,BD AC ∴⊥,//EF BD ,EF AC ∴⊥,又//AC FG ,EF FG ∴⊥,0EF FG ⋅= ,可知1122GF AC a ==,222()||024a a GE GF GF FE GF GF FE GF ⎛⎫⋅=+⋅=+⋅=+= ⎝⎭∴⎪ .综合运用14.如图,在平行六面体1111ABCD A B C D -中,AC 与BD 的交点为M .设11111,,,=== A B a A D b A A c ,则下列向量中与1B M 相等的向量是()A.1122a b c --+B.1122a b c -++C.1122a b c -+ D.1122a b c ++ 【答案】B【解析】【分析】根据1112=+=+B M B B BM c BD uuuu r uuu r uuu r r uu u r代入计算化简即可.【详解】()1111112222=+=+=++=-++B M B B BM c BD c BA BC a b c uuuu r uuu r uuu r r uu u r r uu r uu u r rr r 故选:B.15.已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量法证明:E ,F ,G ,H 四点共面.【答案】证明见解析【解析】【分析】根据给定条件利用空间向量的线性运算,结合空间向量共面定理即可得解..【详解】如图,E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,12EH FG BD == ,于是得:EG EF FG EF EH =+=+ ,即,,EG EF EH 共面,它们有公共点E ,所以E ,F ,G ,H 四点共面.16.如图,正方体ABCD A B C D ''''-(1)求A B '和B C '的夹角;(2)求证A A B C ''⊥.【答案】(1)3π;(2)证明见解析;【解析】【分析】(1)联结CD ',B D '',则A B CD '' ,A B '和B C '的夹角即CD '和B C '的夹角B CD ''∠,由B D CD B C ''''==知,B CD ''△是等边三角形,故A B '和B C '的夹角为3π.(2)联结AB ',则AB A B ''⊥,又B C ''⊥平面ABB A '',B C A B '''⊥,从而有A B '⊥平面AB C '',从而证得A A B C ''⊥.【详解】(1)联结CD ',B D '',则A B CD '' ,A B '和B C '的夹角即CD '和B C '的夹角B CD ''∠,在正方体中,设棱长为a ,则B D CD B C ''''===,则B CD ''△是等边三角形,即3B CD π''∠=故A B '和B C '的夹角为3π(2)联结AB ',则AB A B ''⊥,又B C ''⊥平面ABB A '',A B '⊂平面ABB A '',则B C A B '''⊥,又B C AB B ''''⋂=故A B '⊥平面AB C '',又AC '⊂平面AB C '',所以A A B C ''⊥17.用向量方法证明:在平面内的一条直线,如果与这个平面的一条斜线在这个平面上的射影垂直,那么它也与这条直线垂直(三垂线)【答案】证明见解析;【解析】【分析】根据向量运算法则,数量积为0即可证得垂直.【详解】如图所示,在平面α内,OB →是OA →在面内的投影向量,则BA CD →→⊥,由题知,CD OB →→⊥,则()0CD OA CD OB BA CD OB CD BA →→→→→→→→→⋅=⋅+=⋅+⋅=,故CD OA →→⊥,所以CD OA ⊥,即证得结论.拓广探索18.如图,空间四边形OABC 中,,OA BC OB AC ⊥⊥.求证:OC AB ⊥.【答案】证明见解析【解析】【详解】试题分析:利用三个不共面的向量OA OB OC ,,作为基底,利用空间向量的数量积为0,证明向量垂直,即线线垂直.试题解析:∵OA BC ⊥,∴OA OB ⊥ .∵0OA OB ⋅= ,∴()0⋅-= OA OC OB .∴0⋅-=⋅ OA OC OA OB (1)同理:由OB AC ⊥得0⋅-=⋅ OC OB OA OB (2)由(1)-(2)得0⋅-=⋅ OA OC OC OB∴()0⋅=- OA OB OC ,∴0OC BA ⋅= ,∴OC BA ⊥u u u r u u u r,∴OC AB ⊥.19.如图,在四面体OABC 中,OA OB =,CA CB =,E ,F ,G ,H 分别是OA ,OB ,BC ,CA 的中点.求证:四边形EFGH 是矩形.【答案】证明见解析;【解析】【分析】取AB 的中点D ,联结OD ,CD ,证得AB ⊥平面ODC ,AB OC ⊥,从而有EH EF ⊥;又E ,F ,G ,H 分别是OA ,OB ,BC ,CA 的中点.从而有EF GH =,结合EH EF ⊥,证得四边形EFGH 是矩形.【详解】取AB 的中点D ,联结OD ,CD ,由OA OB =,CA CB =知,⊥OD AB ,CD AB ⊥,又OD CD D ⋂=,故AB ⊥平面ODC ,又OC ⊂平面ODC ,因此AB OC⊥又E ,F ,G ,H 分别是OA ,OB ,BC ,CA 的中点.则EF AD = ,GH AD =,故EF GH=,四边形EFGH是平行四边形同理EH GF=,且EH OC,又AB OC⊥所以EH EF⊥,四边形EFGH是矩形。
高二数学空间向量必刷的练习题在高二数学中,空间向量是一个重要而又复杂的概念,它在解决空间几何问题时起到了重要的作用。
为了帮助同学们更好地掌握和应用空间向量的知识,下面将介绍几道必刷的空间向量练习题。
练习题一:已知向量A=10A+6A+5A,向量A=A−A+3A,向量A=4A−2A+A,求向量A=(2A+5A−A)的模长。
解析:首先,计算向量A=(2A+5A−A)的具体数值。
将已知向量代入得到:A=2(10A+6A+5A)+5(A−A+3A)−(4A−2A+A)=20A+12A+10A+5A−5A+15A−4A+2A−A=21A+9A+24A然后,计算向量A的模长:|A|=sqrt((21A)^2+(9A)^2+(24A)^2)=sqrt(441A^2+81A^2+576A^2)练习题二:已知向量A=A−2A+2A,向量A=−A+4A−4A,向量A=A−6A+6A,求向量A=(A+2A−3A)的方向向量。
解析:首先,计算向量A=(A+2A−3A)的具体数值。
将已知向量代入得到:A=(A−2A+2A)+2(−A+4A−4A)−3(A−6A+6A)=A−2A+2A−2A+8A−8A−3A+18A−18A=−4A+24A−24A然后,根据向量的性质,可以知道向量A的方向与其具体数值无关,方向向量为:(−4, 24, −24)练习题三:已知三点A(1,2,3)、A(4,5,6)和A(7,8,9),求向量AA和向量AA的数量积。
解析:首先,根据已知点的坐标,可以计算出向量AA和向量AA的具体数值:向量AA=(4−1,5−2,6−3)=(3,3,3)向量AA=(7−1,8−2,9−3)=(6,6,6)然后,计算向量AA和向量AA的数量积:AA·AA=3×6+3×6+3×6=54练习题四:已知三点A(-1,1,2)、A(2,3,4)和A(3,2,0),求向量AA和向量AA的向量积。
高中空间向量练习题及讲解讲解### 高中空间向量练习题及讲解#### 练习题一:空间向量的坐标运算题目:设空间向量\( \vec{a} \)和\( \vec{b} \)的坐标分别为\( (1, 2, 3) \)和\( (4, -1, 2) \),求向量\( \vec{a} + \vec{b} \)的坐标。
解答:向量加法遵循坐标的分量相加原则。
对于向量\( \vec{a} \)和\( \vec{b} \),其坐标分别为\( (a_1, a_2, a_3) \)和\( (b_1,b_2, b_3) \),向量和的坐标为\( (a_1 + b_1, a_2 + b_2, a_3 +b_3) \)。
将给定的向量坐标代入公式,得到:\[ \vec{a} + \vec{b} = (1 + 4, 2 - 1, 3 + 2) = (5, 1, 5) \]#### 练习题二:空间向量的模长题目:已知空间向量\( \vec{c} \)的坐标为\( (2, 3, -1) \),求向量\( \vec{c} \)的模长。
解答:空间向量的模长可以通过以下公式计算:\[ |\vec{c}| = \sqrt{c_1^2 + c_2^2 + c_3^2} \]将向量\( \vec{c} \)的坐标代入公式,得到:\[ |\vec{c}| = \sqrt{2^2 + 3^2 + (-1)^2} = \sqrt{4 + 9 + 1} = \sqrt{14} \]#### 练习题三:空间向量的夹角题目:设空间向量\( \vec{d} \)和\( \vec{e} \)的坐标分别为\( (1, 2, 1) \)和\( (2, 1, 3) \),求向量\( \vec{d} \)和\( \vec{e} \)的夹角。
解答:空间向量\( \vec{d} \)和\( \vec{e} \)的夹角可以通过向量的点积来求得,公式为:\[ \cos \theta = \frac{\vec{d} \cdot \vec{e}}{|\vec{d}||\vec{e}|} \]首先计算点积:\[ \vec{d} \cdot \vec{e} = 1 \times 2 + 2 \times 1 + 1 \times 3 = 2 + 2 + 3 = 7 \]然后计算模长:\[ |\vec{d}| = \sqrt{1^2 + 2^2 + 1^2} = \sqrt{6} \]\[ |\vec{e}| = \sqrt{2^2 + 1^2 + 3^2} = \sqrt{14} \]代入公式计算夹角的余弦值:\[ \cos \theta = \frac{7}{\sqrt{6} \times \sqrt{14}} \]最后,通过反余弦函数求得夹角\( \theta \)。
空间向量及其线性运算(同步训练)一、选择题1.下列说法中正确的是( )A.任意两个空间向量都可以比较大小B.方向不同的空间向量不能比较大小,但同向的空间向量可以比较大小C.空间向量的大小与方向有关D.空间向量的模可以比较大小2.已知空间四边形ABCD 中, AB→=a ,CB →=b ,AD →=c ,则CD →等于A.a +b -cB.-a -b +cC.-a +b +cD.-a +b -c3.若向量a 与b 不共线,且m =a +b ,n =a -b ,p =a ,则( )A.m ,n ,p 共线B.m 与p 共线C.n 与p 共线D.m ,n ,p 共面4.已知空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A.32DB →B.3MG →C.3GM →D.2MG →5.以下命题:①两个共线向量是指在同一直线上的两个向量;②共线的两个向量互相平行; ③共面的三个向量是指在同一平面内的三个向量;④共面的三个向量是指平行于同一平面的三个向量.其中正确命题的序号是( )A.①③B.②④C.③④D.②③6.在长方体ABCD -A 1B 1C 1D 1中,下列关于AC 1→的表达式: ①AA 1→+A 1B 1→+A 1D 1→;②AD →+CC 1→+D 1C →; ③AB →+DD 1→+D 1C 1→;④12(AB 1→+CD 1→)+A 1C 1→.正确的个数是( )A.1B.3C.2D.47.已知正方体ABCD -A 1B 1C 1D 1中,A 1E →=14A 1C 1→,若AE →=xAA 1→+y(AB →+AD →),则x ,y 的值分别是( )A.1,14 B .14,1 C.2,14 D .14,28.(多选)在下列条件中,使点M 与A ,B ,C 不一定共面的是( )A.OM →=3OA →-2OB →-OC →B.OM →+OA →+OB →+OC →=0C.MA →+MB →+MC →=0D.OM →=14OB →-OA →+12OC →二、填空题9.下列命题是真命题的是______(填序号).①分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量一定不相等;②若|a +b|=|a -b|,则|a|=|b|;③若向量AB→,CD →满足|AB →|>|CD →|,且AB →与CD →同向,则AB→>CD →.10.如图,在空间四边形ABCD 中,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG→-AB →+AD →等于________11.已知三棱锥O -ABC ,D 是BC 中点,P 是AD 中点,设OP→=xOA →+yOB →+zOC →,则x +y +z =________,x =________12.给出命题:①若a 与b 共线,则a 与b 所在的直线平行;②若三个向量两两共面,则这三个向量共面;③若A ,B ,C 三点不共线,O 是平面ABC 外一点,OM →=13OA →+13OB →+13OC →,则点M 一定在平面ABC 上,且在△ABC 的内部.其中为真命题的是________三、解答题13.如图,在长方体ABCDA 1B 1C 1D 1中,AB =3,AD =2,AA 1=1,以长方体的八个顶点中的两点为起点和终点的向量中.(1)单位向量共有多少个?(2)试写出模为5的所有向量.14.如图,在三棱柱ABC -A 1B 1C 1中,M 是BB 1中点,化简下列各式:(1)AB →+BA 1→;(2)AB →+B 1C 1→+C 1C →;(3)12AA 1→+AB →-AM →.15.已知ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O ,Q 是CD 的中点,求下列各式中x ,y 的值: (1)OQ→=PQ →+xPC →+yPA →;(2)PA →=xPO →+yPQ →+PD →.参考答案:一、选择题1.D2.C3.D4.B5.B6.C7.A8.ABD二、填空题9.答案:① 10.答案:3MG → 11.答案:1,1212.答案:③三、解答题13.解:(1)模为1的向量有A 1A →,AA 1→,B 1B →,BB 1→,C 1C →,CC 1→,D 1D →,DD 1→,共8个单位向量.(2)由于这个长方体的左右两侧面的对角线长均为5,因此模为5的向量为AD 1→,D 1A →,A 1D →,DA 1→,BC 1→,C 1B →,B 1C →,CB 1→.14.解:(1)AB →+BA 1→=AA 1→.(2)AB →+B 1C 1→+C 1C →=A 1B 1→+B 1C 1→+C 1C →=A 1C →.(3)12AA 1→+AB →-AM →=BM →+AB →+MA →=AB →+BM →+MA →=0.15.解:如图,(1)因为OQ →=PQ →-PO →=PQ →-12(PA →+PC →)=PQ →-12PA →-12PC →,所以x =y =-12.(2)因为PA →+PC →=2PO →,所以PA →=2PO →-PC →.又因为PC →+PD →=2PQ →,所以PC →=2PQ →-PD →.从而有PA →=2PO →-(2PQ →-PD →)=2PO →-2PQ →+PD →.所以x =2,y =-2.。
高二数学 空间向量及其运算练习题题海冲浪: 一、基础题:1、平面向量中,下列说法正确的是()A 、如果两个向量的长度相等,那么这两个向量相等;B 、如果两个向量平行,那么这两个向量的方向相同;C 、如果两个向量平行并且它们的模相等,那么这两个向量相等;D 、同向且等腰三角形长的有向线段表示同一向量。
答案: D2、已知空间向量四边形 ABCD ,连结 AC 、 BD ,设 M 、G 分别 是 BC 、CD 的中点,则 MG AB AD 等于( )3 A 、 DBB 、3MG D 、3GM D 、2MG2解析: BD AD AB,BD 2MGAD AB 2MGMG AB AD MG 2MG 3MG答案: B3、已知 a 2, b 3, a,b 600 ,则| 2a 3b |等于()解析: 2a 3b (2a 3b )2 4a 2 12a b 9b 2 4 22 12 2 3 1 9 32 61答案: C4、已知 a,b,c 是不共面的三个向量,则下列选项中能构成一个基底的一组向量是()A 、 2a,a b,a 2bB 、 2b,ba,b 2a解析: A 中, 2a 4(a b) 2(a 2b) 排除 A33A 、 97B 、97C 、 61D 、61a,2 b, b cD 、 c,ac,a c42 B 中, 2b (b a) (b 2a) 排除 B 33 11D 中, c (a c) (a c) 排除 D22答案: C5、已知非零向量 a,b 不平行,并且其模相同,则 a b 与 a b 之间的并系是( )7、已知 A 、B 、C 三点不共线,对平面 ABC 外一点 O ,分别根据条件: ( 1 ) OP 3OA 2OB 1OC ; ( 2 ) OP 2OA 3OB ; ( 3 ) 4422OP (sin 2 )OA 2OB (cos 2 2)OC ;(4)OP 3AB OC ;能够确定 P 与 A 、B 、C 一定共面的有 解析:设 OP xOA yOB zOC311)中 x ,y 2,z ,x y z 1, P,A,B,C 不共面;442) 中 x 2,y 3,z 0,x y z 1, P,A,B,C 共面;3)中 x sin 2 ,y 2, z cos 2 2,x y z 1, P, A,B, C 共面;4) 中 OP 3AB OC 3(OB OA) OC 3OA 3OB OCx 3,y 3,z 1,x y z 1, P,A,B,C 不共面;8、若 AB BE AB BC ,则 AB CE解析:由题意得, AB (BE BC) 0AB CE 0 AB CEA 、垂直答案:B 、共线C 、不垂直D 、以上都可以6、在空间四边形 AB 1 BC 3 DE AD2ABCD 中,连结 AC 、BD ,若 BCD 是正三角形,且 E为其中心,则2答案: 0的化简结果为答案:9、如图,已知 PA 平面 ABCD ,四边形 ABCD 为正方形, G 为等腰三角形 PDC 的重心,AB i, AD j,AP k ,试用基底 { i, j,k }表示向量 PG, BG , AG1 1 1 ( PC PD) PC PD 331 2 2 j3 k1 22 ij3 3 31 2 2 1 2 1 k ( i j k) i j k3 3333310、如图,在空间四边形 OABC 中, OA=8 , AB=6 , AC=4 , BC=5 ,OAC 450, OAB 600,求 OA 与 BC 夹角的余弦值。
高二空间向量练习题及答案空间向量是高中数学的一个重要内容,掌握空间向量的概念和运算方法对于解决几何问题有着重要的作用。
下面是一些高二空间向量的练习题及其答案,帮助大家巩固和提升空间向量的学习。
一、选择题1. 设向量a=2i-j+3k,向量b=-3i+j+2k,则a·b的值为:A. -11B. 11C. -9D. 9答案:A2. 设向量a=2i-3j+k,向量b=-i+2j-3k,则a与b的夹角为:A. 60°B. 90°C. 120°D. 150°答案:C3. 已知向量a=2i-j+3k,向量b=3i+2j-4k,则a与b的数量积等于:A. -17B. 17C. -3D. 3答案:B4. 设向量a=3i+4j-2k,向量b=i-3j+5k,则a×b的结果为:A. 23i+2j-13kB. -23i-12j+13kC. 23i-12j+13kD. -23i+2j+13k答案:C5. 向量a=3i+j+k,向量b=2i-4j-2k,求向量a与向量b的和向量c,并求c的模长。
A. 向量c=5i-3j-k,|c|=√35B. 向量c=5i-3j-k,|c|=√33C. 向量c=5i-5j-3k,|c|=√31D. 向量c=5i-3j-k,|c|=√31答案:D二、填空题1. 向量a=2i+3j-4k,向量b=5i-2j+k,求a+b的结果为________。
答案:7i+j-3k2. 向量a=2i-3j+k,向量b=-i+j+2k,求a与b的夹角的余弦值为________。
答案:-1/√143. 设向量a=3i-4j+2k,向量b=2i-3j+k,求a×b的结果为________。
答案:-5i-4j-1k4. 设向量a=-i+2j+k,d是一条过点A(1,2,3)且与向量a垂直的直线方程,则d的方程为_______。
答案:x-2y+z-3=05. 已知平行四边形的两条对角线的向量分别为a=2i-j+k和b=-3i+4j-2k,求平行四边形的面积为_______。
高中数学空间向量及其运算专项练习题组一 空间向量的线性运算1.AB 、BC 、CD 、AC 的中点,则12(AB +BC +CD )化简 的结果为 ( )A .BFB .EHC .HGD .FG解析:12(AB +BC +CD )=12(AC +CD )=12AD =12·2HG =HG . 答案:C2.如图,在底面ABCD 为平行四边形的四棱柱ABCD -A 1B 1C 1D 1中,M 是AC 与BD 的交点,若AB =a ,11A D =b ,11A A =c ,则下列向量中与1B M 相等的向量是 ( )A .-12a +12b +c B.12a +12b +c C.12a -12b +c D .-12a -12b +c 解析:由题意,根据向量运算的几何运算法则,1B M =1B B +BM =c +12BD=c +12(AD -AB )=-12a +12b +c . 答案:A题组二 空间中的共线、共面问题 3.A 点是否共面________(共面或不共面).解析:AB =(3,4,5),AC =(1,2,2),AD =(9,14,16),设AD =x AB +y AC .即(9,14,16)=(3x +y,4x +2y,5x +2y ),∴⎩⎨⎧x =2,y =3,从而A 、B 、C 、D 四点共面. 答案:共面4.如图在平行六面体ABCD -A 1B 1C 1D 1中,E 、F 、G分别是A 1D 1、D 1D 、D 1C 1的中点.求证:平面EFG ∥平面AB 1C .证明:设AB =a ,AD =b ,1AA =c ,则EG =1ED +1D G =12(a +b ),AC =a +b =2EG , ∴EG ∥AC , EF =1ED +1D F =12b -12c =12(b -c ), 1B C =11B C +1C C =b -c =2EF ,∴EF ∥1B C .又∵EG 与EF 相交,AC 与B 1C 相交,∴平面EFG ∥平面AB 1C .题组三 空间向量数量积及应用5.点E 、F 、G 分别为AB 、AD 、DC 的中点,则a 2等于( )A .2BA ·BCB .2AD ·BD C .2FG ·CA D .2EF ·CB解析:〈AD ,BD 〉=π3,∴2AD ·BD =2a 2×cos π3=a 2. 答案:B6.(2010·长沙模拟)二面角α-l -β为60°,A 、B是棱l 上的两点,AC 、BD 分别在半平面α、β内,AC ⊥l ,BD ⊥l ,且AB =AC =α,BD =2a ,则CD的长为 ( )A .2a B.5a C .a D.3a解析:∵AC ⊥l ,BD ⊥l ,∴〈AC ,BD 〉=60°,且AC ·BA =0,AB ·BD =0,∴CD =CA +AB +BD ,∴|CD |=2()CA AB BD ++ =a 2+a 2+(2a )2+2a ·2a cos120°=2a .答案:A7.如图,平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长都为1,且两夹角为60°.(1)求AC 1的长;(2)求BD 1与AC 夹角的余弦值.解:设AB =a ,AD =b ,1AA =c ,则两两夹角为60°,且模均为1.(1)1AC =AC +1CC =AB +AD +1AA =a +b +c .∴|1AC |2=(a +b + c )2=|a |2+|b |2+|c |2+2a ·b +2b ·c +2a ·c=3+6×1×1×12=6, ∴|1AC |=6,即AC 1的长为 6.(2)1BD =BD +1DD =AD -AB +1AA =b -a +c .∴1BD ·AC =(b -a +c )·(a +b )=a ·b -a 2+a ·c +b 2-a ·b +b ·c=1.|1BD |=(b -a +c )2=2,|AC ―→|=(a +b )2=3,∴cos 〈1BD ,AC 〉=11BD ACBD AC=12×3=66. ∴BD 1与AC 夹角的余弦值为66. 题组四 空间向量及其运算的综合8.已知向量a =(11,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE ⊥b? 解:(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5), 故|2a +b |=02+(-5)2+52=5 2.(2)假设存在一点E 满足题意,即AE =t AB (t ≠0). OE =OA +AE =OA +t AB=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t,4-2t ),若OE ⊥b ,则OE ·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95,因此存在点E ,使得OE ⊥b ,此时点E 的坐标为(-65,-145,25).9.如图,在梯形ABCD 中,AB ∥CD ,∠ADC =90°, 3AD =DC =3,AB =2,E 是DC 上的点,且满足 DE =1,连结AE ,将△DAE 沿AE 折起到△D 1AE 的位置,使得∠D 1AB =60°,设AC 与BE 的交点为O .(1)试用基向量AB ,AE ,1AD 表示向量1OD ;(2)求异面直线OD 1与AE 所成角的余弦值;(3)判断平面D 1AE 与平面ABCE 是否垂直?并说明理由.解:(1)∵AB ∥CE ,AB =CE =2,∴四边形ABCE 是平行四边形,∴O 为BE 的中点. ∴1OD =1AD -AO =1AD -12(AB +AE )=1AD -12AB -12AE .(2)设异面直线OD 1与AE 所成的角为θ,则cos θ=|cos 〈1OD ,AE 〉|=|11OD AEOD AE|,∵1OD ·AE =(1AD -12AB -12AE )·AE=1AD ·AE -12AB ·AE -12|AE |2=1×2×cos45°-12×2×2×cos45°-12×(2)2=-1,|1OD |= 211()2AD AE =62,∴cos θ=|11OD AEOD AE |=|-162×2|=33. 故异面直线OD 1与AE 所成角的余弦值为33.(3)平面D 1AE ⊥平面ABCE .证明如下: 取AE 的中点M ,则1D M =AM -1AD =12AE -1AD ,∴1D M ·AE =(12AE -1AD )·AE =12|AE |2-1AD ·AE=12×(2)2-1×2×cos45°=0.∴1D M ⊥AE .∴D 1M ⊥AE . ∵1D M ·AB =(12AE -1AD )·AB =12AE ·AB -1AD ·AB=12×2×2×cos45°-1×2×cos60°=0, ∴1D M ⊥AB ,∴D 1M ⊥AB .又AE ∩AB =A ,AE 、AB ⊂平面ABCE , ∴D 1M ⊥平面ABCE .∵D 1M ⊂平面D 1AE ,∴平面D 1AE ⊥平面ABCE .。
高三空间向量练习题1. 已知向量a = 2i + 3j - k,向量b = i - j + 4k,求向量a与向量b的数量积。
解析:向量a与向量b的数量积可以通过向量的内积公式计算得出。
内积的计算方式为将两个向量对应分量相乘后相加。
a ·b = (2i + 3j - k) · (i - j + 4k)= 2i · i + 3j · (-j) - k · j + 2i · (-j) + 3j · (4k) - k · (4k)= 2 + 3 + 0 - 2 - 12 + 4= -5所以,向量a与向量b的数量积为-5。
2. 已知向量c = 3i + 2j + 4k,向量d = 5i + 6j + 2k,求向量c与向量d的向量积。
解析:向量c与向量d的向量积可以通过向量的叉乘公式计算得出。
叉乘的计算方式为以行列式形式表示,按照i、j、k的顺序展开。
c ×d = |i j k ||3 2 4 ||5 6 2 |= (2 × 2 - 4 × 6)i - (3 × 2 - 4 × 5)j + (3 × 6 - 2 × 5)k= -20i + 7j + 8k所以,向量c与向量d的向量积为-20i + 7j + 8k。
3. 已知向量e = 3i + 4j - 6k,向量f = 2i - 5j + k,求向量e与向量f 的夹角的余弦值。
解析:向量e与向量f的夹角的余弦值可以通过向量的内积和模长的乘积计算得出。
计算公式为:cosθ = (e · f) / (|e| × |f|)。
|e| = √(3^2 + 4^2 + (-6)^2) = √(9 + 16 + 36) = √61|f| = √(2^2 + (-5)^2 + 1^2) = √(4 + 25 + 1) = √30e ·f = (3i + 4j - 6k) · (2i - 5j + k)= 3i · 2i + 4j · (-5j) - 6k · j + 3i · (-5j) + 4j · k - 6k · k= 6 - 20 - 0 - 15 + 4 - 6= -31cosθ = (-31) / (√61 × √30) ≈ -0.283所以,向量e与向量f的夹角的余弦值约为-0.283。
高中数学空间向量及其运算专项练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若B A 1=a ,11D A =b ,A A 1=c .则下列向量中与M B 1相等的向量是( ) A .c b a ++-2121 B .c b a ++2121C .c b a +-2121D .c b a +--21212.在下列条件中,使M 与A 、B 、C 一定共面的是( )A .OC OB OA OM --=2 B .OC OB OA OM 213151++=C .=++MC MB MA 0D .=+++OC OB OA OM 03.已知平行六面体''''ABCD A B C D -中,AB=4,AD=3,'5AA =,090BAD ∠=,''060BAA DAA ∠=∠=,则'AC 等于( )A .85B .85C .52D .50 4.与向量(1,3,2)a =-平行的一个向量的坐标是( )A .(31,1,1) B .(-1,-3,2) C .(-21,23,-1) D .(2,-3,-22)5.已知A (-1,-2,6),B (1,2,-6)O 为坐标原点,则向量,OA OB 与的夹角是( )A .0B .2πC .πD .32π6.已知空间四边形ABCD 中,c OC ,b OB ,a OA ===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN =( )A .c b a 213221+- B .c b a 212132++-图C-+ D+ 7.设A 、B 、C 、D 是空间不共面的四点,且满足000=•=•=•,,,则∆BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定8.空间四边形OABC 中,OB=OC ,∠AOB=∠AOC=600,则= ( )A .21B .22 C .-21 D .09.已知A (1,1,1)、B (2,2,2)、C (3,2,4),则∆ABC 的面积为 ( )A .3B .32C .6D .26 10. 已知),,2(),,1,1(t t t t t =--=,则||-的最小值为( )A .55B .555 C .553 D .511 二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.若)1,3,2(-=,)3,1,2(-=,则,为邻边的平行四边形的面积为 . 12.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G 在线段MN 上,且GN MG 2=,现用基组{}OC OB OA ,,表示向量OG ,有=x z y ++,则x 、y 、z 的值分别为 .13.已知点A(1,-2,11)、B(4,2,3),C(6,-1,4),则∆ABC 的形状是 . 14.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成1200的角,则k= . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)如图,已知正方体''''ABCD A B C D -的棱长为a ,M 为'BD 的中点,点N 在'AC '上,且|'|3|'|A N NC =,试求MN 的长.16.(12分)如图在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是(21,23,0),点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°. (1)求向量OD 的坐标;(2)设向量AD 和BC 的夹角为θ,求cos θ的值17.(12分)若四面体对应棱的中点间的距离都相等,证明这个四面体的对棱两两垂直.18.(12分)四棱锥P —ABCD 中,底面ABCD 是一个平行四边形,AB ={2,-1,-4},AD ={4,2,0},AP ={-1,2,-1}.(1)求证:P A ⊥底面ABCD ; (2)求四棱锥P —ABCD 的体积;(3)对于向量a ={x 1,y 1,z 1},b ={x 2,y 2,z 2},c ={x 3,y 3,z 3},定义一种运算: (a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P —ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )·AP 的绝对值的几何意义..图19.(14分)如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点. (1)求BN 的长;(2)求cos<11,CB BA >的值; (3)求证:A 1B ⊥C 1M .20.(14分)如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形且∠C 1CB =∠C 1CD =∠BCD =60°.(1)证明:C 1C ⊥BD ; (2)假定CD =2,CC 1=23,记面C 1BD 为α,面CBD 为β,求二面角α—BD —β的平面角的余弦值; (3)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明.参考答案一、1.A ;解析:)(21111BC BA A A BM B B MB ++=+==+21(-b a +)=-21+21+.评述:用向量的方法处理立体几何问题,使复杂的线面空间关系代数化,本题考查的是基本的向量相等,与向量的加法.考查学生的空间想象能力.2.A ;解析:空间的四点P 、A 、B 、C 共面只需满足,z y x ++=且1=++z y x 既可.只有选项A .3.B ;解析:只需将A A AD AB C A ++=,运用向量的内即运算即可,||C A ='.4.C ;解析:向量的共线和平行使一样的,可利用空间向量共线定理写成数乘的形式.即b a b a b λ=⇔≠//,0.5.C ;解析:||||cos b a ⋅=θ1.6.B ;解析:显然OC OB OM ON MN )(21+=-= 7.B ;解析:过点A 的棱两两垂直,通过设棱长应用余弦定理可得三角形为锐角三角形. 8.D ;解析:建立一组基向量OC OB OA ,,,再来处理⋅的值. 9.D ;解析:应用向量的运算,显然><⇒>=<AC AB ,sin ||||,cos ,从而得><=AC AB AC AB S ,sin ||||21. 10.C ; 二、11.56;解析:72||||,cos -=>=<b a ,得753,sin >=<b a ,可得结果.12.++; 解析:)(21[32)(32++=-++=-+=+=+= 13.直角三角形;解析:利用两点间距离公式得:222||||||AC BC AB +=. 14.39-;解析:219132||||,cos 2-=+=⋅>=<k k b a ,得39±=k . 三、15.解:以D 为原点,建立如图空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),'C (0,a ,a ),'D (0,0,a ). 由于M 为'BD 的中点,取''A C 中点O',所以M (2a ,2a ,2a ),O'(2a ,2a ,a ).因为|'|3|'|A N NC =,所以N 为''A C 的四等分,从而N为''O C 的中点,故N (4a ,34a ,a ). 根据空间两点距离公式,可得||MN ==.16.解:(1)过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD =3,∴DE =CD ·sin30°=23.OE =OB -BE =OB -BD ·cos60°=1-2121=.∴D 点坐标为(0,-23,21),即向量OD [TX→]的坐标为{0,-23,21}. (2)依题意:}0,1,0{},0,1,0{},0,21,23{=-==OC OB OA ,所以}0,2,0{},23,1,23{=-=--=-=OB OC BC OA OD AD . 设向量AD 和BC 的夹角为θ,则cos θ=222222020)23()1()23(0232)1(023||||++⋅+-+-⨯+⨯-+⨯-=⋅⋅BC AD BC AD 1051-=. 17. 证:如图设321,,r SC r SB r SA ===,则SN SM SH SG SF SE ,,,,,分别为121r ,)(2132r r +,)(2121r r +,321r ,)(2131r r +,221r ,由条件EH=GH=MN 得:223123212132)2()2()2(rr r r r r r r r -+=-+=-+ 展开得313221r r r r r r ⋅=⋅=⋅∴0)(231=-⋅r r r ,∵1r ≠0,23r r -≠0, ∴1r ⊥(23r r -)即SA ⊥BC . 同理可证SB ⊥AC ,SC ⊥AB .18. (1)证明:∵AB AP ⋅=-2-2+4=0,∴AP ⊥AB . 又∵AD AP ⋅=-4+4+0=0,∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线,∴AP ⊥底面ABCD . (2)解:设AB 与AD 的夹角为θ,则 cos θ=1053416161428||||=+⋅++-=⋅⋅AD AB AD ABV =31|AB |·|AD |·sin θ·|AP |=161411059110532=++⋅-⋅(3)解:|(AB ×AD )·AP |=|-4-32-4-8|=48它是四棱锥P —ABCD 体积的3倍.猜测:|(AB ×AD )·AP |在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积).评述:本题考查了空间向量的坐标表示、空间向量的数量积、空间向量垂直的充要条件、空间向量的夹角公式和直线与平面垂直的判定定理、棱锥的体积公式等.主要考查考生的运算能力,综合运用所学知识解决问题的能力及空间想象能力. 19.如图,建立空间直角坐标系O —xyz . (1)依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2)∴1BA ={-1,-1,2},1CB ={0,1,2,},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB >=30101||||1111=⋅⋅CB BA CB BA .(3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1={-1,1,2},M C 1={21,21,0}.∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1,∴A 1B ⊥C 1M . 评述:本题主要考查空间向量的概念及运算的基本知识.考查空间两向量垂直的充要条件. 20.(1)证明:设CB =a ,CD =b ,1CC =c ,则|a |=|b |,∵CB CD BD-==b -a ,∴BD ·1CC =(b -a )·c =b ·c -a ·c =|b |·|c |cos60°-|a |·|c |cos60°=0, ∴C 1C ⊥BD .(2)解:连AC 、BD ,设AC ∩BD =O ,连OC 1,则∠C 1OC 为二面角α—BD —β的平面角. ∵21)(21=+=CD BC CO(a +b ),2111=-=CC CO O C (a +b )-c ∴CO ·211=OC (a +b )·[21(a +b )-c ] 图=41(a 2+2·+2)-21·-21·=41(4+2·2·2cos60°+4)-21·2·23cos60°-21·2·23cos60°=23.则|CO |=3,|O C 1|=23,∴cos C 1OC 3311=(3)解:设1CC CD =x ,CD =2, 则CC 1=x2. ∵BD ⊥平面AA 1C 1C ,∴BD ⊥A 1C ∴只须求满足:D C C A 11⋅=0即可. 设A A 1=a ,AD =b ,DC =c , ∵A 1=++,C 1=-,∴C A 11⋅=(++)(-)=2+·-·-2=xx 242+-6, 令6-242x x -=0,得x =1或x =-32(舍去). 评述:本题蕴涵着转化思想,即用向量这个工具来研究空间垂直关系的判定、 二面角的求解以及待定值的探求等问题.。
高中数学-空间向量及其运算练习基础巩固题组 (建议用时:40分钟)一、填空题 1.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c . 其中正确命题的个数是________.解析 a 与b 共线,a ,b 所在直线也可能重合,故①不正确;根据自由向量的意义知,空间任两向量a ,b 都共面,故②错误;三个向量a ,b ,c 中任两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0. 答案 02.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值是________.解析 ∵a ∥b ,∴b =k a ,即(6,2μ-1,2λ)=k (λ+1,0,2),∴⎩⎨⎧6=k λ+1,2μ-1=0,2λ=2k ,解得⎩⎨⎧λ=2,μ=12或⎩⎨⎧λ=-3,μ=12.答案 2,12或-3,123.(·济南月考)O 为空间任意一点,若OP →=34OA →+18OB →+18OC →,则A ,B ,C ,P 四点________(判断是否共面).解析 ∵OP →=34OA →+18OB →+18OC →,且34+18+18=1.∴P ,A ,B ,C 四点共面.答案 共面4.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为________.解析 由题意知a ·(a -λb )=0,即a 2-λa ·b =0, ∴14-7λ=0,∴λ=2. 答案1455.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是________三角形(直角、钝角、锐角). 解析 ∵M 为BC 中点,∴AM →=12(AB →+AC →).∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0. ∴AM ⊥AD ,△AMD 为直角三角形. 答案 直角三角形6.(·连云港质检)在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且M 到A 与到B 的距离相等,则M 的坐标是________. 解析 设M (0,y,0),则MA →=(1,-y,2),MB →=(1,-3-y,1),由题意知|MA →|=|MB →|,∴12+y 2+22=12+(-3-y )2+12,解得y =-1,故M (0,-1,0). 答案 (0,-1,0)7.若三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,则a =________,b =________.解析 AB →=(1,-1,3),AC →=(a -1,-2,b +4),因为三点共线,所以存在实数λ使AC →=λAB →,即⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得a =3,b =2.答案 3 28.如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3, 则cos 〈OA →,BC →〉的值为________.解析 设OA →=a ,OB →=b ,OC →=c ,由已知条件〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |,OA →·BC →=a ·(c -b )=a·c -a·b =12|a||c |-12|a||b|=0,∴cos 〈OA →,BC →〉=0. 答案 0 二、解答题9.已知a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2). (1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b (O 为原点)? 解 (1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5), 故|2a +b |=02+-52+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB →=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t,4-2t ), 若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b , 此时E 点的坐标为⎝ ⎛⎭⎪⎫-65,-145,25.10.如图,在棱长为a 的正方体ABCD A 1B 1C 1D 1中,G 为△BC 1D 的重心,(1)试证:A 1,G ,C 三点共线; (2)试证:A 1C ⊥平面BC 1D .证明 (1)CA 1→=CB →+BA →+AA 1→=CB →+CD →+CC 1→, 可以证明:CG →=13(CB →+CD →+CC 1→)=13CA 1→,∴CG →∥CA 1→,即A 1,G ,C 三点共线. (2)设CB →=a ,CD →=b ,CC 1→=c , 则|a |=|b |=|c |=a , 且a·b =b·c =c·a =0, ∵CA 1→=a +b +c ,BC 1→=c -a ,∴CA 1→·BC 1→=(a +b +c )·(c -a )=c 2-a 2=0, 因此CA 1→⊥BC 1→,即CA 1⊥BC 1, 同理CA 1⊥BD ,又BD 与BC 1是平面BC 1D 内的两相交直线, 故A 1C ⊥平面BC 1D .能力提升题组(建议用时:25分钟)一、填空题 1.有下列命题:①若p =x a +y b ,则p 与a ,b 共面; ②若p 与a ,b 共面,则p =x a +y b ; ③若MP →=xMA →+yMB →,则P ,M ,A ,B 共面; ④若P ,M ,A ,B 共面,则MP →=xMA →+yMB →. 其中真命题的个数是________. 答案 22.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为________. 解析 设AB →=a ,AC →=b ,AD →=c ,则|a |=|b |=|c |=a ,且a ,b ,c 三向量两两夹角为60°. AE →=12(a +b ),AF →=12c ,∴AE →·AF →=12(a +b )·12c=14(a ·c +b ·c )=14(a 2cos 60°+a 2cos 60°)=14a 2. 答案 14a 23.已知在一个60°的二面角的棱上,如图有两个点A ,B ,AC ,BD 分别是在这个二面角的两个半平面内垂直于AB 的线段,且AB =4 cm ,AC =6 cm ,BD =8 cm ,则CD 的长为________.解析 设AB →=a ,AC →=c ,BD →=d ,由已知条件|a |=4,|c |=6,|d |=8,〈a ,c 〉=90°,〈a ,d 〉=90°,〈c ,d 〉=60°,|CD →|2=|CA →+AB →+BD →|2=|-c +a +d |2 =a 2+c 2+d 2-2a ·c +2a ·d -2c ·d =16+36+64-2×6×8×12=68,则|CD →|=217. 答案 217 cm 二、解答题4.如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →;(2)EF →·DC →; (3)EG 的长;(4)异面直线AG 与CE 所成角的余弦值. 解 设AB →=a ,AC →=b ,AD →=c .则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, (1)EF →=12BD →=12c -12a ,BA →=-a ,DC →=b -c ,EF →·BA →=⎝⎛⎭⎪⎫12c -12a ·(-a )=12a 2-12a·c =14, (2)EF →·DC →=12(c -a )·(b -c )=12(b·c -a·b -c 2+a·c )=-14;(3)EG →=EB →+BC →+CG →=12a +b -a +12c -12b=-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a·b +12b·c -12c·a =12,则|EG →|=22.(4)AG →=12b +12c ,CE →=CA →+AE →=-b +12a ,cos 〈AG →,CE →〉=AG →·CE→|AG →||CE →|=-23,由于异面直线所成角的范围是⎝ ⎛⎦⎥⎤0,π2, 所以异面直线AG 与CE 所成角的余弦值为23.。