- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.我们学习过哪些函数?它们的一般解析式怎么表 示?
一次函数 y=kx+b (k≠0)
函
(正比例函数) y=kx (k≠0)
数
反比例函数
y=
k x
(k≠0)
首页
观察图片,这些曲线能否用函数关系式来表示?
合作探究
问题1:学校准备在校园里利用围墙的一段和篱笆 墙围成一个矩形植物园,已知篱笆墙的总长度为
上面所列的函数式与以前学过的相同 吗?看看它们有什么共同点?
首页
知识要点
定义:一般地,形如y=ax²+bx+c 的函数叫做x的二次函数.
(a,b,c是常数,a≠ 0)
有何特 点?
提示: (1)关于自变量的代数式一定是二次整式,a,b,c为常 数,且a≠0. (2)等式的右边最高次数为2,可以没有一次项和常数 项,但不能没有二次项.
求m的值.
解:依题意得 m 1 0 且 m2 m 2 ,解得 m 2 .
注意:二次函数的二次项系数不能为零
例2:写出下列各函数关系,并判断它们是什么类
型的函数.
(1)写出正方体的表面积S与正方体棱长a之间的
函数关系;
பைடு நூலகம்
(2)写出圆的面积y与它的周长x之间的函数关系;
(3)菱形的两条对角线的和为26,求菱形的面积S
第1章 二次函数
1.1 二次函数
一、复习引入
函数 你知道吗?
一次函数 反比例函数
y=kx+b (k≠0)
正比例函数
y=kx(k≠0)
一条直线
y=
k x
k
≠
0
双曲线
首页
二、合作探究
探究点一 二次函数的定义
问题1:某果园有100棵橙子树,每一棵树平均结600个橙子.现 准备多种一些橙子树以提高产量,但是如果多种树,那么树之间 的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多 种一棵树,平均每棵树就会少结5个橙子. 假设果园增种x棵橙子树,果园橙子的总产量为y(个), 那么请你写出y与x之间的关系式.
2.定义的实质是:ax²+bx+c是整式,自变量x的最高次数是二次, 自变量x的取值范围是全体实数.
首页
四、课后作业
见《学练优》本课时课后巩固提升
学.科.网
首页
第1章 二次函数
1.1 二次函数
情景 引入
合作 探究
随堂 训练
课堂 小结
情景引入 1.一元二次方程的一般形式是什么?
2
ax +bx+c=0(a ≠0)
经化简后都具有y=ax²+bx+c(a,b,c是常数,a≠0)的 形式
概念归纳
我们把形如y=ax²+bx+c(其中a,b,c是常数,a≠0) 的函数叫做二次函数 称:a为二次项系数,ax2叫做二次项;
b为一次项系数,bx叫做一次项; c为常数项.
例题学习 例1:关于x的函数 y (m 1)xm2m是二次函数,
y 60001 x2 ,0 x 1
即 y 6000x2 12000x 6000,0 x 1
观察上面所列的函数表达式有什么共同点?它 们与一次函数的表达式有什么不同?
s 2x2 100x,0 x 50
y 6000x2 12000x 6000,0 x 1
(1) k为何值时,y是x的一次函数?
(2) k为何值时,y是x的二次函数?
解:(1)根据题意得
k2 k 0 k 0
∴k=1时,y是x的一次函数。
(2) 当k2 - k ≠0,即k ≠0且k ≠1时 y是x的二次函数
三、课堂小结
定义中应该注意的几个问题:
1.定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0)的函数叫 做x的二次函数. y=ax²+bx+c(a,b,c是常数,a≠0)的几种不同表示形式: (1)y=ax²(a≠0,b=0,c=0,). (2)y=ax²+c(a≠0,b=0,c≠0). (3)y=ax²+bx(a≠0,b≠0,c=0).
首页
典例精析
例1:下列函数中,哪些是二次函数?
(1)
y=3(x-1)²+1(是)
(2) y =
x+
1
(否)
x
(3) s=3-2t²
(是)
(4) y =
1 x2 - x
(否)
(5)y=(x+3)²-x²(否) (6)v=10πr²(是)
(7) y=x²+x³+25 (否) (8)y=2²+2x (否)
首页
例2:如图,一块矩形木板,长为120cm、宽为80cm,在 木板4个角上各截去边长为x(cm)的正方形,求余下面积 S(cm)与x之间的函数表达式.
解:木板余下面积S与截去正方形边长x有如下 函数关系: S=120×80-4×x2+9600,0<x≤40.
首页
例3:已知函数 y (k2 k)x2 kx 2 k
首页
解: 果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子, y=(100+x)(600-5x)
=-5x²+100x+60000.
首页
问题2:设人民币一年教育储蓄的年利率是x,一年
到期后,银行将本金和利息自动按一年定期储蓄转存.如 果存款是100元,那么请你写出两年后的本息和y(元)的 表达式(不考虑利息税).
与一对角线长x之间的函数关系.
解:(1)
S
6a2 ;(2) y
x2
4
;
(3) y 13x 338 .
随堂训练
1.下列函数中,哪些是二次函数?
(1) y x2
(2)
y
1 x2
(3) y x(1 x)
(4) y (x 1)2 x2
先化简后判断
首页
2.做一做: (1)正方形边长为x(厘米),它的面积y(平方 厘米)是多少?
y=100(x+1)²=100x²+200x+100.
首页
问题3:用总长为60m的篱笆围成矩形场地,场地面积S(m²)与矩 形一边长a(m)之间的关系是什么?
解:S=a( 60-a)=a(30-a)
2
=30a-a²= a²+30a .
首页
y=-5x²+100x+60000, y=100x²+200x+100 . s= -a²+30a .
100m,设与围墙相邻的一篱笆墙的长度都为x(m), 求矩形植物园的面积S( m2 )与x之间函数关系式.
s x(100 2x),0 x 50
即 s 2x2 100x,0 x 50
首页
问题2:某型号的电脑两年前的销售为6000元,现
降价销售,若每年的平均降价率为x,求现在售价 为y(元)与平均降价率x之间的函数关系.