平面向量基础知识梳理
- 格式:doc
- 大小:251.50 KB
- 文档页数:4
高一数学平面向量基础知识整理一、向量的定义与表示在数学中,向量是有大小和方向的量。
常用箭头在平面上表示向量,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
二、向量的性质1. 向量的相等性:向量的大小和方向完全相同,则两个向量相等。
2. 向量的相反性:如果两个向量大小相等,方向相反,则为相反向量。
3. 零向量:大小为零的向量,任何向量与零向量相加仍为原向量。
4. 平行向量:两个向量具有相同或相反的方向时,称为平行向量。
5. 共线向量:两个向量在同一直线上,或者其中一个是另一个的常数倍时,称为共线向量。
6. 自由向量和定位向量:自由向量可以平移,定位向量则有固定的起点和终点。
三、向量的运算1. 向量的加法:- 要将两个向量相加,将它们首尾相连,连接起点和终点,新向量的起点是第一个向量的起点,终点是第二个向量的终点。
- 满足交换律和结合律。
2. 向量的减法:- 将减法转化为加法,即将减去的向量取相反向量,再进行加法。
3. 数量积:- 数量积又称为点积或内积,表示为两个向量的数量积的积,用符号 "·" 表示。
- 定义为两个向量的模的乘积再乘以它们的夹角的余弦值。
4. 向量的数乘:- 数乘即将向量的每个分量都乘以一个标量。
四、向量的模(长度)向量的模表示向量的大小,有两种计算方法:1. 用坐标表示:向量 (a, b) 的模为√(a² + b²)。
2. 用数量积表示:设向量 a 的模为 |a|,则|a| = √(a·a)。
五、单位向量单位向量的模为 1,任何非零向量的单位向量可以通过将向量除以它的模来获得。
六、向量的夹角1. 向量的夹角余弦:- 两个非零向量 a 和 b 的夹角余弦定义为:cosθ = (a·b) / (|a| |b|),其中θ 为夹角。
2. 向量的垂直与平行关系:- 若 a·b = 0,则 a 与 b 垂直。
平面向量复习基本知识点及结论总结平面向量是指在平面上具有大小和方向的量,用箭头表示。
平面向量有两个重要的基本运算:向量的加法和数乘。
1.平面向量的加法:-向量的加法满足交换律:A+B=B+A-向量的加法满足结合律:(A+B)+C=A+(B+C)-零向量的性质:对于任意向量A,有A+0=0+A=A-负向量的性质:对于任意向量A,有A+(-A)=02.平面向量的数乘:-数乘的分配律:k(A+B)=kA+kB-数乘的结合律:(k+m)A=kA+mA- 数乘的分配律:k(lmA)= (klm)A-零向量的数乘:0A=03.平面向量的基本性质和结论:-平行向量:若存在非零实数k,使得A=kB,称向量A与向量B平行。
-相等向量:若AB,CD是向量,则A=C,B=D,则称向量AB和CD相等。
-相反向量:若AB是向量,则存在一个向量BA,满足AB+BA=0,称向量BA是向量AB的相反向量。
-向量共线:若有两个不共线的向量AB和CD,如果存在非零实数k,使得CD=kAB,则称向量CD与向量AB共线。
-平移:若向量u等于向量a加上向量b,即u=a+b,则向量u和向量a平行。
4.向量的模:-向量的模表示向量的长度,通常用,A,表示,它的计算公式为,A,=√(x²+y²),其中(x,y)是向量A的坐标。
5.向量的共线与垂直:-向量共线:若向量A与向量B不为零向量且存在非零实数k,使得A=kB,则称向量A与向量B共线。
-向量垂直:若点A的坐标(x₁,y₁)和点B的坐标(x₂,y₂)满足x₁x₂+y₁y₂=0,则称向量AB垂直。
6.单位向量与方向角:-单位向量:向量长度为1的向量称为单位向量。
-方向角:向量与x轴的夹角称为它的方向角,用θ表示。
以上是平面向量的基本知识点和结论的总结,掌握这些知识可以帮助我们进行平面向量的运算、证明和推断。
为了更好地理解和应用平面向量,需要进行大量的练习和实践。
高中数学平面向量知识点总结一、平面向量的基本概念1. 定义:平面向量是有大小和方向的量,可以用有序实数对表示。
2. 表示法:通常用小写字母加箭头表示,如 $\vec{a}$。
3. 相等:两个向量大小相等且方向相同时,这两个向量相等。
4. 零向量:大小为零的向量,没有特定方向。
二、平面向量的运算1. 加法:- 规则:平行四边形法则或三角形法则。
- 交换律:$\vec{a} + \vec{b} = \vec{b} + \vec{a}$。
- 结合律:$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$。
2. 减法:- 规则:与加法类似,但方向相反。
- 逆向量:$\vec{a} - \vec{a} = \vec{0}$。
3. 数乘:- 定义:向量与实数相乘。
- 规则:$k\vec{a} = \vec{a}$ 的长度变为 $|k|$ 倍,方向与$k$ 的符号一致。
- 分配律:$(k + l)\vec{a} = k\vec{a} + l\vec{a}$。
- 结合律:$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$。
三、平面向量的坐标表示1. 坐标表示:$\vec{a} = (x, y)$,其中 $x$ 和 $y$ 是向量在坐标轴上的分量。
2. 几何意义:$x$ 分量表示向量在 $x$ 轴上的长度,$y$ 分量表示向量在 $y$ 轴上的长度。
3. 坐标运算:- 加法:$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$。
- 减法:$(x_1, y_1) - (x_2, y_2) = (x_1 - x_2, y_1 - y_2)$。
- 数乘:$k(x, y) = (kx, ky)$。
四、平面向量的模与单位向量1. 模(长度):- 定义:向量从原点到其终点的距离。
平面向量基础知识梳理一、1.向量是既有 又有 的量。
①几何表示:有向线段 ②符号表示:用有向线段的记法表示4.向量的模是指向量的 ,向量的模记为 。
5.零向量与单位向量①模为 的向量叫零向量,规定零向量的方向是任意的,记作: 。
②模为 的向量叫单位向量,(有 个单位向量)6.向量间关系①相等向量:是指方向 且模 的向量,所有相等的非零向量都可用同一条有向线段表示而与起点无关,向量a 与 b 相等记为 。
②自由向量:数学中的向量只有两要素 、 ,它可以平移到以空间任意一点为起点而向量不变,本章研究平面自由向量。
③平行向量:也称共线向量,是指方向 或 的非零向量(平行向量可以平移到同一条直线上,故称共线向量)(零向量与任意向量平行)二、①设=,=,则叫做 的和,记作 。
②+ =+ =③向量加法运算的交换律: , 结合律: .④求作两个向量和的方法有 法则和 法则. 三、①与向量 的向量,叫做的相反向量,记作 ,零向量的相反向量是 。
②-(-)= ,+(-)= 。
③若a 、b 是相反向量,则a = ,b = ,a +b = 。
④向量加上的相反向量,叫做 ,既:-= 。
⑤=,=,则= 。
四、1.实数λ与向量的a 积还是一个 ,记作 ;2.λa 的长度与方向规定如下(λ∈R )①|λa |= ,②当λ>0时,λa 的方向与a 的方向 ,当λ<0时,λa 的方向与a 的方向 ; ③0= , λ= ;3. 实数与向量的积满足结合律与分配律,设λ、μ为实数,则①λ(μ)=(λμ);②(λ+μ)= ;③λ(+)= .4.向量b 与非零向量a 共线的充要条件是:有且只有一个实数λ,使得b = . 五、向量1e 、2e 是同一平面内两个不共线的向量, a 为这个平面内任一向量,则向量a ,可用1e 、2e 表示为a = ,其中 , 为惟一存在的一组实数;另外不共线向量1e 、2e 叫做表示这一平面内所有向量的其中一组 。
平面向量知识点梳理平面向量是向量的一种特殊情况,它在平面上进行运算和表示。
平面向量的学习是解决平面几何问题的重要基础,同时也是向量的一个重要应用领域。
下面进行平面向量的知识点梳理:一、平面向量的定义和表示方法1. 平面向量的定义:平面上的向量是由两个有序数对(a,b)组成。
其中a称为向量的横坐标,b称为向量的纵坐标。
2. 平面向量的表示方法:平面向量可以用有向线段或点表示。
有向线段的起点和终点表示出向量的方向和大小。
二、平面向量的运算法则1. 平面向量的加法:两个向量的加法是将它们的对应坐标相加。
即(A, B) + (C, D) = (A+C, B+D)。
2. 平面向量的减法:两个向量的减法是将它们的对应坐标相减。
即(A, B) - (C, D) = (A-C, B-D)。
3. 常数与向量的乘法:将一个向量的每个坐标与一个常数相乘。
即k(A, B) = (kA, kB)。
4. 向量的数量积:向量的数量积等于它们的模长相乘再乘以夹角的余弦值。
设两个向量为(A, B)和(C, D),则数量积为AC+BD cosθ,其中θ为两个向量顺时针夹角。
5. 向量的叉积:向量的叉积是一个向量,其大小等于两个向量构成的平行四边形的面积。
设两个向量为(A, B)和(C, D),则叉积为AD-BC。
三、平面向量的基本性质1. 平面向量的模长:设向量为(A, B),则向量的模长为|AB| = √(A² + B²)。
2. 平行向量:如果两个向量的方向相同或相反,则它们是平行向量。
3. 垂直向量:如果两个向量的数量积等于0,则它们是垂直向量。
4. 向量共线:如果一个向量与另一个向量的数量积为0,则它们共线。
5. 向量的方向角:向量的方向角是与x轴的夹角,它可以根据向量的坐标来计算。
四、平面向量的应用1. 向量的分解:将一个向量分解为两个与坐标轴平行的向量,以方便计算。
2. 向量的平移:通过平移向量的起点和终点,将向量沿着平行线移动。
平面向量知识点归纳总结平面向量是数学中的一个重要概念,它在几何、物理、工程等领域中具有广泛的应用。
本文将对平面向量的定义、运算、性质和常见应用进行归纳总结。
一、平面向量的定义平面向量是具有大小和方向的量,用箭头表示。
一个平面向量由起点和终点确定,可以用有序对表示。
例如,向量AB表示从点A指向点B的有向线段,记作AB。
二、向量的表示方法1. 坐标表示:平面向量可以用坐标表示,一个平面上的向量可以表示为(a, b),其中a和b分别表示向量在x轴和y轴上的分量。
2. 线段表示:向量的起点和终点可以表示为两个点的坐标,向量本身可以表示为连接这两个点的线段。
三、向量的运算1. 加法运算:向量的加法运算满足平行四边形法则。
设有向量A和B,它们的和记作A + B,可以通过将A的终点与B的起点相连,得到一条新的有向线段,该线段的起点为A的起点,终点为B的终点。
新的线段即为向量A + B。
2. 数乘运算:向量的数乘运算满足分配律和结合律。
设有向量A和实数k,它们的数乘记作kA,向量kA的长度是向量A长度的k倍,方向与A相同(当k>0时)或相反(当k<0时)。
3. 减法运算:向量的减法可以通过将减数取负后与被减数进行加法运算得到。
即A - B = A + (-B)。
4. 零向量:零向量是长度为0的向量,记作0。
任何向量与零向量相加等于该向量本身。
四、向量的性质1. 平移不变性:向量在平面上进行平移操作时,大小和方向保持不变。
2. 相等性:两个向量相等,当且仅当它们的起点和终点重合。
3. 平行性:两个向量平行,当且仅当它们的方向相同或相反。
4. 共线性:三个或三个以上的向量共线,当且仅当它们在同一条直线上或平行于同一条直线。
5. 长度:向量的长度可以利用勾股定理计算得到,即向量AB的长度为√(x2 - x1)² + (y2 - y1)²。
6. 单位向量:长度为1的向量称为单位向量。
五、向量的应用1. 向量的分解:一个向量可以被分解成x轴和y轴上的两个分量。
平面向量知识点梳理第一篇:一、平面向量的基本概念及表示方法1. 平面向量的定义:平面向量是具有大小和方向的量,用箭头表示。
2. 平面向量的表示方法:平面向量通常用有向线段来表示,线段的长度表示向量的大小,箭头的方向表示向量的方向。
二、平面向量的运算法则1. 向量的加法:将两个向量的起点放在一起,然后将两个箭头相连,连接结果的箭头即为两个向量相加的结果。
2. 向量的减法:将两个向量的起点放在一起,然后将第二个向量取反,再按向量加法的法则进行运算。
3. 向量的数乘:将向量的长度与一个数相乘,结果的方向保持不变,只改变了大小。
三、平面向量的性质1. 平面向量的相等:两个向量的大小和方向完全相同,则它们是相等的。
2. 平面向量的负向量:具有相同大小但方向相反的向量称为原向量的负向量。
3. 平面向量的数量积:两个向量的数量积等于两个向量的模长的乘积与它们夹角的余弦值的乘积。
4. 平面向量的夹角:两个向量的夹角是一个锐角,它与它们的余弦值有关。
5. 平面向量的线性相关与线性无关:若存在不全为零的实数使得向量的线性组合等于零向量,则称这些向量线性相关;否则称这些向量线性无关。
四、平面向量的坐标表示1. 平面向量的坐标表示方法:平面向量可以用有序数对或者列向量来表示。
2. 平面向量的坐标运算:平面向量的加法、减法和数乘运算可以通过对应元素之间的运算来进行。
五、平面向量的标准表示1. 平面向量的标准表示方法:平面向量可以表示为单位向量与它的长度的乘积。
2. 平面向量的标准化:将向量除以它的模长,使其成为单位向量。
六、平面向量的数量积1. 平面向量的数量积的计算:将两个向量的对应坐标相乘,再将相乘结果相加。
2. 平面向量的数量积与夹角:两个向量的数量积等于它们的模长的乘积与它们的夹角的余弦值的乘积。
以上是平面向量的一些基本概念、运算法则、性质和表示方法的梳理。
通过学习平面向量,我们可以更好地理解和应用向量的概念,并在几何问题中进行计算和推导。
平面向量知识点归纳总结图一、平面向量的定义1.1 平面向量的概念在平面上任意选定一个起点和一个终点之间的有序对称就称为平面向量,记作。
平面向量可以用有向线段来表示,有向线段的起点就是平面向量的起点,终点就是平面向量的终点。
1.2 平面向量的表示平面向量可以用坐标表示,设平面向量的起点为原点O,终点为点A(x, y),则平面向量记作。
1.3 平面向量的相等两个平面向量相等指的是它们的模相等,并且方向相同,即两个平面向量相等当且仅当。
二、平面向量的运算2.1 平面向量的加法设和,平面向量+的结果是一个新的平面向量,其起点为向量的起点,终点为向量的终点。
2.2 平面向量的减法设,平面向量-的结果是一个新的平面向量,其起点为向量的起点,终点为向量的终点。
2.3 数乘设,数的积是一个新的平面向量,其长度是向量的倍数,方向与向量相同。
三、平面向量的运算性质3.1 交换律3.2 结合律3.3 分配律四、平面向量的应用4.1 平面向量的线段设线段的两个端点分别为A(x1, y1)和B(x2, y2),则向量的终点减去起点的坐标差即为该线段的平面向量表示。
4.2 平面向量的位置关系(1) 共线若向量平行,则它们共线。
(2) 垂直若,则它们垂直。
4.3 平面向量的运动学应用若一个物体在平面内的任意两点A、B之间作平移运动,其位矢向量表示。
五、平面向量的数量积5.1 定义设,,则积。
5.2 计算(1)坐标法(2)数量积的几何意义5.3 性质(1)交换律(2)结合律(3)分配律5.4 应用(1)判断共线若,则共线。
(2)判断垂直若,则垂直。
(3)夹角公式若,则夹角α的余弦值是的数量积。
六、平面向量的叉乘6.1 定义设,把数视为数乘6.2 计算6.3 性质6.4 应用七、平面向量的混合积7.1 定义设、,则混合积7.2 计算7.3 性质7.4 应用八、几何向量8.1 平面向量的模8.2 单位向量8.3 平行四边形法则8.4 平面向量的夹角公式8.5 平面向量的坐标表示8.6 平面向量的位置关系总结平面向量是高中数学中的一个重要概念,它不仅有着丰富的几何意义,还具有广泛的物理意义。
平面向量知识点梳理平面向量是解决平面几何问题的重要工具。
它们是代表平面上的量的有向线段,具有长度和方向,并可以用数和坐标表示。
平面向量的运算包括加法、减法、数乘、点积和叉积等。
接下来,我们将对平面向量的基本概念、运算和相关定理进行详细介绍。
第一部分:基本概念1. 向量的定义:向量是有大小和方向的量,用有向线段来表示。
在平面上,向量由起点和终点确定。
2. 向量的表示:向量可以用字母或者有向线段的终点坐标表示,如向量AB可以表示为→AB,也可以表示为→a。
3. 零向量:零向量是起点和终点相同的向量,表示为→0。
4. 向量的相等:两个向量相等,当且仅当它们的大小和方向都相同。
5. 方向角:向量与平行于x轴正半轴的夹角的余角(0≤α≤2π)称为向量的方向角。
6. 基底向量:x轴的正方向单位向量i和y轴的正方向单位向量j称为平面直角坐标系的基底,分别用→i和→j表示。
7. 单位向量:大小为1的向量称为单位向量。
第二部分:运算1. 向量的加法:向量的加法满足交换律和结合律,即→a+→b=→b+→a和(→a+→b)+→c=→a+(→b+→c)。
2. 向量的减法:向量的减法可以通过向量的加法和负向量来表示,即→a-→b=→a+(-→b)。
3. 数乘:向量与实数的乘积称为数乘。
当数大于0时,数乘改变向量的方向和大小;当数小于0时,数乘改变向量的方向并使其大小反向;当数等于0时,结果为零向量。
4. 点积:向量的点积也叫数量积,用来计算两个向量的夹角余弦值,公式为→a·→b=|→a||→b|cosθ,其中|→a|和|→b|分别表示向量的大小,θ为两个向量的夹角。
5. 叉积:向量的叉积也叫向量积,用来计算两个向量所在平面的法向量,公式为→a×→b=|→a||→b|sinθ→n,其中|→a|和|→b|分别表示向量的大小,θ为两个向量的夹角,→n为所得到的法向量。
第三部分:相关定理1. 向量共线定理:两个非零向量共线的充分必要条件是它们的方向相同或相反。
平面向量知识点梳理平面向量是高中数学的重要概念,也是应用于物理、几何等领域的基础知识。
它涵盖了向量的基本性质、向量的运算、向量的共线和垂直等内容。
下面我将对平面向量的知识点进行详细梳理。
一、向量的定义与表示方法1.向量的定义:向量是空间中的有向线段,具有大小和方向。
2. 向量的表示方法:向量通常用一个小写字母加箭头表示,如$\vec{a}$,也可以用加粗的字母表示,如$\mathbf{a}$。
向量的起点和终点分别称为起点和终点。
3. 向量的模长:向量$\vec{a}$的模长表示为$,\vec{a},$,也可以用向量的坐标表示。
二、向量的基本性质1.平行向量:若两个向量的方向相同或相反,则它们是平行向量。
2.等量向量:若两个向量的大小相等,则它们是等量向量。
3. 零向量:大小为0的向量称为零向量,通常表示为$\vec{0}$。
4.单位向量:大小为1的向量称为单位向量,它的方向与原向量相同。
5.反向向量:一个向量与它相反的向量之和等于零向量。
三、向量的运算1.向量的加法:向量的加法满足平行四边形法则,即将两个向量的起点连接起来,然后以它们的终点为顶点构成一个平行四边形,连接两条对角线,所得到的向量即为两向量之和。
2.向量的减法:向量的减法等价于向量的加法,即将减向量取相反向量,然后两个向量相加。
3.向量的数乘:向量乘以一个标量,即将向量的大小与方向同时放大或缩小。
4. 向量的数量积:向量的数量积又称为点积,表示为$\vec{a}\cdot\vec{b}$,等于两个向量的模长之积再乘以它们的夹角的余弦值。
四、向量的共线与垂直关系1.共线向量:如果两个向量的方向相同或相反,则它们是共线向量。
2.垂直向量:如果两个向量的数量积等于0,则它们是垂直向量。
五、向量的投影1.向量的投影:一个向量在另一个向量上的投影称为该向量在另一个向量上的投影。
2. 向量的投影公式:设$\vec{a}$和$\vec{b}$是两个非零向量,$\theta$是它们夹角的余弦值,则向量$\vec{a}$在$\vec{b}$上的投影大小为$\frac{\vec{a}\cdot\vec{b}}{,\vec{b},}$,方向与$\vec{b}$相同。
平面向量知识点总结归纳在数学中,平面向量是一个有大小和方向的量,常用于解决几何和代数的问题。
平面向量具有许多重要的性质和应用,本文将对平面向量的相关知识点进行总结归纳。
一、基本概念1. 平面向量的表示:平面向量通常用字母加上一个箭头来表示,例如向量a可以写作a→,其中箭头表示向量的方向。
2. 平行向量:两个向量具有相同或相反的方向时,称它们为平行向量。
平行向量的模长相等。
3. 零向量:所有分量都为零的向量称为零向量,用0→表示。
零向量的模长为0。
4. 向量共线:如果两个向量的方向相同或相反,它们被称为共线向量。
二、向量运算1. 向量加法:向量加法是指将两个向量的对应分量相加得到一个新向量。
向量加法满足交换律和结合律。
2. 向量减法:向量减法是指将两个向量的对应分量相减得到一个新向量。
向量减法可以转化为向量加法,即a→ - b→ = a→ + (-b→)。
3. 数乘运算:向量与一个实数相乘,可以改变向量的大小和方向,称为数乘运算。
4. 内积运算:向量的内积又称为点乘运算,表示两个向量之间的夹角关系。
内积的结果是一个实数,可以用向量的模长和夹角的余弦表示。
5. 外积运算:向量的外积又称为叉乘运算,用于求得两个向量所确定的平行四边形的面积和方向。
外积的结果是一个向量。
三、向量的性质1. 平行四边形法则:如果将两个向量的起点放在一起,则另外两个端点形成的四边形为平行四边形。
2. 模长计算:向量的模长是指向量的长度,可以用勾股定理计算。
3. 单位向量:模长为1的向量称为单位向量,可以通过将向量除以它的模长得到。
4. 点积性质:点积具有分配律、交换律和数量积与夹角的余弦值相关等性质。
5. 叉积性质:叉积具有反交换律、分配律和数量积与夹角的正弦值相关等性质。
四、向量的应用1. 几何问题:平面向量可以用于解决几何问题,如线段的平移、直线的垂直和平行判定等。
2. 物理学中的力:力可以用向量表示,通过向量运算可以求得多个力的合力和分力。
平面向量重要知识点1、向量有关概念:(1)向量的概念:既有大小又有方向的量,向量是可以平移的,(2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是||AB AB ±u u u r u u u r ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:∥,规定零向量和任何向量平行。
提醒平行向量无传递性!(因为有0r )2.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。
3、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa :当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反4、平面向量的数量积:(1)两个向量的夹角:(2)平面向量的数量积:规定:零向量与任一向量的数量积是0注意数量积是一个实数,不再是一个向量。
(3)b 在a 上的投影为||cos b θr ,它是一个实数,但不一定大于0。
(4)a •b 的几何意义:数量积•等于的模||a r 与在上的投影的积。
(5)向量数量积的性质:设两个非零向量,,其夹角为θ,则:①0a b a b ⊥⇔•=r r r r ;②当a ,b 同向时,a •b =a b r r ,特别地,22,a a a a a =•==r r r r r ;当a 与b 反向时,•=-a b r r ;当θ为锐角时,•>0,且 a b r r 、不同向,0a b ⋅>r r 是θ为锐角的必要非充分条件;当θ为钝角时,•<0,且 a b r r 、不反向,0a b ⋅<r r 是θ为钝角的必要非充分条件; ③非零向量,夹角θ的计算公式:cos a b a bθ•=r r r r ;④||||||a b a b •≤r r r r 。
平面向量知识点总结(精华)一、向量的基本概念1. 向量的定义向量是既有大小又有方向的量。
例如,物理学中的力、位移等都是向量。
我们可以用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
向量的表示:几何表示:用有向线段AB表示,其中\(A为起点,\(B为终点。
字母表示:用小写字母a、b、c等表示。
2. 向量的模向量AB或a的大小称为向量的模,记作AB或a。
模是一个非负实数,例如,若a=(x,y),则a=x^2+y^2。
3. 零向量长度为\(0的向量称为零向量,记作0。
零向量的方向是任意的。
4. 单位向量模等于\(1的向量称为单位向量。
对于非零向量a,与它同方向的单位向量记作e=aa。
例如,向量a=(3,4),则a= 5,同方向的单位向量e=(35,45)。
5. 平行向量(共线向量)方向相同或相反的非零向量称为平行向量。
规定:零向量与任意向量平行。
若向量a与b平行,记作a。
例如,a=(1,2),b=(2,4),因为b = 2a,所以a。
6. 相等向量长度相等且方向相同的向量称为相等向量。
若AB=CD,则\(A与\(C重合,\(B与\(D重合,且AB=CD,方向相同。
二、向量的运算1. 向量的加法三角形法则:已知向量a、b,在平面内任取一点\(A,作AB=a,BC=b,则AC=a+b。
平行四边形法则:已知向量a、b,以同一点\(O为起点作OA=a,OB=b,以\(OA、\(OB为邻边作平行四边形\(OACB,则OC=a+b。
向量加法的运算律:交换律:a+b=b+a。
结合律:\((a+b)+c=a+(b+c)。
2. 向量的减法相反向量:与向量a长度相等,方向相反的向量称为a 的相反向量,记作a。
向量减法的定义:ab=a+(b)。
其几何意义是:已知向量a、b,在平面内任取一点\(O,作OA=a,OB=b,则BA=ab。
3. 向量的数乘定义:实数\(与向量a的乘积是一个向量,记作a。
平面向量知识点总结平面向量是代数学中的一个概念,它是描述平面上的位置和方向的量。
平面向量的知识点主要包括向量的定义和表示、向量的基本运算、向量的共线和平行、向量的数量积和叉积等。
下面是对这些知识点的详细总结:1.向量的定义和表示:平面向量是有大小和方向的量。
用有向线段来表示向量,线段的起点代表向量的作用点,线段的长度代表向量的大小,线段的方向代表向量的方向。
向量通常用小写字母加箭头表示,如向量a用符号→a表示。
向量可以用坐标表示法来表示。
在平面直角坐标系中,向量可以表示为一个具有两个分量的有序数对,如向量→a可以表示为→a=(a₁,a₂),其中a₁和a₂称为向量→a的分量。
2.向量的基本运算:平面向量有加法和乘法运算。
(1)向量的加法:向量的加法是指将两个向量的对应分量相加得到一个新的向量的运算。
即,如果→a=(a₁,a₂),→b=(b₁,b₂),则→a+→b=(a₁+b₁,a₂+b₂)。
(2)向量的乘法:向量的乘法有数量乘法和数量积的概念。
-数量乘法:向量的数量乘法是指将向量的每个分量乘以一个实数得到一个新的向量的运算。
即,如果→a=(a₁,a₂),k为实数,则k×→a=(k×a₁,k×a₂)。
- 数量积:向量的数量积,也叫点积或内积,是两个向量的数量积的值等于这两个向量的模的乘积与它们的夹角的余弦值的乘积,即→a·→b= ,→a,,→b,cosθ。
其中,θ为两个向量的夹角,→a,和,→b,为两个向量的模。
3.向量的共线和平行:两个向量共线的标准是它们的方向相同或相反。
换言之,如果有两个非零向量→a和→b,存在一个实数k,使得→a=k×→b,则→a与→b共线。
两个向量平行的标准是它们的方向相同。
换言之,如果有两个非零向量→a和→b,存在一个实数k,使得→a=k×→b,则→a与→b平行。
4.向量的数量积:向量的数量积,也叫点积或内积,是两个向量的数量积的值等于这两个向量的模的乘积与它们的夹角的余弦值的乘积。
平面向量知识点整理平面向量是线性代数中的重要概念,具有广泛的应用。
下面是关于平面向量的知识点整理。
一、平面向量的定义和表示平面向量是指在平面上一个具有大小和方向的量。
平面向量可以表示为箭头,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
平面向量通常表示为有序对(a,b),其中a和b是实数。
二、平面向量的运算1.加法:平面向量的加法运算是指将两个向量相加得到一个新的向量。
加法运算满足交换律和结合律。
2.数乘:将一个向量乘以一个标量得到一个新的向量,标量可以是实数。
数乘的结果是将向量的大小和方向进行相应的调整。
3.减法:将一个向量减去另一个向量等于将第二个向量取相反数后与第一个向量相加。
减法运算可以转化为加法运算。
三、平面向量的性质1.平行向量:两个向量的方向相同或相反,则它们是平行向量。
平行向量的大小可以不同。
2.零向量:大小为零的向量称为零向量,用0表示。
任何向量与零向量相加的结果仍为原向量本身。
3.负向量:一个向量的大小和方向相同但方向相反的向量称为它的负向量。
4.共线向量:两个或更多个向量都平行于同一条直线时,它们是共线向量。
5.非共线向量:不在同一直线上的向量是非共线向量。
6. 数量积:两个非零向量a和b的数量积(也称为点积或内积)是一个标量,定义为a·b= ,a,,b,cosθ,其中,a,和,b,分别表示向量a和向量b的模长,θ表示两个向量之间的夹角。
7. 向量积:两个非零向量a和b的向量积(也称为叉积或外积)是一个向量,定义为 a × b = ,a,,b,sinθ n,其中,a,和,b,分别表示向量a和向量b的模长,θ表示两个向量之间的夹角,n为一个与a和b都垂直的单位向量。
8.向量共线条件:两个向量共线的充要条件是它们的向量积等于零向量。
四、平面向量的应用1.几何问题:平面向量可以用于解决距离、角度等几何问题,如计算点的坐标、计算直线的夹角等。
2.物理问题:平面向量常用于物理学中的力学问题,如计算物体的合力、分解力等。
高中数学知识点归纳平面向量基础知识高中数学知识点归纳——平面向量基础知识一、定义和表示平面向量是由大小(模)和方向组成的,可以用箭头图形表示。
一般用字母加箭头表示向量,如AB→表示由点A指向点B的向量。
向量的模表示为|AB|,有时也用双竖线 ||AB|| 表示。
二、向量的运算1. 向量的相等两个向量相等,当且仅当它们的模相等且方向相同。
2. 向量的加法向量的加法满足交换律和结合律,即 A + B = B + A,(A + B) + C = A + (B + C)。
3. 向量的数乘一个向量与一个实数相乘,结果是一个新的向量,该向量的模为原向量的模与实数的乘积,方向与原向量平行或反向。
4. 向量的减法减去一个向量等于加上该向量的反向向量,即 A - B = A + (-B)。
三、向量的性质1. 共线向量如果有两个向量的方向相同或者相反,它们就是共线的向量。
2. 平行向量如果两个向量的方向相同或相反,它们就是平行的向量。
平行向量可以通过数乘得到。
3. 零向量零向量的模为0,表示一个没有方向的向量。
任何向量与零向量相加,结果还是原向量。
4. 单位向量模为1的向量称为单位向量。
四、向量的数量积(点乘)1. 定义两个非零向量A和B的数量积(点乘)定义为:A·B =|A|·|B|·cosθ,其中θ为A和B的夹角。
2. 性质a) 若A·B = 0,则A和B垂直(即θ=90°)。
b) 若A·B > 0,则A和B夹角锐角(即θ<90°)。
c) 若A·B < 0,则A和B夹角钝角(即θ>90°)。
五、向量的向量积(叉乘)1. 定义两个非零向量A和B的向量积(叉乘)定义为一个向量C,其模为|C| = |A|·|B|·sinθ,方向垂直于A和B所在的平面,由右手法则确定。
2. 性质a) 平行向量的向量积等于零向量。
平面向量知识点归纳平面向量是数学中的一个重要概念,用来描述平面上的位移和力的大小和方向。
下面将对平面向量的知识点进行归纳和扩展讨论。
一、平面向量的定义平面向量是指在平面内有大小和方向的量,通常用有向线段表示。
平面向量可以表示为A = (x, y),其中x和y分别表示向量在坐标轴上的分量。
二、向量的模和方向向量的模表示向量的长度,记作|A|或||A||。
向量的方向可以通过与坐标轴的夹角来表示,通常使用与x轴的正向的夹角θ来表示。
三、向量的相等与加法向量相等的条件是它们的对应分量相等,即A = (x₁, y₁)和B = (x₂, y₂)相等当且仅当x₁ = x₂且y₁ = y₂。
向量的加法可以通过对应分量的相加来实现,即(A + B) = (x₁ + x₂, y₁ + y₂)。
四、向量的数乘向量的数乘是指将向量的每个分量都乘以一个标量。
数乘后得到的向量的大小变为原始向量的绝对值与标量的乘积,方向与原始向量保持一致。
五、向量的减法和负向量向量的减法是指将被减向量的对应分量减去减向量的对应分量。
即(A - B) = (x₁ - x₂, y₁ - y₂)。
向量的负向量是指将向量的每个分量都取反得到的新向量。
六、单位向量单位向量是指模为1的向量,通常表示为u。
单位向量的一个重要性质是与任意非零向量的数乘结果都是与原始向量的方向相同的向量。
七、向量的数量积(内积)向量的数量积定义为A · B = |A||B|cosθ,其中A和B是两个向量,θ是它们之间的夹角。
数量积可以用来计算两个向量之间的夹角、向量的投影以及向量的正交性。
八、向量的向量积(叉积)向量的向量积定义为A × B = |A||B|sinθn,其中A和B是两个向量,θ是它们之间的夹角,n是一个垂直于A和B的单位向量。
向量积可以用来计算面积、判断向量的方向以及计算平面的法向量。
九、平面向量的基本定理平面向量的基本定理是指对于任意两个平面向量A和B,有A · B= 0当且仅当A与B垂直。
第一章 平面向量2.1向量的基本概念和基本运算16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.2.2平面向量的基本定理及坐标表示21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作baCBAa b C C-=A -AB =B为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。
平面向量知识点总结归纳平面向量是数学中一个重要的概念,它在几何、代数和物理等领域都有广泛的应用。
下面是平面向量的一些常见知识点总结归纳。
1.平面向量的定义与表示:平面向量是具有大小和方向的量,用箭头表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
常用表示方法有坐标表示和分量表示。
2.平面向量的基本运算:平面向量的基本运算包括加法、减法、数乘、取负等运算。
两个向量的加法是将它们的对应分量相加,减法和加法类似,数乘是将向量的每个分量乘以一个标量,取负就是将向量的每个分量取负值。
3.平面向量的数量积:平面向量的数量积(内积)是将两个向量的对应分量相乘再相加得到一个标量。
数量积有以下几个性质:-交换律:A·B=B·A-结合律:(A+B)·C=A·C+B·C-分配律:(aA)·B=a(A·B)-零向量的数量积为0-若A·B=0,则A与B垂直(即正交)4.平面向量的向量积:平面向量的向量积(叉乘)是一个向量,它与原来的两个向量都垂直。
向量积的大小等于两个向量的数量积的模,方向遵循右手法则。
向量积有以下几个性质:-反交换律:A×B=-B×A-结合律:(aA)×B=a(A×B)-分配律:A×(B+C)=A×B+A×C-零向量与任何向量的向量积都为零向量-若A与B共线,则A×B=05.平面向量的共线与垂直关系:两个向量共线指的是它们的方向相同或相反,共线的标准是两个向量的比值为常数。
两个向量垂直指的是它们的数量积为0,也就是说两个向量的夹角为90度。
6.平面向量的线性相关与线性无关:若存在不全为零的常数使得两个向量的线性组合等于零向量,那么这两个向量是线性相关的,否则就是线性无关的。
若多个向量中存在一个线性无关的向量,则认为这多个向量也是线性无关的。
__________________________________________________
平面向量基础知识梳理
一、向量的概念:
⒈有向线段:叫做有向线段.
⒉向量:叫做向量.
向量通常用有向线段→AB或a 表示.
⒊向量的模:向量→AB的又叫做向量的模,记作 .
⒋两个重要概念:
①零向量:叫做零向量.记作 .
注意:零向量没有规定它的方向,因此零向量的方向是任意的.
②单位向量:叫做单位向量.
注意:单位向量的方向与它所在向量的方向相同.
⒌相等向量:叫做相等向量. 向量a 与b 相等记作 .
⒍平行向量:叫做平行向量. 向量a 与b 平行可记作 .
规定:0 与任一向量平行.即0 ∥a ,→AB∥0 ,0 ∥0 .
⒎共线向量:叫做共线向量.
注意:若a 与b 是共线向量,则a 与b 的方向,它们所在的直线它们的夹角是 .
⒏相反向量:叫做相反向量.
的相反向量是,−a 的相反向量是,0 的相反向量是 .
a
__________________________________________________
⒐两个非零向量
a
和
b
的夹
角: . 二、向量的运算:
⒈向量的加法:
⑴向量a 与b
的和的定义:
⑵向量加法法则:①三角形法则(请画图于右)→AB +→
BC (首尾相连) ②平行四边形法则(请画图于右)→
AB +→
AC (起点相同) ⑶向量加法运算律:①交换律:
②结合律:
⑷特例:0
+a = ,a +0= ,00 += .
⑸向量加法的坐标运算:设a
=(x 1,y 1),b =(x 2,y 2),则b a
+= .
⒉向量的减法:
⑴向量a 与b 的差的定义:向量a 加上b 的相反向量叫做a
与b
的差,记作
a
+(−
b )=a −b
.
a
−b
是怎样的一个向量?答: .
⑵向量减法法则:设a =→OA ,b
=→
OB ,
则a −b
=→
OA -→
OB = .(请画图于右).
重要结论:设AB ,AD 是两个不共线向量,则以AB 、AD 为邻边的平行
四边形的两条对角线的长分别是这两个向量和与差的模.
⑶特例:0
-a
= ,a
-0= ,00
-= . ⑷向量减法的坐标运算:设a
=(x 1,y 1),b =(x 2,y 2),则b a
-= . ⒊实数与向量的积:
⑴定义:实数λ与向量a 的积是一个向量,记作λa
,它的长度与方向规定如下: ①|λa |= ;
O
B
__________________________________________________
②当λ>0时,λa 的方向与a 的方向 ,当λ<0时,λa
的方向与a 的
方向 ;当λ=0时,λa = .
⑵运算律:①λ(μa )= ;②(λ+μ)a = ;
③λ(b a
+)= . ⑶实数与向量的积的坐标运算: ⑷特例:若λ∈R ,则λ0
= . ⒋向量的数量积(或内积):
⑴定义:已知非零向量a
和b
,它们的夹角为θ,则b a
⋅= . ⑶运算律:①
b
a
⋅= ;②(λ
a
)·b
= = ;③
(a +b
)·c = .
注意:向量的数量积没有结合律!
特别地,a a ⋅= ,或|a |= .
⑸向量的数量积的坐标运算:
设a
=(x 1,y 1),b
=(x 2,y 2),则b a
⋅= . ⑹特例:a
⋅0= ,00
⋅= .
三、重要定理、公式及方法: ⒈平面向量基本定理:
如果1e 和2e 是同一平面内的两个不共线...向量,那么对该平面内的任一向量a 有且只有一对实数λ1、λ2,使a =λ11e +λ22e .
⒉向量模的计算公式:设a =(x ,y ),则|a |= .
⒋如何证明A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)三点共线?
⒌两个向量平行、垂直的充要条件:
⑴向量a =(x
1,y
1
),和b =(x
2
,y
2
)平行的充要条件
....是x1y2-x2y1=0.
⑵向量a =(x
1,y
1
),和b =(x
2
,y
2
)垂直的必要不充分条件
.......是x1x2+y1y2=0.
⒎已知向量a =(x
1,y
1
),和b =(x
2
,y
2
),它们的夹角为θ,则
cosθ= .
⒐线段的中点坐标公式:
已知P
1(x
1
,y
1
),P
2
(x
2
,y
2
),则线段P
1
P
2
的中点坐标是 .
⒑三角形的重心坐标公式:
设△ABC三顶点的坐标为A(x
1,y
1
),B(x
2
,y
2
),C(x
3
,y
3
),则△ABC的重心G的
坐标是 .。